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Abstract

In a differential category and in Differential Linear Logic, the expo-
nential conjunction ! admits structural maps, characterizing quantitative
operations and symmetric co-structural maps, characterizing differenti-
ation. In this paper, we introduce the notion of a Laplace distributor,
which is an extra structural map which distributes the linear negation
operation ( )∗ over ! and transforms the co-structural rules into the struc-
tural rules. Laplace distributors are directly inspired by the well-known
Laplace transform, which is all-important in numerical analysis. In the
star-autonomous setting, a Laplace distributor induces a natural trans-
formation from ! to the exponential disjunction ?, which we then call a
Laplace transformation. According to its semantics, we show that Laplace
distributors correspond precisely to the notion of a generalized exponential
function ex on the monoidal unit. We also show that many well-known and
important examples have a Laplace distributor/transformation, including
(weighted) relations, finiteness spaces, Köthe spaces, and convenient vec-
tor spaces.

1 Introduction

Differential Linear Logic (DiLL) [11], introduced by Ehrhard and Regnier [12],
introduces the concept of differentiation in Linear Logic (LL), as introduced by
Girard [15], by symmetrizing three out of the four rules for the aptly called
exponential connective !. So LL features four exponential structural rules which
dictate the use of !A; they are: the weakening rule w, the contraction rule c, the
dereliction rule d, and the promotion rule P1.

1These rules are presented with bilateral sequent for simplicity, but they could also be
made monolateral by using the exponential disjunction ?, which is the dual of !.
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Γ⊢∆ w
Γ, !A ⊢∆

Γ, !A, !A ⊢∆
c

Γ, !A ⊢ ∆

Γ, A ⊢∆
d

Γ, !A ⊢∆
!Γ⊢ A

P
!Γ⊢ !A

It is worth mentioning that the promotion rule can be equivalently replaced by
two rules: the functorial promotion rule !f and the digging rule p.

Γ ⊢A !f!Γ ⊢ !A
Γ, !!A ⊢ ∆

p
Γ, !A ⊢ ∆

DiLL then adds the co-structural rules which are the co-weakening rule w, the
co-contraction rule c, and the co-dereliction rule d.

⊢
w⊢ !A

⊢ Γ, !A ⊢ ∆, !A
c⊢ Γ,∆, !A

⊢ Γ, A
d⊢ Γ, !A

The co-dereliction rule d expresses differentiation, while the co-contraction rule
c and the co-weakening rule w are necessary for cut-elimination purposes. This
beautifully results in a symmetry between the structural rules and co-structural
rules, that has however never been properly explained. In this paper, we explain
this symmetry using the Laplace transform.

1.1 Differentiation on proofs

Before diving into the Laplace transform and its interpretation in categorical
models of DiLL, let us give more intuitions on the co-structural rules of DiLL.
The core intuition of LL is that a proof of a sequent A ⊢ B will be a linear proof,
making use of A exactly once and not allowing contraction nor weakening on A.
This is opposed to a proof of !A ⊢ B, which can make a non-linear usage of A by
using contraction or weakening. The basic rule of LL is that you can forget about
linearity. Hence, the dereliction rule d transforms a linear proof into a non-linear
proof, which intuitively is done so by just forgetting about the linearity property.
DiLL takes the reverse path by introducing a co-dereliction rule d, which, after
a cut, allows the transformation of a non-linear proof !A ⊢ B into a linear proof
A ⊢ B. From a semantical point of view, linearizing a non-linear function (which
interprets a proof) is done so via differentiation. This analogy is made precise
by introducing new cut-elimination rules between d and structural rules. The
cut-elimination between d and d results in a cut between their premises, and
this represents the fact that differentiating at 0 a linear function returns the
same linear function. The cut-elimination between promotion p and d is more
intricate and uses c and w: it represents the chain rule, which is the formula
expressing how to differentiate a composition of functions.

Rules of DiLL can also be understood through the notions of functions and
distributions. Naively, distributions are linear scalar maps which are computed
on smooth functions. Let us for now suggestively denote C∞(A,B) := L(!A,B)
the set of smooth maps from A to B, and A ⊸ B := L(A,B) the set of linear
maps from A to B. Now, in Classical DiLL, elements of !A can be interpreted
as distributions, so we may suggestively write !A ⊆ C∞(A, I) ⊸ I. In most
models, I is often interpreted as the field of real or complex numbers. Now,
for each element x of A, the dereliction rule gives us the Dirac distribution
at x, which is the distribution δx ∈ !A which evaluates a smooth function at
x, so δx(f) = f(x). For finite-dimensional vector spaces, or in the model of
convenient vector spaces [1] (which we discuss in Ex 14), it is sufficient to define

2



what a non-linear map does on Dirac distributions. So, on Dirac distributions,
the structural maps, which correspond to the structural rules of LL and the
co-structural rules of DiLL, are given as follows:

pA(δx) = δδx dA(δx) = x cA(δx) = δx ⊗ δx wA(δx) = 1

dA(x) = D0( )(x) cA(δx ⊗ δy) = δx+y wA(1) = δ0
(1)

where for the co-dereliction d, the D is the differential operator, that is, for a
smooth function f , Dx(f)(y) is the derivative of f at point x along the vector
y. We highlight that on the whole space !A, the co-contraction c : !A⊗ !A→ !A
is interpreted as the convolution of distributions:

cA(ϕ⊗ ψ) = ϕ ∗ ψ := f 7→ ϕ(x 7→ ψ(y 7→ f(x+ y)).

Moreover, the structural rules of LL can also be naturally expressed on func-
tions. Indeed, in Classical DiLL, we have an involutive duality ∗ where A∗ is the
linear dual of A, that is, A∗ = A⊸ I. Using the linear dual, one also introduces
the connector ?A = (!A∗)∗, which is interpreted as a space of smooth functions,
?A ⊆ C∞(A∗, I). We also get the multiplicative disjunction A`B = (A∗⊗B∗)∗,
which we may think of as a completed tensor product. Then the contraction
c?A : ?A ` ?A → ?A is interpreted by the pointwise multiplication of scalar
functions, the weakening w?

A : K → ?A maps scalars r to constant functions
cstr : x 7→ r, and the dereliction d?A : A → ?A maps elements of A to their
evalutation at a point x:

c?A (f ⊗ g) = f · g w?
A(r) = cstr d?A(x) = (ℓ ∈ A∗ 7→ ℓ(x)) (2)

All these intuitions can be made formal in specific models of DiLL; see Sec-
tion 6.

1.2 A higher-order Laplace transform

The categorification of functional analysis and differential geometry entertains
close links with the semantics of the sequent calculus for LL and DiLL. Differen-
tial categories were introduced by Blute, Cocket, and Seely [3], and originated
from the semantics of DiLL. Since their introduction, differential categories
now have a rich mathematical literature and have been quite successful in cat-
egorifying various important concepts from differential calculus and differential
geometry, as well as various other aspects of differentiation throughout mathe-
matics and computer science. This paper follows this line of research. Following
the categorification of the exponential functions in a differential category by the
second named author in [20], and the completion of DiLL by the addition of a
co-digging rule by the authors in [18], here we give a categorical interpretation
of the Laplace transform and study its properties. We explain why it is the
reason behind the symmetry in DiLL rules, which we exploit categorically.

The Laplace transform is a central component of calculus and engineering,
as it changes differential equations into polynomial equations. As such, the
Laplace transform is a very useful tool for solving differential equations. In
its first-order version, the Laplace transform takes a function f : R → R to a
function L (f) : C → R, defined as:

L (f)(s) =

∫ ∞

0

f(t)e−st dt
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However, this first-order version does not necessarily fit well with the categor-
ical semantics of DiLL. Instead of using integration to make functions act on
functions, one can use distributions by following the general idea of interpreting
distributions as generalized functions. Consider a distribution ϕ with compact
support, that is, ϕ ∈ C∞(R,R)′ is a linear form on the space of smooth functions
(where F ′ := L(F,R) is the space of linear scalar functions on a vector space
F ). Then we may write:

L (ϕ)(s) = ϕ(t 7→ e−st)

So for a higher-order distribution ϕ ∈ C∞(E,R)′, where E stands for a possibly
infinite-dimensional vector space, we get:

L :

C∞(E,R)′ −→ C∞(E′,R)

ϕ 7−→
(
x∗ 7→

(
ϕ
(
t 7→ ex

∗(t)
))) (3)

Following the intuitions developed above, this gives us a new understanding
of the Laplace transformation in terms of connectives of LL, resulting in a natural
transformation of type LA : !A → ?A. This idea was only recently noticed in
the context of DiLL, thanks to the higher-order presentation of the Laplace
transform in a specific polarized model of DiLL discussed in [18, Prop V.8].

1.3 Laplace transformation from co-structural to struc-
tural rules

Since we have a categorical understanding of higher-order distribution theory,
we, therefore, have all the ingredients in hand to axiomatize L categorically in
a suitable differential category. Differential categories are reviewed in Section 2.
For now, we simply state that we categorify the Laplace transform as a natural
transformation of type L : !A→ ?A, which we call a Laplace transformation
(Def 8). Semantically, the axioms say that L transforms the interpretation of
co-structural rules into the interpretation of structural rules:

L : !A 7→ ?A;w 7→ w; c 7→ c; d 7→ d.

These are all analogues of very well-known facts in calculus. For example, the
Laplace transform converts convolution into multiplication, which is recaptured
by the fact that our Laplace transformation L turns c into c?. It may be useful
to redo these well-known computations, which will help clearly show how L , as
given in (3), computes on co-structural morphisms, as given in (1). Here x∗ is
an element of A∗ = L(A,R), ans as such acts on elements t of A.

L (wA(r)) = x∗ 7→ r · δ0(t 7→ ex
∗(t)) = x∗ 7→ r · e0 = x∗ 7→ r = w?

A(r)

L (dA(y)) = x∗ 7→ D0(t 7→ ex
∗(t))(y) = x∗ 7→ x∗(y) = d?A(y)

L (cA(ϕ⊗ ψ)) = x∗ 7→ (ϕ ∗ ψ)(t 7→ ex
∗(t)) = x∗ 7→ ϕ

(
s 7→ ψ(t 7→ ex

∗(t+s))
)

= x∗ 7→ ϕ
(
s 7→ ψ(t 7→ ex

∗(t)+x∗(s)))
)

(x∗ is linear)
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= x∗ 7→ ϕ
(
s 7→ ψ(t 7→ ex

∗(t)ex
∗(s))

)
= x∗ 7→ ϕ(s 7→ ex

∗(s) · ψ(t 7→ ex
∗(t))) (ψ is linear)

= x∗ 7→ ϕ(s 7→ ex
∗(s)) · ψ(t 7→ ex

∗(t)) (ϕ is linear)

= c?A∗(L (ϕ)⊗ L (ψ))

Observe how all these equations are intrinsically linked with the basic prop-
erties of the exponential function ex. We will make this precise in Section 4.
Indeed, generalizations of the exponential function in a differential category were
defined by the second named author in [20], and are axiomatized by analogues
of three fundamental properties of the exponential function: that ex+y = exey

and e0 = 1, and also that ex is its own derivative. We will explain how the no-
tion of a Laplace transformation is fundamentally linked to that of a generalized
exponential function on the monoidal unit I (Def 3).

Moreover, since we are in the monoidal closed, we may uncurry the Laplace
transformation to get an extranatural transformation

ℓ

A : !A∗ ⊗ !A→ I, which
we call a Laplace evaluator (Def 2), or take the dual to get a natural trans-
formation ℓA : !A∗ → (!A)∗, which we call a Laplace distributor (Def 1).

1.4 Content and Outline:

This paper starts in Section 2 with a review of differential categories, the cat-
egorical semantics of DiLL, in which we will categorify L . In Section 3, we
introduce the concept of a Laplace distributor, which we axiomatize as a natu-
ral transformation operating in differential linear closed categories which trans-
forms co-structural rules into structural rules. In Section 4, we show that the
presence of a Laplace distributor in a differential linear closed category is equiv-
alent to the presence of a generalized exponential function e : !I ⊸ I on the
monoidal unit. Laplace distributors in the context of isomix star-autonomous
categories are studied in Section 5, where we show that we obtain our desired
Laplace transformation L in a differential linear isomix category. In Section
6, we give examples of Laplace distributors/evaluators/transformations in well-
known differential categories. We then conclude in Section 7 with a discussion
of future work.

2 Background: Differential Categories

In this section, we quickly review differential categories, mostly to set termi-
nology and notation. We will follow the same terminology and notation used
in [18]. For a more in-depth introduction to the basics of monoidal categories
and the overall categorical semantics of linear logic, we refer the reader to see
[22], and for an in-depth introduction to differential categories and examples,
we refer them to see [2, 11].

The underlying categorical structure of a differential category is that of an
additive symmetric monoidal category. Recall that a symmetric monoidal
category [22, Sec 4.4] interprets the multiplicative fragment of LL. So for an
arbitrary symmetric monoidal category, we denote the underlying category as
C, the monoidal product as ⊗, the monoidal unit as I, the natural associativity
isomorphism as αA,B,C : A⊗ (B ⊗ C) → (A⊗B)⊗ C, the natural right unital
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isomorphism as ρA : A ⊗ I → A, and the natural symmetry isomorphism as
σA,B : A⊗B → B⊗A. So then an additive symmetric monoidal category
[2, Def 3] is a symmetric monoidal category C which is enriched over the category
of commutative monoids, that is, each homset C(A,B) is a commutative monoid,
with addition operation + and zero 0 : A→ B, and such that composition and
the monoidal product ⊗ are compatible with the additive structure. This extra
structure of additive enrichment for a differential category is necessary to express
the famous Leibniz rule from differential calculus.

The categorical interpretation of the exponential fragment of LL is given
by a monoidal coalgebra modality. So for a symmetric monoidal category C,
a coalgebra modality [2, Def 1] is a comonad ! : C → C with comultipli-
cation pA : !A → !!A called the digging and counit dA : !A → A called the
dereliction, which comes equipped with two other natural transformations:
cA : !A→ !A⊗ !A called the contraction and wA : !A→ I called the weaken-
ing, making each !A a cocommutative comonoid and the digging a comonoid
morphism. Then a monoidal coalgbera modality [2, Def 2] is a coalgebra
modality ! which furthermore comes equipped with a natural transformation
µA,B : !A ⊗ !B → !(A ⊗ B) and a map µI : I → !I which makes ! into a lax
monoidal functor; p, d, c, and w into monoidal transformations; and c, and w
into !-coalgebra morphisms.

For an additive symmetric monoidal category, a monoidal coalgebra modal-
ity can equivalently be described in terms of an additive bialgebra modal-
ity [2, Def 5]. So in particular, for a monoidal coalgebra modality ! on an
additive symmetric monoidal category, we can build natural transformations
cA : !A ⊗ !A → !A called the co-contraction and wA : I → !A called the co-
weakening, which in particular makes every !A a commutative monoid, and
in fact a bimonoid [2, Prop 1]. Then a monoidal differential modality is
a monoidal coalgebra modality (equiv. additive bialgebra modality) ! on an
additive symmetric monoidal category which comes equipped with a natural
transformation dA : A → !A called a co-dereliction [2, Def 9], whose axioms
are analogues of the fundamental rules of differential calculus such as the Leib-
niz rule and chain rule. Then a differential linear category [2, Sec 6] is
an additive symmetric monoidal category equipped with a monoidal differential
modality. One could also consider differential linear categories with finite prod-
ucts ×, which are called differential storage categories. In particular, in such a
setting, we have the all-important Seely isomorphisms !(A × B) ∼= !A ⊗ !B [2,
Def 10]. However, since products don’t necessarily play a role in the story of
this paper, we will not review them here and invite the reader to see [2, Sec 7]
for details. Then a categorical model of (Classical) DiLL is a differential storage
category that is also monoidal closed (resp. star-autonomous), which we discuss
in Section 3 (resp. Section 5).

3 Laplace Distributor

In this section, we introduce the notion of a Laplace distributor, which is an
extra structural natural transformation in a differential linear category that is
also closed. To properly define a Laplace distributor, we will first have to set
up some notation in the closed setting.

So for a symmetric monoidal closed category [22, Sec 4.7], we denote the
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internal homs by A⊸ B and the evaluation map by ϵA,B : (A⊸ B)⊗A→ B.
Explicitly, recall that closed means that for every map f : C ⊗ A → B, there
exists a unique map λ(f) : C → A⊸ B, called the curry of f , such that2:

(λ(f)⊗ 1A); ϵA,B = f (4)

Now for every map f : X → A and g : B → Y , we denote by f ⊸ g : A⊸ B →
X ⊸ Y to be the unique map such that:

((f ⊸ g)⊗ 1X) ; ϵX,Y = (1A⊸B ⊗ f); ϵA,B ; g (5)

We note that for a monoidal coalgebra modality ! on a symmetric monoidal
category, we have canonical maps ξA,B : !(A ⊸ B) → !A ⊸ !B defined as the
unique map such that:

(ξA,B ⊗ 1!A) ; ϵ!A,!B = µA⊸B,A; !ϵA,B (6)

Then by a differential linear closed category we mean a differential linear
category whose underlying symmetric monoidal category is closed.

Now, a Laplace distributor is a natural transformation that transforms the
co-structural rules of the modality into its structural rule. This is expressed
in terms of dual objects. In a symmetric monoidal closed category, the dual
of an object A is the object A∗ := A ⊸ I. It is important to note that in
an arbitrary symmetric monoidal closed category, the dual operation is not
necessarily involutive, that is, A∗∗ is not necessarily always equal/isomorphic to
A. This will be a situation we discuss later in Section 5 below. We do however
have a canonical isomorphism υI : I → I∗ which is defined as the unique map
such that:

(υI ⊗ 1I); ϵI,I = ρI υ−1
I = ρ−1

I∗ ; ϵI,I (7)

as well another canonical isomorphism νA,B : (A ⊗ B)∗ → A ⊸ B∗ defined as
the unique map such that:

((νA,B ⊗ 1A)⊗ 1B) ; (ϵA,B∗ ⊗ 1B); ϵB,I = α−1
(A⊗B)∗,A,B ; ϵA⊗B,I(

ν−1
A,B ⊗ 1A⊗B

)
; ϵA⊗B,I = αA⊸B∗,A,B ; (ϵA,B∗ ⊗ 1B); ϵB,I

(8)

Moreover, we also get canonical maps ΘA,B : A∗ ⊗ B∗ → (A ⊗ B)∗ (which is
not necessarily an isomorphism) defined as the unique map such that:

(ΘA,B ⊗ 1A⊗B) ; ϵA⊗B,I = τA∗,B∗,A,B ; (ϵA,I ⊗ ϵB,I); ρI (9)

where τA,B,C,D : (A⊗B)⊗(C⊗D) → (A⊗C)⊗(B⊗D) is the canonical natural
isomorphism which swaps the middle two terms. The dual operation also induces
a contravariant functor, where in particular for every map f : A → B, we also
have a map of dual type f∗ : B∗ → A∗ which is defined as the unique map such
that:

(f∗ ⊗ 1A); ϵA,I = (1B∗ ⊗ f); ϵB,I (10)

Then a Laplace distributor is a natural transformation which distributes ∗ over
!, hence the name, and associates the co-structural maps to the dual of their
mirror structural map.

2In a category, we write identity maps as 1A : A → A, and we write composition di-
agrammatically, that is, the composition of maps f : A → B and g : B → C is denoted
f ; g : A → C.
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Definition 1. For a differential linear closed category, a Laplace distributor
is a natural transformation ℓA : !A∗ → (!A)∗ such that the following diagrams
commute:

!A∗ ⊗ !A∗ cA∗ //

ℓA⊗ℓA
��

!A∗

ℓA

��

I

υI

��

wA∗ //

(ℓ.w.1)

!A∗

ℓA
��

A∗

d∗A ++

dA∗ // !A∗

(ℓ.d.1) ℓA
��

(!A)∗ ⊗ (!A)∗

Θ!A,!A

��

(ℓ.c.1) I∗
w∗

A

// (!A)∗ (!A)∗

(!A⊗ !A)
∗

c∗A

// (!A)∗

!(A⊗B)∗

!νA,B

��
(ℓ.µ)

ℓA⊗B // (!(A⊗B))
∗

µ∗
A,B

��

! (A⊸ B∗)

ξA,B∗
��

!A⊸ !B∗
1!A⊸ℓB

// !A⊸ (!B)∗
ν−1
!A,!B

// (!A⊗ !B)
∗

Examples of Laplace distributors can be found in Section 6. Let us provide
some intuition for a Laplace distributor using our distribution analogy. First, for
every linear functional x∗ : A ⊸ I, we have the Dirac distribution δx∗ ∈ !A∗.
So the Laplace distributor produces a linear functional ℓA(δx∗) : !A∗ ⊸ I,
which through the call-by-name translation of Linear Logic in Intuitionistic
Logic corresponds to a smooth function A⇒ I. Then for z ∈ A and x∗, y∗ ∈ A,
the first three axioms of a Laplace distributor say that:

ℓA(δx∗+y∗)(δz) = ℓA(δy∗)(δz) · ℓA(δx∗)(δz) (ℓ.c.1)

ℓA(δ0)(δz) = 1 (ℓ.w.1)

ℓA(D0( )(x
∗))(δz) = x∗(z) (ℓ.d.1)

Note the similarities with some of the basic identities the exponential function
ex satisfies. We will make this connection precise in Section 4 when we show
how Laplace distributors correspond to a generalized version of the exponen-
tial function in a differential linear category. The last axiom (ℓ.µ) essentially
tells us that every Laplace distributor can indeed be described as one of these
generalized exponential functions. Somewhat surprisingly, we also get that the
Laplace distributor also “co-transforms” the structural rules into their mirror
co-structural rules, as we will see in Lemma 7 below.

Now the keen eyed-reader will note that in an arbitrary differential linear
closed category, there are always two possible natural transformations of type
!A∗ → (!A)∗ given by the following composites:

!A∗ wA∗ // I
υI // I∗

w∗
A // (!A)∗ !A∗ dA∗ // A∗ d∗A // (!A)∗

However, since by [2, Lemma 2] we have that w; d = 0, the first map won’t
satisfy (ℓ.d.1), while by [2, Def 9] we have that d;w = 0, so the second map
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won’t satisfy (ℓ.w.1). So a Laplace evaluator does not always necessarily exists,
and is indeed extra structure. To further justify this fact, in Ex 13 we give an
example of a differential linear closed category which does not have a Laplace
distributor.

Moreover, note that given the type of a Laplace distributor ℓA : !A∗ → (!A)∗,
we can uncurry it to get a map of type !A∗ ⊗ !A→ I, which we call the Laplace
evaluator.

Definition 2. In a differential linear closed category with a Laplace distributor
ℓ, the Laplace evaluator is the extranatural transformation

ℓ

A : !A∗ ⊗ !A→ I
defined as the composite:

ℓ

A : = !A∗ ⊗ !A
ℓA⊗1!A // (!A)∗ ⊗ !A

ϵ!A,I // I (11)

By extranaturality, we mean that for all maps f : A → B, the following
equality holds:

(!f∗ ⊗ 1A); ℓA = (1!B∗ ⊗ !f);

ℓ

B (12)

Of course, since the currying operation is an isomorphism, we could have alter-
natively and equivalently written this story in terms of the Laplace evaluator
and defined the Laplace distributor as its curry, ℓA = λ(

ℓ

A).

4 Exponential Map

In this section, we show that Laplace distributors correspond precisely to a
generalized version of the exponential function ex on the monoidal unit. The
generalization of ex in a differential category was introduced by the second
named author in [20] and was called an !-differential exponential map. An !-
differential exponential map can be defined for any commutative monoid in
a differential category and is axiomatized by analogues of the fact that ex is
its own derivative and is a monoid morphism from addition to multiplication.
Since the monoidal unit I in a symmetric monoidal category is canonically a
monoid, we can consider an !-differential exponential map on I, which we call
an I-exponential map for short.

Definition 3. In a differential linear category, an I-exponential map [20,
Def 14] is a map e : !I → I such that the following diagrams commute:

!I ⊗ !I

(e.c)e⊗e
��

cI // !I

e
��

I
wI // !I
(e.w) e

��

I
dI // !I
(e.d) e

��
I ⊗ I

ρI

// I I I

Using our distribution analogy, let us explain why an I-exponential map is
indeed the correct generalization of the exponential function ex : R → R. Note
that by its type, an I-exponential map e is a smooth map from I to I, just like
how ex is a smooth function from R to R. Then the axioms of an I-exponential
map are:

e(δx+y) = e(δx)e(δy) (e.c)
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e(δ0) = 1 (e.w)

e(D0( )(x)) = x (e.d)

Now suggestively writing e(δx) = ex, the three axioms of an I-exponential map
give us precisely the well-known identities of the exponential function which are:

ex+y = exey e0 = 1 D0(e
x)(x) = x

Recall that in the previous section, we suggested that the axioms of a Laplace
distributor also corresponded to these three ex identities. Here, we make this
precise by showing that there is a bijective correspondence between Laplace
distributors and I-exponential maps.

Starting from a Laplace distributor, we get an I-exponential map by consid-
ering the Laplace distributor at I and the fact that I ∼= I∗:

Proposition 4. In a differential linear closed category with a Laplace distribu-
tor ℓ, define the map eℓ : !I → I as the following composite:

eℓ := !I
!υI // !I∗

ℓI // (!I)∗
µ∗
I // I∗

υ−1
I // I

(13)

Proof. The key to this proof is using the part from the definition of a monoidal
coalgebra modality [2, Def 1] which says that d, c, and w are compatible with
µI since they are monoidal transformations. So, by definition, we have:

µI ; dI = 1I µI ;wI = 1I µI ; cI = ρ−1
I ; (µI ⊗ µI) (14)

More precisely, for the calculations in this proof, we will need the dualized
versions of the above identities:

d∗I ;µ
∗
I = 1I∗ w∗

I ;µ
∗
I = 1I∗ c∗I ;µ

∗
I = (µI ⊗ µI)

∗; (ρ−1
I )∗ (15)

So we first compute (e.w):

wI ; e
ℓ (13)
= wI ; !υI ; ℓI ;µ

∗
I ; υ

−1
I

nat.
= wI∗ ; ℓI ;µ

∗
I ; υ

−1
I

(ℓ.w.1)
= υI ;w

∗
I ;µ

∗
I ; υ

−1
I

(15)
= υI ; υ

−1
I = 1I

So wI ; e
ℓ = 1I . Next we compute (e.d):

dI ; e
ℓ (13)
= dI ; !υI ; ℓI ;µ

∗
I ; υ

−1
I

nat.
= υI ; dI∗ ; ℓI ;µ

∗
I ; υ

−1
I

(ℓ.d.1)
= υI ; d

∗
I ;µ

∗
I ; υ

−1
I

(15)
= υI ; υ

−1
I = 1I

So dI ; e
ℓ = 1I . Lastly, using that Θ is natural and:

ΘI,I ; (ρ
−1
I )∗; υ−1

I = (υ−1
I ⊗ υ−1

I ); ρI (16)

which we leave to the reader to check for themselves, we compute (e.c):

cI ; e
ℓ (13)
= cI ; !υI ; ℓI ;µ

∗
I ; υ

−1
I

nat.
= (!υI ⊗ !υI); cI∗ ; ℓI ;µ

∗
I ; υ

−1
I

(ℓ.c.1)
= (!υI ⊗ !υI); (ℓI ⊗ ℓI); Θ!I,!I ; c

∗
I ;µ

∗
I ; υ

−1
I

(15)
= (!υI ⊗ !υI); (ℓI ⊗ ℓI); Θ!I,!I ; (µI ⊗ µI)

∗; (ρ−1
I )∗; υ−1

I

10



nat.
= (!υI ⊗ !υI); (ℓI ⊗ ℓI); (µ

∗
I ⊗ µ∗

I); ΘI,I ; (ρ
−1
I )∗; υ−1

I

(16)
= (!υI ⊗ !υI); (ℓI ⊗ ℓI); (µ

∗
I ⊗ µ∗

I); (υ
−1
I ⊗ υ−1

I ); ρI
(13)
= (eℓ ⊗ eℓ); ρI

So cI ; e
ℓ = (eℓ ⊗ eℓ); ρI . Therefore, we conclude that eℓ is an I-exponential

map.

It is worthwhile to remark that we did not need (ℓ.µ) to show that eℓ is an I-
exponential map. This axiom will be used in Thm 6 when we prove the bijective
correspondence. Before that, we must explain how from an I-exponential map
we obtain a Laplace distributor, which is constructed using the evaluation map
as well.

Proposition 5. In a differential linear closed category, if e : !I → I is an
I-exponential map then define the map ℓeA : !A∗ → (!A)∗ as the curry of the
following composite:

!A∗ ⊗ !A
µA∗,A // !(A∗ ⊗A)

!ϵA,I // !I
e // I (17)

In other words, ℓeA is the unique map such that the following equality holds:

(ℓeA ⊗ 1!A); ϵ!A,I = µA∗,A; !ϵA,I ; e (18)

Then ℓe is a Laplace distributor. Moreover, its induced Laplace evaluator

ℓe :
!A∗ ⊗ !A→ I is precisely the composite (17).

Proof. In this proof, for readability, we omit the subscripts. The key to this
proof is that in a symmetric monoidal closed category, the evaluation map is
monic in its first argument, that is, if (f ⊗ 1); ϵ = (g ⊗ 1); ϵ then f = g.

We must first show naturality. So we compute that:

(!f∗ ⊗ 1); (ℓe ⊗ 1); ϵ
(18)
= (!f∗ ⊗ 1);µA∗,A; ϵ; e

nat.
= µ; !(f∗ ⊗ 1); !ϵA,I ; e

(10)
= µ; !(1⊗ f); !ϵ; e

nat.
= (1⊗ !f);µ; !ϵ; e

(18)
= (1⊗ !f); (ℓe ⊗ 1); ϵ

= (ℓe ⊗ 1); (1⊗ !f); ϵ
(10)
= (ℓe ⊗ 1); ((!f)∗ ⊗ 1); ϵ

Thus we get that !f∗; ℓe = ℓe; (!f)∗, and therefore ℓe is indeed a natural trans-
formation.

To prove the first three axioms of a Laplace distributor, we will need the
following compatibility relation between µ and the co-structural maps from [2,
Prop 2 & Prop 5]:

(w ⊗ 1) ;µ = ρ;w;w
(
d⊗ 1

)
;µ = (1⊗ d); d (c⊗ 1) ;µ = (1⊗ 1⊗ c); τ ; (µ⊗ µ); c

(19)

So for (ℓ.w.1), we compute that:

(w ⊗ 1); (ℓe ⊗ 1); ϵ
(18)
= (w ⊗ 1) ;µ; !ϵ; e

(19)
= ρ;w;w; !ϵ; e

nat.
= ρ;w;w; e

(e.w)
= ρ;wA

nat.
= (1⊗ w); ρ

(7)
= (1⊗ w); (υ ⊗ 1); ϵ = (υ ⊗ 1); (1⊗ w); ϵ

(10)
= (υ ⊗ 1); (w∗ ⊗ 1); ϵ

11



Thus we get that w; ℓe = υ;w∗. Then for (ℓ.d.1), we compute that:

(d⊗ 1); (ℓe ⊗ 1); ϵ
(18)
=
(
d⊗ 1

)
;µ; !ϵ; e

(19)
= (1⊗ d); d; !ϵ; e

nat.
= (1⊗ d); ϵ; d; e

(e.d)
= (1⊗ d); ϵ

(10)
= (d∗ ⊗ 1); ϵ

Thus we get that dA∗ ; ℓeA = d∗A. Now for (ℓ.c.1), we compute that:

(c⊗ 1); (ℓe ⊗ 1); ϵ!A,I
(18)
= (c⊗ 1) ;µ; !ϵ; e

(19)
= (1⊗ c) ; τ ; (µ⊗ µ); c; !ϵ; e

nat.
= (1⊗ c) ; τ ; (µ⊗ µ); (!ϵ⊗ !ϵ); c; e

(e.c)
= (1⊗ c) ; τ ; (µ⊗ µ); (!ϵ⊗ !ϵ); (e⊗ e)

(18)
= (1⊗ c) ; τ ; ((ℓe ⊗ 1)⊗ (ℓe ⊗ 1)) ; (ϵ⊗ ϵ)

nat.
= (1⊗ c) ; ((ℓe ⊗ ℓe)⊗ 1) ; τ ; (ϵ⊗ ϵ)

(9)
= ((ℓe ⊗ ℓe)⊗ 1) ; (Θ⊗ 1) ; (1⊗ c) ; ϵ

(10)
= ((ℓe ⊗ ℓe)⊗ 1) ; (Θ⊗ 1) ; (c∗ ⊗ 1) ; ϵ

Thus we get that cA∗ ; ℓeA = (ℓeA ⊗ ℓeA); Θ!A,!A; c
∗
A. Lastly, for (ℓ.µ), we will need

the monoidal associativity axiom from the definition of a monoidal coalgebra
modality [2, Def 2]:

α; (µ⊗ 1);µ = (1⊗ µ);µ; !α (20)

Then we compute that:

(!ν ⊗ 1); (ξ ⊗ 1); ((1 ⊸ ℓe)⊗ 1);
(
ν−1 ⊗ 1

)
; ϵ

(8)
= (!ν ⊗ 1); (ξ ⊗ 1); ((1 ⊸ ℓe)⊗ 1);α; (ϵ⊗ 1); ϵ

nat.
= α; ((!ν ⊗ 1)⊗ 1) ; ((ξ ⊗ 1)⊗ 1) ; (((1 ⊸ ℓe)⊗ 1)⊗ 1) ; (ϵ⊗ 1); ϵ

(5)
= α; ((!ν ⊗ 1)⊗ 1) ; ((ξ ⊗ 1)⊗ 1) ; (ϵ⊗ 1) ; ℓe; ϵ

(8)
= α; ((!ν ⊗ 1)⊗ 1) ; (µ⊗ 1) ; (!ϵ⊗ 1) ; ℓe; ϵ

nat.
= α; (µ⊗ 1) ; (!(ν ⊗ 1)⊗ 1) ; (!ϵ⊗ 1) ; ℓe; ϵ

(18)
= α; (µ⊗ 1) ; (!(ν ⊗ 1)⊗ 1) ; (!ϵ⊗ 1) ;µ; !ϵ; e

nat.
= α; (µ⊗ 1) ;µ; ! ((ν ⊗ 1)⊗ 1)) ; !(ϵ⊗ 1); !ϵ; e

(20)
= (1⊗ µ) ;µ; !α; ! ((ν ⊗ 1)⊗ 1)) ; !(ϵ⊗ 1); !ϵ; e

(8)
= (1⊗ µ) ;µ; !ϵ; e

(18)
= (1⊗ µ) ; (ℓe ⊗ 1) ; ϵ = (ℓe ⊗ 1) ; (1⊗ µ) ; ϵ

(10)
= (ℓe ⊗ 1) ; (µ∗ ⊗ 1) ; ϵ

Thus we get that !νA,B ; ξA,B∗ ; 1!A ⊸ ℓeB ; ν
−1
!A,!B = ℓeA⊗B ;µ

∗
A,B . Therefore, we

conclude that ℓe is a Laplace distributor. By definition, we then get that (17)
is indeed the induced Laplace evaluator.

The constructions from the above two propositions are inverses of each other,
thus giving us our desired bijective correspondence.

Theorem 6. For a differential linear closed category, there is a bijective corre-
spondence between Laplace distributors and I-exponential maps.

Proof. To show that the constructions from Prop 4 and Prop 5 are invereses of

each other, we must show that eℓ
e

= e and ℓe
ℓ

= ℓ. For the former, we will need

12



the monoidal unital axiom from the definition of a monoidal coalgebra modality
[2, Def 2]:

(1!A ⊗ µI);µA,I = ρ!A; !(ρ
−1
A ) (21)

So we first compute that:

(eℓ
e

⊗ 1I); (υI ⊗ 1); ϵI,I
(13)
= (!υI ⊗ 1I); (ℓ

e
I ⊗ 1I); (µ

∗
I ⊗ 1I); (υ

−1
I ⊗ 1I); (υI ⊗ 1); ϵI,I

(!υI ⊗ 1I); (ℓ
e
I ⊗ 1I); (µ

∗
I ⊗ 1I); ϵI,I

(10)
= (!υI ⊗ 1I); (ℓ

e
I ⊗ 1I); (1(!I)∗ ⊗ µI); ϵ!I,I

= (!υI ⊗ 1I); (1!I∗ ⊗ µI); (ℓ
e
I ⊗ 1!I); ϵ!I,I

(18)
= (!υI ⊗ 1I); (1!I∗ ⊗ µI);µI∗,I ; !ϵI∗,I ; e

(21)
= (!υI ⊗ 1I); ρ!I∗ ; !(ρ−1

I∗ ); !ϵI∗,I ; e
nat.
= ρ!I ; !υI ; !(ρ

−1
I∗ ); !ϵI∗,I ; e

(7)
= ρ!I ; !υI ; !υ

−1
I ; e = ρ!I ; e

nat.
= (e⊗ 1I); ρI

(7)
= (e⊗ 1I); (υI ⊗ 1); ϵI,I

So we get that eℓ
e

; υI = e; υI , and since υI is an isomorphism, we get that
eℓ

e

= e. On the other hand, we leave it as an exercise for the reader to check
that when taking B = I in (ℓ.µ) it follows that the following diagram commutes:

!A∗

ξA,I ��
(ℓ.µI)

ℓA // (!A)∗

!A⊸ !I
1!A⊸!υI ��

!A⊸ !I∗
1!A⊸ℓI

// !A⊸ (!I)∗
1!A⊸µ∗

I

// !A⊸ I∗

1!A⊸υ−1
I

OO

From this, we compute that:

(ℓe
ℓ

A ⊗ 1!A); ϵ!A,I
(18)
= µA∗,A; !ϵA,I ; e

ℓ (13)
= µA∗,A; !ϵA,I ; !υI ; ℓI ;µ

∗
I ; υ

−1
I

(6)
= (ξA,I ⊗ 1!A); ϵ!A,!I ; !υI ; ℓI ;µ

∗
I ; υ

−1
I

(5)
= (ξA,I ⊗ 1!A); ((1!A ⊸ !υI)⊗ 1!A) ; ((1!A ⊸ ℓI)⊗ 1!A) ;

((1!A ⊸ !υI)⊗ µ∗
I) ;
(
(1!A ⊸ υ−1

I )⊗ 1!A
)
; ϵ!A,I

(ℓ.µI)
= (ℓA ⊗ 1!A); ϵ!A,I

So we get that ℓe
ℓ

A = ℓA.

So now that we have proven that Laplace distributors do indeed correspond
precisely to generalized versions of the exponential functions, let us revisit our
distribution intuition for the axioms of a Laplace distributor. So suppose we
have an I-exponential map, which recall we wrote as e(δx) = ex. Then for every
linear functional x∗ : A⊸ I and z ∈ A, the induced Laplace distributor is given
as follows, which also corresponds to the axiom (ℓ.µ):

ℓA(δx∗)(δz) = ex
∗(z) (ℓ.µ)

Then the three other axioms of a Laplace distributor do indeed correspond to
the three main identities of the exponential function:

ex
∗(z)+y∗(z) = ex

∗(z)ey
∗(z) (ℓ.c.1)
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e0(z) = 1 (ℓ.w.1)

D0(e
x)(x∗(z)) = x∗(z) (ℓ.d.1)

We can also describe the Laplace evaluator on Dirac distributions as:

ℓ

A(δx∗ ⊗ δz) = ex
∗(z) (22)

Moreover, we are also in a position to show that the Laplace distributor also
“co-transforms” the structural rules into their mirror co-structural rules in the
following sense:

Lemma 7. In a differential linear closed category with a Laplace distributor,
the following diagrams commute:

!A∗ ℓA //

cA∗

��

(!A)∗

c∗A

��

!A∗

(ℓ.w.2)wA∗

��

ℓA // (!A)∗

w∗
A��

!A∗ ℓA //

dA∗ ++

(!A)∗

d
∗
A��

(ℓ.d.2)

!A∗ ⊗ !A∗

ℓA⊗ℓA
��

(ℓ.c.2) I
υI

// I∗ A∗

(!A)∗ ⊗ (!A)∗
Θ!A,!A

// (!A⊗ !A)
∗

Proof. By Thm 6, we now know that ℓA : !A∗ → (!A)∗ is the unique map such
that:

(ℓA ⊗ 1!A); ϵ!A,I = µA∗,A; !ϵA,I ; e
ℓ (23)

So by using this to our advantage, we can use the same techniques as in the
proof of Prop 5 as well as the right side versions of (19), which recall were the
compatibility relations between µ and the co-structural maps [2, Prop 2 & Prop
5], to then show that the desired identities hold. Indeed, for (ℓ.d.2), we compute
that (omitting subscripts for readability again):

(ℓ⊗ 1); (d
∗ ⊗ 1); ϵ

(10)
= (ℓ⊗ 1); (1⊗ d); ϵ = (1⊗ d); (ℓ⊗ 1); ϵ

(18)
= (1⊗ d);µ; !ϵ; eℓ

(19)
= (d⊗ 1); d; !ϵ; eℓ

nat.
= (d⊗ 1); ϵ; d; eℓ

(e.d)
= (d⊗ 1); ϵ

So we get that ℓ; d
∗
= d. We can also compute (ℓ.c.2) and (ℓ.w.2) via similar

computations.

Using our distribution intuition, we see that these identities for the Laplace
distributor correspond again to the three main identities of the exponential
function, but expressed in a slightly different manner. So for y, z ∈ A and
x∗ ∈ A, we get that:

ex
∗(z+y) = ex

∗(z)ex
∗(y) (ℓ.c.2)

ex
∗(0) = 1 (ℓ.w.2)

D0(e
x∗( ))(x∗(z)) = x∗(z) (ℓ.d.2)
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5 Laplace Transformation

Laplace distributors are also particularly interesting when considered in the
isomix star-autonomous setting. Recall that a star-autonomous category
[22, Sec 4.8] is a symmetric monoidal category with a chosen object ⊥, called
the dualizing object, such that for every object A, writing A⊥ := A ⊸⊥, the
canonical map ϱA : A → A⊥⊥ is an isomorphism. A star-autonomous category
whose dualizing object is the monoidal unit ⊥= I is called isomix [6, Def 6.5].
So in an isomix star-autonomous category, A⊥ = A∗ and therefore we have the
isomorphism A ∼= A∗∗, and thus every object is reflexive. Then by a differential
linear isomix category we mean a differential linear closed category whose
underlying symmetric monoidal closed category is an isomix star-autonomous
category. This is a natural setting to consider since many important categorical
models of Classical DiLL are isomix.

Now in an isomix star-autonomous category, we can define a new monoidal
product ` defined as A ` B : = (A∗ ⊗ B∗)∗ [22, Sec 4.8], where I still acts
as a unit for `. Moreover there is also a canonical natural transformation
mA,B : A⊗B → A`B called the mixor [6, Def 6.2] and can be defined as the
following composite:

A⊗B
ρA⊗ρB // A∗∗ ⊗B∗∗ ΘA∗,B∗

// (A∗ ⊗B∗)∗ = A`B (24)

The mixor is the categorical interpretation of the mix rule [13]. Moreover, in a
differential linear isomix category C, we can also define the functor ? : C → C
as ?( ) = (! ∗)∗, and it comes equipped with dual versions of the structural
maps of !. So we have natural transformations p?A : ??A → ?A, d?A : A → ?A,
c?A : ?A ` ?A → ?A, w?

A : I → ?A, µ?
A,B : ?(A ` B) → ?A ` ?B, µ?

I : ?I → I,

c?A : ?A→ ?A` ?A, w?
A : ?A→ I, and d

?

A : ?A→ A. For example, d?A : A→ ?A

and d
?

A : ?A→ A are defined as the following composites:

d?A := A
ρA // A∗∗ d∗A∗ // (!A∗)∗ = ?A d

?

A := ?A = (!A∗)∗
d
∗
A∗ // A∗∗ ρ−1

A // A

(25)

In particular, this makes Cop a differential linear isomix category as well with
monoidal product ` and with ? its monoidal differential modality.

Now suppose that we have a Laplace distributor ℓA : !A∗ → (!A)∗, and con-
sider its induced Laplace evaluator

ℓ

A : !A∗ ⊗ !A→ I. Currying the !A gives us
back the Laplace distributor. On the other hand, if we curry the !A∗ instead,
we obtain a map of type !A → (!A∗)∗ = ?A, which we call the Laplace trans-
formation. Alternatively, the Laplace transformation is the dual of the Laplace
distributor, up to the reflexivity isomorphism. Moreover, where the mixor gave
a mix rule from the multiplicative conjunction ⊗ to the multiplicative disjunc-
tion `, the Laplace transformation provides a mix rule from the exponential
conjunction ! to the exponential disjunction ?.

Definition 8. In a differential linear isomix category with a Laplace distributor
ℓ, its associated Laplace transformation is the natural transformation LA :
!A→ ?A defined as:

LA : = !A
ϱ!A // (!A)∗∗

ℓ∗A // (!A∗)∗ = ?A (26)
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or equivalently, as the unique map such that the following equality holds:

(LA ⊗ 1!A∗); ϵ!A∗,I = σ!A,!A∗ ;

ℓ

A (27)

Using our distribution intuition, an element of ?A is a smooth map A∗ → I.
Then for every z ∈ A, L (δz) : A

∗ → I is the smooth map defined as:

L (δz)(x
∗) = ex

∗(z) (28)

The induced I-exponential map can also nicely be described in terms of the
Laplace transformation:

Lemma 9. For a differential linear isomix category with a Laplace distributor,
its induced Laplace transformation is equal to the following composite:

LA : = !A
!ϱA // !A∗∗ ℓA∗ // (!A∗)∗ = ?A (29)

and furthermore, the induced I-exponential map is equal to the following com-
posite:

eℓ := !I
LI // ?I

µ?
I // I (30)

Proof. It is straightforward to check that (26) and (29) both satisfy (27), and
therefore must be equal. Then (30) follows from the fact that µ?

I = !(υ∗I );µ
∗
I ; υ

−1
I

and that !ρI ; !(υ
∗
I ) = !υI .

Moreover, the analogues of the diagrams of a Laplace distributor in Def 1
and Lemma 7 have nice representations for the Laplace transformation, which
is proven easily through the reflexivity isomorphism.

Proposition 10. In a differential linear isomix category with a Laplace distrib-
utor, the following diagrams commute:

!A⊗ !A
cA //

m!A,!A

��

!A

LA

��

I

w?
A ,,

wA // !A
(L .w.1) LA

��

A

d?A ,,

dA // !A
(L .d.1) LA

��
!A` !A

LA`LA
��

(L .c.1) ?A ?A

?A` ?A
c?A

// ?A

!A
cA //

LA

��

!A⊗ !A

m!A,!A

��

!A
LA //

wA ,,

?A
(L .w.2) w?

A��

!A
LA //

dA ,,

?A
(L .d.2) d

?
A��

(L .c.2) !A` !A

LA`LA
��

I A

?A
c?A

// ?A` ?A

Proof. Clearly, (L .c.1), (L .w.1), etc. are precisely the duals (in the sense of
applying the contravariant functor ∗) of (ℓ.c.1), (ℓ.w.1), etc. up to the reflexivity
isomorphism.
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So we clearly see how the Laplace transformation does indeed transform the
co-structural rules of ! into the structural rules of ?, where the latter are the
dual of the structural rules of !. Moreover, we note that (L .c.1 & 2) and (L .w.1
& 2) say that the Laplace transformation is a morphism from a ⊗-(co)monoid
to a `-(co)monoid. This is a key idea for the exponential modality in dagger
linear logic [8].

Another natural question to ask is if from a Laplace distributor ℓ, we can get
isomix star-autonomy. To answer this, note that the functor ? can be defined
for any symmetric monoidal closed category. However, ? will not have all the
structural maps above since ` is no longer necessarily a monoidal product. Nev-
ertheless, for any differential linear closed category with a Laplace distributor,
we can always get a natural transformation of type LA : !A → ?A. If there is
also a map of dual type which agrees on the A parts of !A and ?A then we do
get isomix star-autonomy. This is particularly the case when LA : !A → ?A is
an isomorphism. In calculus, that the Laplace transform is reversible is partic-
ularly important: this makes it a tool to go from the differential world to the
polynomial world and back.

Proposition 11. Let C be a differential linear closed category with a Laplace
distributor ℓ and induced natural transformation LA : !A → ?A as defined in
(29). If there is a natural transformation L • : ?A→ !A such that the following
equalities hold:

dA;LA;L
•
A; dA = 1A d∗A∗ ;L •

A;LA; d
∗
A∗ = 1A∗∗ (31)

then C is isomix star-autonomous. In particular, if L is an isomorphism, then
C is isomix star-autonomous.

Proof. The key to this proof is that by definition of the co-dereliction [2, Def
9], we have that d; d = 1. From this, naturality, (L .d.1), and (ℓ.d.1), we get

that ρ = d;L ; d
∗
. Then define ρ−1 = d∗;L •; d. Then from (31) and (ℓ.d.1 &

2), one easily checks that ρ; ρ−1 = 1 and ρ−1; ρ = 1. So we conclude that C
is isomix star-autonomous as desired. Now if L was an isomorphism to begin
with, setting L • = L −1, it follows from (ℓ.d.1 & 2) that (31) holds.

6 Examples

In this section, we give examples of Laplace distributors/evaluators, I-exponential
maps, and Laplace transformations in well-known and important examples of
differential categories.

Example 12 (Relations). An important model of DiLL is the relational model.
So let REL be the category whose objects are sets X and where a map R : X → Y
is a relation, that is, a subset R ⊆ X × Y . REL is a differential linear isomix
category; for full details, see [18, Sec IV.A]. In particular, for a set X, !X =
Mf (X) is the set of finite multisets of X. Moreover, the monoidal unit is a
chosen singleton I = {∗}, and (up to isomorphism) we may associate X∗ = X.
From this point of view ?X = !X, and we trivially see that the identity:

1!X = {(B,B)|∀B ∈ !X} ⊆ !X × !X
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is a Laplace distributor and its induced Laplace transformation. Moreover, the
induced {∗}-exponential map is the one that relates every bag to the single ele-
ment, in other words:

e = !{∗} × {∗}

REL is also an example of both the more general settings described in Ex 15 and
Ex 16 below.

Example 13 (Weighted Relations). The relation model can be generalized by
considering weighted relations [23, Sec III] over a complete commutative semir-
ing. Recall that a commutative semiring R is complete if sums of elements of R
indexed by arbitrary sets are well-defined in R, and these sums satisfy natural
distributivity and partition axioms [23, Sec III.C]. For a complete commutative
semiring R, define the category RΠ whose objects are sets X, and where a map
from X to Y is a function f : X × Y → R. Composition of f : X × Y → R
and g : Y × Z → R is defined as (f ; g)(x, z) =

∑
y∈Y f(x, y)g(y, z), which is

well-defined since R is complete. The identity is the Kronecker delta function
δX : X × X → R defined as δX(x, y) = 0 if x ̸= y and δX(x, x) = 1. Then
RΠ is a differential linear isomix category; for full details, see [18, Sec IV.B].
In particular, as in Ex 12, the modality is !X = Mf (X), the monoidal prod-
uct is the Cartesian product of sets × (which is not the categorical product),
and the monoidal unit is I = {∗}. However, in general, RΠ will not have an
{∗}-exponential map. Suppose that we do have an {∗}-exponential map, so a
function e : !{∗} × {∗} → R. First note that elements of !{∗} can be associated
with the natural numbers: so for every n ∈ N, let [n] be the finite multiset with
n copies of ∗. Now the co-dereliction is:

d{∗}(∗, [n]) = δN(1, n)

Then (e.d) would give us that: e([1], ∗) = 1. On the other hand, the co-contraction
is: c{∗}(([n], [m]), [k]) =

(
n+m
m

)
δN(n+m, k). So (e.c) would give us that:(

n+m

m

)
e([n+m], ∗) = e([n], ∗)e([m], ∗)

Now, taking n = m = 1 in this last equality, we would get that 2e([2], ∗) = 1,
which says that e([2], ∗) is an inverse of 2 in R. However, 2 is not always a unit
in an arbitrary semiring. For example, R = N⊔{∞} is a complete commutative
semiring for which 2 is not invertible. Therefore, (N ⊔ {∞})Π is a differential
linear closed/isomix category which does not have an {∗}-exponential map. Now
if every n is invertible in R, then RΠ does have a {∗}-exponential map given
by the function e : !{∗} × {∗} → R defined as: e([n], ∗) = 1

n! . That is indeed an
{∗}-exponential map follows from the fact that RΠ is an example of the general
settings described in Ex 15 and Ex 16. Moreover, this example also recaptures
Ex 12 since by taking the Boolean semiring B = {0, 1}, we get back BΠ ∼= REL,
and since 1 + 1 = 1 in B, the factor 1

n! disappears in the descriptions of the
{∗}-exponential map in REL.

Example 14 (Convenient Vector Spaces). Throughout the paper, we used dis-
tributions for intuition. We can make this precise by considering the differential
category of convenient spaces, introduced by Blute, Ehrhard, and Tasson in [1].
Briefly, a convenient vector space [1, Def 2.9] is a special kind of locally
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convex vector space which in particular has a bornology for which it is Mackey
complete. This allows us to define smooth functions (in the usual analysis sense)
between convenient vector spaces E and F . Let C∞(E,F ) be the set of smooth
functions between them, which is itself a convenient vector space. Also, the reals
R is a convenient vector space, and for a convenient vector space E, we let E∗

be the vector space of linear smooth functions E → R, which is again a conve-
nient vector space. Now, for every convenient vector space E, we have a smooth
function δ : E → C∞(E,R)∗ which maps x ∈ E to its associated Dirac distri-
bution δx ∈ C∞(E,R)∗. Then CON, the category of convenient vector spaces
and linear smooth functions between them, is a differential linear closed cate-
gory, where !E is the Mackey completion of δ(E) ⊆ C∞(E,R)∗ [1, Def 5.2].
Moreover, for every smooth function f : E → F there is a unique linear smooth
function f ♯ : !E → F such that f(x) = f ♯(δx) [1, Thm 5.5]. Now the monoidal
unit in CON is R and since the classical exponential function ez : R → R is
smooth, there exists a unique linear smooth function e : !R → R such that:

ez = e(δz)

From this, it immediately follows that e : !R → R is an R-exponential map.
Therefore, the Laplace distributor and Laplace evaluator are precisely the unique
linear smooth functions such that:

ℓE(δx∗) = ex
∗(−) ℓ

A(δx∗ ⊗ δz) = ex
∗(z)

As such, this is the model which properly interprets the Laplace transform as
operating on Dirac distributions as discussed in Section 3.

Example 15 (Countable Sums). In calculus, the exponential function can be
written out as the power series:

ex =
∑
n∈N

xn

n!

In a setting where we have countable sums and can scalar multiply by positive
rationals Q≥0, the same formula holds for constructing an I-exponential map.
So suppose that we are in a QΣ

≥0-differential linear closed/isomix category
as was considered in [18, Sec III.E], which means that each homset is a countably
complete Q≥0-module. Now for every n ∈ N, let cnA : !A → !A⊗n

be the map
which co-multiplies !A into n-copies of !A, and then define dnA : !A → A⊗n

as
the composite:

dnA := !A
cnA // !A⊗ . . .⊗ !A

dA⊗...⊗dA // A⊗ . . .⊗A

With these maps, we can construct an I-exponential map defined as follows:

e :=
∞∑

n=0

1

n!
·
(

!I
dnI // I⊗

n ∼= // I

)
Checking that this is an I-exponential map is the same proof that checking that
ex satisfies the analogue identities using its power series. Then, the induced
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Laplace distributor, Laplace evaluator, and Laplace transformation are given as
follows:

ℓA :=

∞∑
n=0

1

n!
·

(
!A∗ dnA∗ // A∗ ⊗ . . .⊗A∗ ΘA,...,A // (A⊗ . . .⊗A)∗

dnA
∗
// (!A)∗

)

ℓ

A :=

∞∑
n=0

1

n!
·

 !A∗ ⊗ !A
dnA∗⊗dnA // (A∗)⊗

n ⊗A⊗n ∼= // (A∗ ⊗A)⊗
n ϵ⊗

n

A,I // I⊗
n

= I


LA :=

∞∑
n=0

1

n!
·

(
!A

dnA // A⊗ . . .⊗A
mA,...,A // A` . . .`A

d?
n
A // ?A

)
Example 16 (Co-digging). In [18], the authors introduced the notion of co-
digging for differential categories, which is the co-structural version of digging.
Briefly, co-digging [18, Def III.3] for a differential linear category is a natural
transformation of dual type of the digging, pA : !!A → !A, which satisfies the
dual axioms of the digging. Using our distribution intuition, the co-digging
corresponds to the notion of convolution exponential for distributions:

pA(δδz ) =
∑
n∈N

δnx
n!

(32)

See [18, Sec III.C] for more details. The co-digging always induces an I-
exponential map µI : !I → I [18, Lemma III.4] defined as the composite:

µI := !I
!wI // !!I

pI // !I
wI // I (33)

Therefore, every differential linear closed/isomix category with co-digging has a
Laplace distributor/transformation. Furthermore, if p and µ are compatible in
the sense that the following diagram commutes:

!!A⊗ !B

pA⊗1!B

��

1!A⊗pB // !!A⊗ !!B
µ!A,!B // ! (!A⊗ !B)

!(µA,B) // !!(A⊗B)

p!A,!B

��
!A⊗ !B

µA,B

// A⊗B

(34)

which is the same kind of compatiblity as those in (19) – then using the same
techniques as in the proof of Prop 5, we also get that the Laplace distribu-
tor/transformation also (co-)transforms the co-digging into the digging:

!!A∗

!(ℓA)
��

pA∗ //

(ℓ.p.1)

!A∗

ℓA

��

!A∗

pA∗

��

ℓA //

(ℓ.p.2)

(!A)∗

p∗A

��

!!A

!(LA)

��

pA //

(L .p.1)

!A

LA

��

!A

pA
��

L //

(L .p.2)

?A

p?A

��

!(!A)∗

ℓ!A
��

!!A∗

!(ℓA)
��

!?A

L?A

��

!!A

!(LA)

��
(!!A)∗

p∗A

// (!A)∗ !(!A)∗
ℓ!A

// (!!A)∗ ??A
p?A

// ?A !?A
L?A

// ??A
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These diagrams amount to interpreting the exponential function of the exponen-
tial function, ee

z

. So, in particular, in terms of the Laplace distributor:

ee
x∗(z)

=
∑
n∈N

enx
∗(z)

n!
(ℓ.p.1)

ee
x∗(z)

=
∑
n∈N

ex
∗(nz)

n!
(ℓ.p.2)

Interesting examples of models with co-digging can be found in [18, Sec IV],
which include the (weighted) relational model described above.

Example 17 (Finiteness Spaces). Finiteness spaces [10] are a well-known re-
finement of REL, giving a vectorial model of DiLL [11]. For a set X, and a
subset of its powerset F ⊆ P(X), we denote by F⊥ ⊆ P(X) the subsets of
U ⊆ X such that for all V ∈ F , U ∩ V is finite. Then a finiteness space
[10, Sec 1] is a pair X = (|X |,F(X )) of a set |X | and a subset F(X ) ⊆ P (|X |)
which verifies the finiteness condition F(X )⊥⊥ = F(X ). Given a field k, every
finiteness space X generates a linear topological k-vector space k⟨X ⟩ defined as
the set of all families x ∈ k|X | such that supp(x) = {a ∈ |X||xa ̸= 0} ∈ F(X)
[10, Sec 3]. Then let FINk be the category whose objects are finiteness spaces and
where a map from X to Y is a linear continuous function M : k⟨X ⟩ → k⟨Y⟩,
which can be described as an |X | × |Y| matrix Mx,y. Then FINk is a differen-
tial linear isomix category; see [11, Sec 5] for full details. The finiteness space
!X has as carrier |!X| := Mf (|X |), the finite multisets over |X |, and as finite-
ness structure F(!X ) ⊆ P(Mf (|X |)) the collection of all sets of multisets on |X|
whose union is in F(X ) [10, Sec 1.1]. On the other hand, the monoidal unit is
I = ({∗},P(∗)). Then FINk has an I-exponential map given by the exponential
function described by Ehrhard in [10, Lemma 19], that is, the linear continuous
function e : k⟨!I⟩ → k⟨I⟩ whose associated matrix is:

en,∗ =
1

n!

Now for a finiteness space X , its dual is the finiteness space X ∗ = (|X |,F(X )⊥).
Then both the induced Laplace distributor ℓX : k⟨!X ∗⟩ → k⟨(!X)∗⟩ and Laplace
transformation LX : k⟨!X⟩ → k⟨?X⟩ have the same associated matrix with
coefficients indexed by multisets m,m′ ∈ Mf (|X |):

(ℓX )m,m′ = (LX )m,m′ = em
′(m) = e

∑
x∈|X| m(x)m′(x)

which is well-defined thanks to the orthogonality condition.

Example 18 (Köthe Spaces). Köthe spaces [9] are a model of DiLL based on
spaces of sequences. They are studied independently in functional analysis and
correspond to a non-discrete version of finiteness spaces. Let k be the field of real
or complex numbers. For a denumerable set X, for sequences a, b ∈ kX define
the orthogonality relation a⊥b if and only if

∑
x∈X |axbx| converges. A Köthe

space is pair X = (|X |, EX ) of a carrier set |X | and a subspace EX ⊆ k|X |,
such that E⊥⊥

X = EX . Then we get a differential linear isomix category of
Köthe spaces, which is similar to the finiteness space model described above. In
particular, the exponential function corresponds to taking a converging sequence
a ∈ kN to

∑
n∈N

1
n!an. The Laplace distributor/transformation is expressed

similarly to finiteness spaces.
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Example 19 (Fréchet and DF spaces). Fréchet spaces are metrizable and com-
plete locally convex topological vector spaces. They enjoy a nice duality theory
with DF-spaces. When adding the constraint that these spaces must be nuclear
[16], one obtains a model of polarized first-order DiLL [17]: the tensor prod-
uct of two nuclear DF -space is a nuclear DF -space; nuclear DF or Fréchet
spaces are isomorphic to their double duals; ?Rn = C∞(Rn,R) is nuclear DF;
and !Rn = C∞(Rn,R)′ is nuclear Fréchet. A nuclear Fréchet spaces N is,
in fact, a projective limit of Banach Spaces N =

⋂
nNp. This construction

is taken to the higher-order level in [14], using functions whose exponential
growth is bounded. For a Young function θ and for a Banach space B, let
Exp(B, θ,m) denote the Banach space of holomorphic functions from B to C
such that |f(z)| ≤ Keθ(m||z||). Then, one defines the space of functions with
exponential growth of minimal order on N as the inductive limit Gθ∗(N) of
spaces Exp(θ,m, p), and also the space of functions with exponential growth of
arbitrary order on N ′ =

⋃
p(Np)

′ =
⋃

pN
′
−p as the projective limit Fθ(N

′) of
spaces Exp(θ,m,−p). In this higher-order setting, the Laplace transform has a
finer meaning than in the other examples. Indeed, it transforms distributions
on one type of function into another type of function and makes the index θ
change:

L :

{
F ′

θ(N
′) ≃ Gθ∗(N)

ϕ 7→
(
ℓ ∈ N ′ 7→ ϕ(x ∈ N ′ 7→ eℓ(x) ∈ C)

)
where θ∗ := supt≥0(tx − θ(t)) is the convex conjugate of θ. Details about this
construction can be found in [18, Sec V]. This opens up fascinating questions on
Laplace transforms in polarized differential linear categories [4] or even graded
differential linear categories [21].

7 Future Work

In this paper, we gave a new point of view on exponential functions in differential
categories, and on the exponential connectives ! and ? in DiLL, thanks to the
categorification of the Laplace transform. We defined the Laplace distributor
as a transformation from the exponential !A to its dual which transforms co-
structural rules into structural rules. We related this new distributor to the
presence of an exponential scalar function, and to the involutivity of the duality.
We presented several examples, as well as one counter-example. We conclude
this paper with a brief discussion of interesting potential future work.

A natural path to consider is generalizing this story from isomix star-autonomous
categories to linearly distributive categories [5]. Indeed, the diagrams in Prop
10 can easily be written down in a linearly distributive category with the proper
notion of exponentials [7, 8]. So one could study Laplace transformations in a
linearly distributive setting. However, the linearly distributive generalization of
differential categories has not yet been properly defined or studied. So hopefully
the story of this paper will motivate the development of such a theory.

Work is also needed on concrete models of Laplace transforms. The original
intuition for the categorification of the Laplace transform came from higher-
order work in functional analysis [14, 18], in which two kinds of functions with
different exponential growth model the two types of exponential connectives,
applying to formulas with different polarities [19]. The Laplace transformation
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then changes distributions on one type of function into distributions on the other
type of function. Understanding the categorical interplay between the Laplace
transformation and polarity might lead to a better axiomatization of differential
linear star-autonomous linear categories.
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