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Abstract. Assessing strategies for managing dengue is crucial. While many studies have
examined interventions’ impact on transmission dynamics, few focus on combining multiple
therapeutic approaches. This study presents an epidemic model incorporating vaccination
and treatment for infected individuals. It employs ordinary differential equations with seven-
state variables, analyzing disease-free and endemic equilibria. Results show the disease-free
equilibrium is globally stable when the basic reproduction number is below one. When vaccine
effectiveness is low, treatment proves more effective in reducing dengue cases. However, a
highly effective vaccine alone significantly reduces dengue occurrences. Additionally, the study
introduces an optimal control problem, combining vaccination and treatment. The analysis
suggests implementing both strategies is more effective than a single approach in mitigating
disease spread.
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1 Introduction
Dengue fever, a global health concern, affects millions annually, with significant morbidity
and mortality. Various interventions, including vaccine research and vector control, aim to
mitigate its impact. While supportive care is crucial, severe cases require specialized medical
attention. Although a vaccine is available, recent safety concerns have emerged. Given its
economic burden, effective intervention strategies are imperative. Mathematical models have
been instrumental in understanding transmission dynamics and evaluating intervention efficacy
[3, 6, 18]. However, the combined impact of vaccination and treatment remains underexplored.
This study aims to fill this gap by assessing their individual and combined effectiveness [5, 12,
17, 7, 21]. A novel mathematical model is proposed to analyze their interplay and potential
synergies. Numerical analyses validate the model and explore the effects of vaccine efficacy and
treatment rate on epidemic growth.

2 Model
The mathematical model [19] consists of two parts: human (h) and vector (v) compartments.
It employs an SV ITR (Susceptible, Vaccination, Infectious, Treatement, Recovered) model to
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depict human disease spread. Each compartment is represented by Sh(t), Vh(t), Ih(t), Th(t)
and Rh(t) at time t. The total mosquito population Nv(t) includes susceptible (Sv(t))) and
infected (Iv(t)) subpopulations. The model assumes a single serotype dengue without secondary
infections, granting lifelong immunity to recovered individuals. Transmission occurs through
mosquito bites represented by parameter b. Figure 1 illustrates a schematic model flow, with
variables detailed in the caption.

Figure 1: The flow chart represents the model. The host population is either Susceptible (Sh),
Vaccinated (Vh), Infectious (Ih), under Treatement (Th) and Recovered (Rh).The vector popu-
lation is either Susceptible (Sv) or Infectious (Iv). Dashed arrows show direction of transmission
between humans and mosquitoes.πh is the Recruitment rate of human. b is the Mosquito biting
rate. βvh represents the probability of infection of a susceptible human per bite by an infected
mosquito. γ is the human rate recovery.τ is the vaccination rate.µh is the human natural
mortality rate. ϵ is the vaccine efficacy;κ is the Infectious humans treatement rate. α is the
Recovery rate of hospitalized individuals. d is the human Disease-induced mortality rate. πv is
the Recruitment rate of vector. µv is the natural mortality rate of adult mosquitoes.

The system of ordinary differential equations (ODEs) describing the model is subjected to initial
conditions to ensure non-negativity and boundedness over finite time. The analysis focuses on
a biologically feasible region defined by a positive invariant set.

dSh

dt
= πh − bλvhSh − (p + µh)Sh

dVh

dt
= τSh − (1 − ε)λvhVh − µhVh

dIh

dt
= βvhSh + (1 − ε)λvhVh − (γ + κ + d + µh)Ih

dTh

dt
= κIh − (α + d + µh)Th

dRh

dt
= γ Ih + αTh − µhRh

dSv

dt
= πv − λhvSv − µvSv

dIv

dt
= λhvSvIh − µvIv

(1)

with the initial conditions

Sh(0) ≥ 0, Vh(0) ≥ 0, Ih(0) ≥ 0, Th(0) ≥ 0, Rh(0) ≥ 0, Sv(0) ≥ 0, Iv(0) ≥ 0 (2)
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3 Experimental Results
The basic reproduction ratio R0, gives the average number of secondary cases of infection
resulting from a single primary infection in a population where everyone is susceptible. It is
the indicator of persistence or eradication of diseases. Indeed, an epidemic is said under control
when R0 < 1. The effective reproduction number R0 is given by

R0 =

√√√√ b2βvhβhvµ2
hπv

πh(µv + dv)2(p + µh)(γ + κ + d + µh)

[
1 + τ(1 − ε)

µh

]
(3)

We conduct numerical simulations to explore the impact of vaccination and treatment on dengue
transmission. Model parameters are estimated and validated using reported dengue infection
data from Kaohsiung in 2014–2015.

We observe how the cure rate influences disease transmission dynamics, with intensified treat-
ment reducing the infected population. Similarly, we investigate the effect of vaccination efficacy
on disease transmission, noting a decrease in the infected population as vaccination efficiency
increases.

We investigate dengue reduction under three scenarios: vaccination, treatment, and combi-
nation. Treatment alone significantly reduces dengue cases compared to vaccination alone,
highlighting the importance of treatment when vaccine efficacy is low. Despite a high vacci-
nation rate, treatment remains more effective than the vaccine, possibly due to low vaccine
efficacy leading to reinfections.

At a vaccination rate of 0.5 and vaccine efficacy of 0.8, vaccination demonstrates superiority over
treatment in reducing dengue cases. This emphasizes the importance of considering vaccine
efficacy and vaccination rate in vaccination strategies. We analyze the critical vaccination
coverage rate necessary for disease eradication, illustrating the threshold vaccination level for
population protection. Disease control does not require complete population vaccination, as
each vaccinated individual contributes to collective immunity. However, additional efforts are
needed to reduce R0 below unity, even with high vaccination coverage.

Treatment outperforms vaccination in reducing dengue transmission when vaccine efficacy is
low. However, even with high vaccine efficacy, treatment remains essential for disease con-
trol. Sensitivity analysis reveals significant impacts of various parameters on R0, particularly
transmission probability, bite rate, vaccine effectiveness, and treatment. The synergy between
vaccination and treatment significantly reduces disease spread. Optimal control analysis sug-
gests combining vaccination and treatment is the most effective strategy for reducing infection.

Our model has limitations. For example, it does not include seasonality effects [1, 2]. Future
research directions could explore the interplay between dengue and other vector-borne disease
such as Zika [20] or person to person disease such as COVID-19 [13, 14], focusing on understand-
ing potential interactions, co-infections, and their impact on disease outcomes. Furthermore,
research into developing integrated control strategies that address epidemic transmission could
help optimize resource allocation and enhance public health responses [8, 11, 9, 10, 16, 15, 4].
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