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INSENSITIZING CONTROL PROBLEM FOR THE KAWAHARA EQUATION

MANISH KUMAR† AND SUBRATA MAJUMDAR‡

Abstract. This paper deals with the existence of insensitizing control for a nonlinear dispersive equa-

tion, namely Kawahara equation. Roughly speaking, the underlying problem is to find a distributed
control such that L2-norm of the state in some subregion is insensitive with respect to small pertur-

bations in the initial data.

The problem of finding an insensitizing control is first reduced to a null controllability problem for
an extended cascade system using some standard arguments. Next, to solve this null controllability

problem we first establish null controllability of the associated linearized system using suitable Car-

leman estimates for the corresponding adjoint system, and then use the well known inverse mapping
theorem to conclude the desired controllability result for the main nonlinear extended cascade system.

1. Introduction and main results

1.1. Setting of the problem. This article studies an insensitizing control problem for the following
non-linear Kawahara equation

∂tu+ α∂xu+ β∂3xu+ γ∂5xu+ up∂xu = 0

on a bounded domain (0, T ) × (0, L) for α = β = γ = 1 and p ∈ [1, 2). This equation for α = 0 and
p = 1 was first introduced in [43] by T. Kawahara. The presence of fifth order derivative term ∂5x in the
equation strengthens the dispersive effect due to the ∂3x term, and thus plays an important role when
the coefficient β is small. This is the reason why this equation is also sometimes referred as fifth order
KdV equation (see [9]) or singularly perturbed KdV equation (see [37]). This equation models many
physical systems in fluid dynamics (such as shallow water waves [41]), plasma physics, and nonlinear
optics. The Cauchy problem for this equation over R2 was first studied in the work [21], followed by
few other works, for instance, see [51], [23]. In the work [29], Cauchy problem over a bounded domain
with homogeneous boundary conditions was studied.

Let us discuss about the recent developments on the Kawahara equation in theory of Control of PDEs.
Regarding the controllability problem, it was first addressed in 2009 by O. Glass and S. Guerrero in
their work [36]. They showed that the Kawahara equation is locally controllable to trajectory with
two boundary controls. In the paper [20], Mo Chen has shown the local null controllability and null
controllability with some constraints of the Kawahara equation with distributed control. Later in [15],
R de A. Capistrano-Filho et al. have studied the well-posedness and controllability of the same equation
in weighted Sobolev spaces. They also introduced the regional controllability of the concerned equation
in L2. Next, let us mention the work [47] of A. F. Pazoto et al., where the authors established the local
exact controllability of Kawahara equation in periodic domain using the moment method. There are
many other control results in the literature with different boundary conditions and/or different type
of controls, for instance, [32], and [53]. Concerning the stabilization problem, a significant number of
articles are present in the literature. We refer to the works [49], [50] by C. F. Vasconcellos et al., and
also see [2], [28], [13], [34] for more information. The stability using time delayed feedback control has
been recently addressed by R. de A. Capistrano-Filho et al. in the works [14], [24]. In [46], the authors
investigated stabilizability of the Kawahara equation by a saturated internal control and boundary
feedback control.

Date: May 3, 2024.

2020 Mathematics Subject Classification. 35K52 - 35Q53 - 93B05 - 93B07 - 93B35.
Key words and phrases. Kawahara equation, insensitizing control, Carleman estimate, observability, inverse mapping

theorem.
†Indian Institute of Science Education and Research Kolkata, Campus road, Mohanpur, West Bengal 741246, India

(email: mk19ip001@iiserkol.ac.in).
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To describe the main problem of this article, let us first introduce the relevant control system. For
T, L > 0, denote Q := (0, T )× (0, L), and we consider the system

∂tu+ ∂xu+ ∂3xu+ ∂5xu+ up∂xu = ξ + χωh, in Q,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = 0, t ∈ (0, T ),

∂2xu(t, 0) = 0, t ∈ (0, T ),

u(0, x) = u0(x) + τpu0(x), x ∈ (0, L),

(1.1)

where ω,O ⊂ (0, L) are any non-empty open subsets satisfying O ∩ ω ̸= ∅ and τ ∈ R. The function
h = h(t, x) is the interior control localized on the subset (0, T ) × ω, and ξ = ξ(t, x) is some known
external force term. The initial state u(0) is partially unknown for the system (1.1), more precisely,
u0 ∈ L2(0, L) is given, but τ ∈ R and pu0 ∈

{
f ∈ L2(0, L) : ∥f∥L2(0,L) = 1

}
are unknowns. The unknowns

pu0 and τ ∈ R represent uncertainty in the initial data.
Next, let us introduce a functional Jτ (known as sentinel), defined on the set of solutions to (1.1) as

Jτ (u) :=
1

2

∫∫
(0,T )×O

|u|2, (1.2)

where O is the observation domain.
Thus, the insensitizing control problem is to guarantee the existence of a control function h such that the
uncertainty in the initial data u(0) does not alter the value of functional Jτ drastically. More precisely,
we aim to find some control h ∈ L2((0, T )× ω) so that

∂Jτ (u)

∂τ

∣∣∣∣
τ=0

= 0, ∀ pu0 ∈ L2(0, L) with ∥pu0∥L2(0,L) = 1. (1.3)

The condition (1.3) indicates that the sentinel Jτ does not detect the small perturbations τpu0 in
the given initial data u0. When such h exists, the sentinel Jτ is said to be locally insensitive to small
perturbations in initial data, and we say that the control h insensitizes Jτ . Such insensitizing control
problem was originally introduced by J.-L. Lions in his work [44]. Since then many works have been
devoted in the literature to study the insensitizing problem from different perspectives.

To begin with, let us mention the pioneer works [26] and [7], concerning the existence of insensitizing
control for the linear and semilinear heat equations. Similar problems for linear and semilinear heat
equations with different types of nonlinearities and/or boundary conditions was further addressed in the
works [5,6,8]. Moreover, a numerical study for the insensitizing property of semilinear heat equations has
been pursued in [10]. It is worth mentioning the works [30,45] which also study the insensitizing control
problem wherein the insensitivity of some functional is established with respect to domain variation.

In [39], the author addressed an insensitizing control problem for a linear parabolic equation, where
the sentinel depends on the gradient of the solution. The same author later studied this control problem
for the Stokes equation in [38], where the sentinel is based on the curl of the solution. The paper [31]
investigated the insensitizing control problem for quasi-geostrophic ocean models. For the semilinear
parabolic equation with dynamic boundary conditions, one may look into the paper [54]. Moreover,
in the work [52], the authors discussed insensitizing controls of a Stefan problem for a semilinear heat
equation in one-dimension. Next, let us refer to the work [42] which studied insensitizing problem for the
fourth-order parabolic equation. In [33], the author considered Cahn-Hilliard type equation to discuss
the insensitizing control property. Concerning the study of similar insensitizing problem for scalar wave
equation, one can refer to the work [1,22]. It is worth mentioning that the paper [48] treated this issue
with a gradient type sentinel associated with the solutions of a nonlinear Ginzburg-Landau equation.
In a recent work [25], the insensitizing property for the fourth-order dispersive nonlinear Schrödinger
equation with cubic nonlinearity has been studied.

In the context of insensitizing problems for coupled PDEs, let us cite the works [18,19,40] for Navier-
Stokes equation; [16,17] for Boussinesq system, and [11] for a phase field system. Finally, we mention the
most recent works [3] and [4], where the insensitizing control problem for the Hirota-Satsuma system of
KdV-KdV type and for the stabilized Kuramoto-Sivashinsky system have been analyzed, respectively.

1.2. Main results. With the goal of proving the insensitivity of the sentinel Jτ given by (1.2) with
respect to small perturbation in the initial data, we could obtain the following result.

Theorem 1.1. Assume that O ∩ ω ̸= ∅ and set u0 ≡ 0. Then, there exist constants δ, C > 0 such that
for any ξ ∈ L2(Q) satisfying

∥eC/tξ∥L2(Q) ≤ δ, (1.4)

there exist control h ∈ L2((0, T )× ω) which insensitizes the functional Jτ in the sense of (1.3).
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Remark 1.2. The above theorem proves the insensitizing problem partially in the sense that we have
chosen a particular initial data, i.e., u0 = 0. However, a study of the possible initial conditions for which
the sentinel Jτ is insensitive can also be done. Such problem has been studied for the heat equation in [27],
which suggests that the answer is not immediate.

Mimicking the arguments used in the works [7, Proposition 1] and [27, Appendix], one can easily show
that proving Theorem 1.1 is equivalent to establishing null controllability for the state w, associated to
the following extended cascade coupled system:

∂tu+ ∂xu+ ∂3xu+ ∂5xu+ up∂xu = ξ + χωh, in Q,

−∂tw − ∂xw − ∂3xw − ∂5xw − up∂xw = χOu, in Q,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, 0) = 0, t ∈ (0, T ),

w(t, 0) = w(t, L) = ∂xw(t, 0) = ∂xw(t, L) = ∂2xw(t, L) = 0, t ∈ (0, T ),

u(0, x) = u0(x), w(T, x) = 0, x ∈ (0, L).

(1.5)

More precisely, we have the following equivalence result.

Proposition 1.3. A control functions h ∈ L2((0, T )× ω) insensitizes the sentinel Jτ given by (1.2) if
and only if the associated solution to (1.5) satisfies

w(0, ·) = 0 in (0, L). (1.6)

Thus, from now onwards our main goal is to prove the following null controllability theorem which
subsequently establishes the insensitizing control result mentioned in Theorem 1.1.

Theorem 1.4. Assume that O ∩ ω ̸= ∅ and set u0 ≡ 0. Then, there exist constants δ, C > 0 such that
for any ξ ∈ L2(Q) satisfying

∥eC/tξ∥L2(Q) ≤ δ, (1.7)

there exist a control function h ∈ L2((0, T )× ω) such that the solution (u,w) to (1.5) satisfies

w(0, ·) = 0 in (0, L).

The proof of Theorem 1.4 is done using inverse mapping theorem, which forces us to study global
null controllability problem for the following linear system, obtained by linearizing system (1.5) about
zero 

∂tu+ ∂xu+ ∂3xu+ ∂5xu = f1 + χωh, in Q,

−∂tw − ∂xw − ∂3xw − ∂5xw = f2 + χOu, in Q,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, 0) = 0, t ∈ (0, T ),

w(t, 0) = w(t, L) = ∂xw(t, 0) = ∂xw(t, L) = ∂2xw(t, L) = 0, t ∈ (0, T ),

u(0, x) = u0(x), w(T, x) = 0, x ∈ (0, L),

(1.8)

where the non-homogeneous terms f1, f2 belong to some relevant space (to be specified later).

Remark 1.5. Although we are concerned about the null controllability of component w, the control h,
localized on the subset ω, does not directly affect the equation of w. However, the state u can be solved
independently and acts as a control for the state w, which is localized on the subset O. Hence, the
condition O ∩ ω ̸= ∅ is necessary in the above theorem.

The controllability of this linear system will be proved via duality approach which requires establishing
some observability property for its associated adjoint system, given by

−∂tv − ∂xv − ∂3xv − ∂5xv = g1 + χOψ, in Q,

∂tψ + ∂xψ + ∂3xψ + ∂5xψ = g2, in Q,

ψ(t, 0) = ψ(t, L) = ∂xψ(t, 0) = ∂xψ(t, L) = ∂2xψ(t, 0) = 0, t ∈ (0, T ),

v(t, 0) = v(t, L) = ∂xv(t, 0) = ∂xv(t, L) = ∂2xv(t, L) = 0, t ∈ (0, T ),

v(T, x) = 0, ψ(0, x) = ψ0(x), x ∈ (0, L),

(1.9)

where ψ0 ∈ L2(0, L) and the non-homogeneous term g1, g2 belong to some relevant space (to be specified
later). To study this observability problem, we derive a suitable Carleman estimate for the adjoint system
(1.9) using the known Carleman estimates for single Kawahara equation, see [20, Proposition 3.1].
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1.3. Paper organization. The organization of this paper has been done as follows. In Section 2,
the well-posedness of aforementioned systems have been proved. Section 3 is dedicated for deriving
suitable Carleman estimates for the adjoint system (1.9). Using this Carleman, the relevant observability
inequality for the adjoint system (1.9) has been obtained in Section 4. Finally, the null controllability
result for linear control system (1.8) and main control system (1.5) has been proved in Section 5 and
Section 6, respectively.

2. Well-posedness results

In this section we study the well-posedness issues for the system (1.5). Let us first consider the
following linearized Kawahara equation with given source term f and initial data y0

∂ty + ∂xy + ∂3xy + ∂5xy = f, in Q,

y(t, 0) = y(t, L) = ∂xy(t, L) = ∂xy(t, 0) = ∂2xy(t, 0) = 0, t ∈ (0, T ),

y(0, x) = y0(x), x ∈ (0, L).

(2.1)

We introduce the following spaces related to the state and source term

Xs,T = C([0, T ];Hs(0, L)) ∩ L2(0, T ;Hs+2(0, L), s ∈ [0, 5],

S = L2(0, T ;H−2(0, L)) ∪ L1(0, T ;L2(0, L)).

Let us recall the following known well-posedness results for (2.1).

Lemma 2.1 ( [20, Proposition 2.1]). For given y0 ∈ L2(0, L) and f ∈ S, the system (2.1) admits a
unique solution y ∈ X0,T = C([0, T ];L2(0, L)) ∩ L2(0, T ;H2(0, L)). Moreover, there exists a constant
C > 0 such that

∥y∥C([0,T ];L2(0,L)) + ∥y∥L2(0,T ;H2(0,L)) ≤ C
(
∥y0∥L2(0,L) + ∥f∥S

)
. (2.2)

We also have the following results for the Kawahara equation (2.1) with y0 = 0.

Lemma 2.2 ( [20, Proposition 2.2]). Set y0 = 0, and assume f ∈ L2(0, T ;Hs−2
0 ), for s ∈ [0, 5]. Then

the system (2.1) admits a unique solution y ∈ Xs,T . In addition, there exists a constant C > 0 such
that

∥y∥Xs,T
≤ C ∥f∥L2(0,T ;Hs−2

0 ). (2.3)

Remark 2.3. Note that the above results are also applicable for the adjoint equation to (2.1) which is
backward in time.

2.1. Well-posedness of the linearized system and its adjoint. In this subsection, we mention the
well-posedness result for the linearized coupled systems, mentioned above. The proof is immediate due
to the cascade nature of the system and Lemma 2.1.

Proposition 2.4. Let u0 ∈ L2(0, L), h ∈ L2((0, T )×ω) and (f1, f2) ∈ S×S be given. Then, the system
(1.8) possesses a unique solution (u,w) ∈ [X0,T ]

2. In addition, there exists a constant C > 0 such that

∥(u,w)∥[X0,T ]2 ≤ C
(
∥u0∥L2(0,L) + ∥h∥L2((0,T )×ω) + ∥(f1, f2)∥S×S

)
. (2.4)

Proof. We demonstrate the proof of this proposition in the following way. First, we use Lemma 2.1 to
the equation (1.8)1 to show that u ∈ X0,T along with the estimate

∥u∥X0,T
≤ C

(
∥u0∥L2(0,L) + ∥h∥L2((0,T )×ω) + ∥f1∥S

)
. (2.5)

Then, using uχO as source term in the equations of w given by (1.8)2, and combining with (2.5) we get
the required estimate (2.4). □

Similar result holds for the adjoint system (1.9).

Proposition 2.5. Let ψ0 ∈ L2(0, L) and (g1, g2) ∈ S × S be given. Then, the system (1.9) admits a
unique solution (v, ψ) ∈ [X0,T ]

2 and moreover, there exists a constant C > 0 such that

∥(v, ψ)∥[X0,T ]2 ≤ C
(
∥ψ0∥L2(0,L) + ∥(g1, g2)∥S×S

)
. (2.6)
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2.2. Well-posedness of the nonlinear system. We now prove the well-posedness of our nonlinear
system (1.5), using the result of the corresponding linearized system (1.8) and a suitable fixed point
theorem.

Proposition 2.6. Let T > 0 and L > 0. Then, there exists some positive real number δ0 such that for
every u0 ∈ L2(0, L), h ∈ L2((0, T )× ω) and ξ ∈ L2(Q), satisfying

∥u0∥L2(0,L) + ∥h∥L2((0,T )×ω) + ∥ξ∥L2(Q) ≤ δ0, (2.7)

the system (1.5) possesses a unique solution

(u,w) ∈ [X0,T ]
2.

Before going to the proof of above proposition, we prove the following lemma.

Lemma 2.7. The map M : [X0,T ]
2 → L1(0, T ;L2(0, L)) given by

M(y1, y2) = yp1∂xy2 (2.8)

is well-defined and continuous.

Proof. For (y1, y2) ∈ [X0,T ]
2, we have

∥yp1y2,x∥L1(0,T ;L2(0,L)) =

∫ T

0

∥yp1∂xy2∥L2(0,L) ≤
∫ T

0

∥y1∥pL∞(0,L)∥∂xy2∥L2(0,L).

Thanks to the estimate

∥y1(t, ·)∥L∞(0,L) ≤ C
(
∥y1(t, ·)∥L2(0,L) + ∥y1(t, ·)∥1/2L2(0,L) ∥∂xy1(t, ·)∥

1/2
L2(0,L)

)
,

and the fact that |a+ b|p ≤ C (|a|p + |b|p), from the last inequality, we obtain

∥yp1∂xy2∥L1(0,T ;L2(0,L)) ≤ C

(∫ T

0

∥y1∥pL2∥y2∥H1(0,L) +

∫ T

0

∥y1∥p/2L2 ∥y1∥p/2H1(0,L)∥y2∥H1(0,L)

)
.

Lastly, we use the Hölder’s inequality to get

∥yp1∂xy2∥L1(0,T ;L2(0,L)) ≤ C

(
√
T∥y1∥pC([0,T ];L2(0,L))∥y2∥L2(0,T ;H1(0,L)) + ∥y1∥p/2C([0,T ];L2(0,L))(∫ T

0

∥y1∥2H1(0,L)

)p/4(∫ T

0

∥y2∥4/(4−p)
H1(0,L)

)(4−p)/4)
≤ C(T (2−p)/4 +

√
T )∥y1∥pX0,T

∥y2∥X0,T
, (2.9)

for some constant C > 0, which proves that the map M is well-defined.

To establish continuity of the map M, let us consider (y1, y2), (ỹ1, ỹ2) ∈ [X0,T ]
2. Then using the

above estimate (2.9) and triangle inequality, we have∥∥M(y1, y2)−M(ỹ1, ỹ2
)∥∥

L1(0,T ;L2(0,L))

=

∫ T

0

∥yp1∂xy2 − ỹp1∂xỹ2∥L2(0,L)

=

∫ T

0

∥∥yp1∂x(y2 − ỹ2) + (yp1 − ỹp1)∂xỹ2
∥∥
L2(0,L)

≤ C
(
T (2−p)/4 +

√
T
)
∥y1∥pX0,T

∥y2 − ỹ2∥X0,T
+

∫ T

0

∥(yp1 − ỹp1)∂xỹ2∥L2(0,L) . (2.10)

The second term can be estimated as∫ T

0

∥∥(yp1 − ỹp1)∂xỹ2
∥∥
L2(0,L)

≤ C

∫ T

0

∥∥(y1 − ỹ1)
(
|y1|p−1 + |ỹ1|p−1

)
∂xỹ2

∥∥
L2(0,L)

≤ C

∫ T

0

∥∥(y1 − ỹ1)|y1|p−1∂xỹ2
∥∥
L2 + C

∫ T

0

∥∥(y1 − ỹ1)|ỹ1|p−1∂xỹ2
∥∥
L2 .

(2.11)
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Note that both terms of right hand side can be estimated similarly. More precisely, we have∫ T

0

∥∥(y1 − ỹ1)|y1|p−1∂xỹ2
∥∥
L2(0,L)

≤ C

∫ T

0

∥∥∂xỹ2∥∥L∞(0,L)

∥∥yp−1
1 (y1 − ỹ1)

∥∥
L2(0,L)

≤ C

(∫ T

0

∥∥ỹ2∥∥2H2(0,L)

)1/2(∫ T

0

∥∥yp−1
1 (y1 − ỹ1)

∥∥2
L2(0,L)

)1/2

≤ C
∥∥ỹ2∥∥L2(0,T ;H2(0,L))

(∫ T

0

∥∥y1∥∥2(p−1)

L∞(0,L)

∥∥y1 − ỹ1
∥∥2
L2(0,L)

)1/2

≤ CT
(2−p)

2

∥∥y1 − ỹ1
∥∥
C([0,T ];L2(0,L))

∥∥ỹ2∥∥L2(0,T ;H2(0,L))

∥∥y1∥∥p−1

L2(0,T ;H1(0,L))
.

Thus, substituting this estimate in (2.11), we obtain∫ T

0

∥∥(yp1 − ỹp1)∂xỹ2
∥∥
L2(0,L)

≤ CT
(2−p)

2

∥∥y1 − ỹ1
∥∥
X0,T

∥∥ỹ2∥∥X0,T

(∥∥y1∥∥p−1

X0,T
+
∥∥ỹ1∥∥p−1

X0,T

)
, (2.12)

and hence the estimate (2.10) becomes∥∥M(y1, y2)−M(ỹ1, ỹ2
)∥∥

L1(0,T ;L2(0,L))
≤ C

(
T (2−p)/4 +

√
T
)
∥y1∥pX0,T

∥y2 − ỹ2∥X0,T

+ CT
(2−p)

2

∥∥y1 − ỹ1
∥∥
X0,T

∥∥ỹ2∥∥X0,T

(∥∥y1∥∥p−1

X0,T
+
∥∥ỹ1∥∥p−1

X0,T

)
≤ C(T )

(
∥y1∥pX0,T

+
∥∥ỹ2∥∥X0,T

(∥∥y1∥∥p−1

X0,T
+
∥∥ỹ1∥∥p−1

X0,T

))∥∥(y1, y2)− (ỹ1, ỹ2)∥∥[X0,T ]2
. (2.13)

This establishes the continuity of the map M. □

Next, we prove the well-posedness of the coupled nonlinear system (1.5).

Proof of Proposition 2.6. Let us define the map

N : [X0,T ]
2 → [X0,T ]

2, N (ũ, w̃) = (u,w), (2.14)

where (u,w) is the unique solution to (1.8) with u0 ∈ L2(0, L), h ∈ L2((0, T )× ω) and

f1 = ξ + ũp∂xũ ∈ L1(0, T ;L2(0, L)),

f2 = −ũp∂xw̃ ∈ L1(0, T ;L2(0, L)),

Existence of such unique (u,w) is guaranteed by Proposition 2.4. Moreover, using the bound (2.9) in
the continuity estimate (2.4), we get

∥(u,w)∥[X0,T ]2 ≤ C0

(
∥u0∥L2(0,L) + ∥h∥L2((0,T )×ω) + ∥ξ∥L2(Q) + ∥ũ∥p+1

X0,T
+ ∥ũ∥pX0,T

∥w̃∥X0,T

)
, (2.15)

for some constant C0 > 0.
Next, for some R > 0, let us consider the ball

BR :=
{
(u,w) ∈ [X0,T ]

2 : ∥u∥X0,T
+ ∥w∥X0,T

≤ R
}
. (2.16)

Thanks to the estimate (2.15), for (ũ, w̃) ∈ BR, we get

∥(u,w)∥[X0,T ]2 ≤ C0

(
∥u0∥L2(0,L) + ∥h∥L2((0,T )×ω) + ∥ξ∥L2(Q) +Rp+1

)
. (2.17)

Let us choose R in such a way that R < 1

C
1/p
0

and so for (u0, h, ξ) satisfying

∥u0∥L2(0,L) + ∥h∥L2((0,T )×ω) + ∥ξ∥L2(Q) <
R− C0R

p+1

C0
,

we have N (BR) ⊂ BR.
Fix

δ0 :=
R− C0R

p+1

C0
. (2.18)
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Next, assume (u0, h, ξ) satisfies the condition (2.7) with δ0 given by (2.18), and let (ũ1, w̃2), (ũ2, w̃2) ∈
BR. Then (u1, w1) := N (ũ1, w̃1), (u2, w2) := N (ũ2, w̃2) ∈ BR. Using the linearity of system (1.8) and
the continuity estimate (2.4), we have

∥N (ũ1, w̃1)−N (ũ2, w̃2)∥[X0,T ]2 ≤ C ∥(ũp1∂xũ1 − ũp2∂xũ2,−ũ
p
1∂xw̃1 + ũp2∂xw̃2)∥[L1(0,T ;L2(0,L))]2

≤ C
(
∥ũp1∂xũ1 − ũp2∂xũ2∥L1(L2) + ∥ũp1∂xw̃1 − ũp2∂xw̃2∥L1(L2)

)
.

Thanks to the continuity estimate (2.13) of the map M established in Lemma 2.7, the above estimate
can be further simplified as

∥N (ũ1, w̃1)−N (ũ2, w̃2)∥[X0,T ]2 ≤ C1R
p
(∥∥ũ1 − ũ2

∥∥
X0,T

+
∥∥(ũ1, w̃1

)
−
(
ũ2, w̃2

)∥∥
[X0,T ]2

)
≤ C1R

p
∥∥(ũ1 − ũ2, w̃1 − w̃2

)∥∥
[X0,T ]2

.

Finally, we choose R > 0 such that R < min
{

1

C
1/p
0

, 1

C
1/p
1

}
and thus the map

N : BR → BR

becomes a contraction, which guarantees the existence of a unique fixed point for the map N . This
completes the proof of Proposition 2.6. □

3. Carleman estimates

This section is devoted to obtain a suitable Carleman estimate satisfied by the solution of adjoint
system (1.9). To establish this Carleman inequality for the coupled system (1.9), we will use the
Carleman estimate proved in [20] for the linear Kawahara equation.

3.1. Carleman estimate for Kawahara equation. Let us consider the following backward linear
Kawahara equation

∂tz + ∂xz + ∂3xz + ∂5xz = g, (t, x) ∈ (0, T )× (0, L),

z(t, 0) = z(t, L) = ∂xz(t, 0) = ∂xz(t, L) = 0, t ∈ (0, T ),

∂2xz(t, L) = 0, t ∈ (0, T ),

z(T, x) = zT (x), x ∈ (0, L).

(3.1)

This subsection is dedicated to establish a modified version of the Carleman estimate obtained in the
work [20] for the system (3.1). The proof of this modified Carleman estimate is primarily based on
the original Carleman inequality obtained in [20]. For the modified Carleman estimate, we need the
non-homogeneous term g of (3.1) to be in L2(0, T ;H1

0 (0, L)), unlike the one obtained in [20], where
g ∈ L2(0, T ;L2(0, L)) is enough.

To start the study of Carleman estimate, let us first mention the relevant weight function as described
in [20]. Recall that O ∩ ω ̸= ∅, so let ω0 be any nonempty open subset of O ∩ ω. Further, consider any
open interval ω1 = (a, b) such that ω1 ⋐ ω0 ⊂ O∩ω with 0 < a < b < L. Let ϕ ∈ C8([0, L]) be a positive
function satisfying 

ϕ′(0) < 0, ϕ′(L) > 0;

|ϕ′(x)| > 0, ϕ′′(x) < 0 for x ∈ [0, L] \ ω1;

min
x∈ω1

ϕ(x) = ϕ(c) < max
x∈ω1

ϕ(x) = ϕ(a) = ϕ(b), for c ∈ ω1;

max
x∈[0,L]

ϕ(x) = ϕ(L) = ϕ(0) <
10

9
ϕ(c).

(3.2)

Next, let us consider a function ξ(t) given by

ξ(t) =
1

t(T − t)
, ∀ t ∈ (0, T ). (3.3)

Finally, we define the weight function φ by

φ(t, x) = ϕ(x)ξ(t), ∀ (t, x) ∈ (0, T )× [0, L]. (3.4)

We use the symbol qφ(t) and pφ(t) to denote

qφ(t) = min
x∈[0,L]

φ(t, x), ∀ t ∈ (0, T ),

pφ(t) = max
x∈[0,L]

φ(t, x), ∀ t ∈ (0, T ).
(3.5)
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Then, using the above condition on ϕ, we have

10 qφ(t)− 9 pφ(t) > 0. (3.6)

Let us now introduce the shorthand notation Ikw(z) and Ĩkw(z) to denote

Ikw(z) =
∫∫

Q

e−2sφ
(
s9ξ9|z|2 + s7ξ7|∂xz|2 + s5ξ5|∂2xz|2 + s3ξ3 |∂3xz|2 + sξ |∂4xz|2

)
, (3.7)

Ĩkw(z) = Ikw(z) + s

∫ T

0

ξe−2s pφ∥z∥2H5(0,L). (3.8)

Proposition 3.1. Assume T > 0 be given, and let ω0 ⊂ O ∩ ω be any nonempty open subset. Then,
for any zT ∈ L2(0, L), and g ∈ L2(0, T ;H1

0 (0, L)), there exists a constants C, s0 > 0 such that for all
s ≥ s0, the solution of (3.1) satisfies

Ĩkw(z) ≤ C

(
s3
∫∫

Q

ξe−2sφ|g|2 + s

∫ T

0

ξ5e−2s pφ∥g∥2H1(0,L) + s9
∫ T

0

ξ9e−2s(5 qφ−4 pφ) ∥z∥2L2(ω0)

)
. (3.9)

Proof. Let ω1 ⋐ ω0 be any nonempty open interval. Then, the solution z of (3.1) satisfies the following
Carleman estimate (see Corollary 3.1, [20]):

Ikw(z) ≤ C

∫∫
Q

e−2sφ|g|2 + C

∫ T

0

∫
ω1

e−2sφ
(
s9ξ9|z|2+s7ξ7|∂xz|2 + s5ξ5|∂2xz|2 + s3ξ3 |∂3xz|2 + sξ |∂4xz|2

)
,

(3.10)

for s ≥ s0, for sufficiently large s0 and for some C > 0.
Let ζ ∈ C∞

c (ω0) be a positive function such that ζ ≡ 1 on ω1, and let ϵ > 0 be arbitrary. Then, using
smoothness of ζ, φ and Hölder’s inequality, we obtain the following estimate∫ T

0

∫
ω1

e−2sφs7ξ7|∂xz|2 ≤
∫ T

0

∫
ω0

ζe−2sφs7ξ7|∂xz|2

= −
∫ T

0

∫
ω0

s7ξ7e−2sφ
(
∂xζ ∂xz − 2s ∂xφ ζ ∂xz + ζ ∂2xz

)
z

≤ ϵ

∫ T

0

∫
ω0

s7ξ7e−2sφ|∂xz|2 + Cϵ

∫ T

0

∫
ω0

s7ξ7e−2sφ|z|2

+ C

∫ T

0

∫
ω0

s8ξ8e−2sφ(∂xz) z

+ ϵ

∫ T

0

∫
ω0

s5ξ5e−2sφ|∂2xz|2 + Cϵ

∫ T

0

∫
ω0

s9ξ9e−2sφ|z|2

≤ ϵ I(s, z) + Cϵ

∫ T

0

∫
ω0

s9ξ9e−2sφ|z|2,

where Cϵ > 0 is a constant which depends on the choice of ϵ. Similarly, the other terms of (3.10) can
be estimated as

•
∫ T

0

∫
ω1

e−2sφs5ξ5|∂2xz|2 ≤
∫ T

0

∫
ω0

ζe−2sφs5ξ5|∂2xz|2

= −
∫ T

0

∫
ω0

e−2sφs5ξ5
(
−2s∂xφ ζ ∂

2
xz + ∂xζ ∂

2
xz + ζ∂3xz

)
(∂xz)

≤ ϵ I(s, z) + C

∫ T

0

∫
ω0

s9ξ9e−2sφ|z|2.

•
∫ T

0

∫
ω1

e−2sφs3ξ3|∂3xz|2 ≤
∫ T

0

∫
ω0

ζe−2sφs3ξ3|∂3xz|2

= −
∫ T

0

∫
ω0

e−2sφs3ξ3
(
−2s∂xφ ζ ∂

3
xz + ∂xζ ∂

3
xz + ζ∂4xz

)
(∂2xz)

≤ ϵ I(s, z) + Cϵ

∫ T

0

∫
ω0

s9ξ9e−2sφ|z|2 + Cϵ

∫ T

0

∫
ω0

sξe−2sφ|∂4xz|2.
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Substituting these estimates on the right side of (3.10), and absorbing the terms with ϵ with the term
in the left by choosing sufficiently small ϵ, we obtain

Ikw(z) ≤ C

(∫∫
Q

e−2sφ|g|2 +
∫ T

0

∫
ω0

s9ξ9e−2sφ|z|2 +
∫ T

0

∫
ω0

sξe−2sφ|∂4xz|2
)
, (3.11)

for some constant C > 0.

To handle the last term of right hand side, we will use the Bootstrap technique as developed in [35]
(see also [12, 20]) to introduce a new term on the left side, which will effectively absorb the last term.
For that, let us first define z(t, x) := ρ(t)z(t, x) with ρ(t) = s1/2ξ5/2e−s pφ so that z satisfies

∂tz + ∂xz + ∂3xz + ∂5xz = ρ g + ∂tρ z, in Q,

z(t, 0) = z(t, L) = ∂xz(t, 0) = ∂xz(t, 0) = ∂2xz(t, 0) = 0, for t ∈ (0, T ),

z(T, x) = 0, for x ∈ (0, L).

(3.12)

Note that |∂tρ| ≤ Cs3/2ξ9/2e−s pφ, and so we deduce

∥ρ g + ∂tρ z∥2L2(Q) ≤ Cs

∫∫
Q

e−2s pφξ5|g|2 + Cs3
∫∫

Q

e−2s pφξ9|z|2, (3.13)

and therefore, by virtue of well-posedness result Lemma 2.2, the system (3.12) admits a unique solution
z ∈ C([0, T ];H2(0, L)) ∩ L2(0, T ;H4(0, L)), satisfying the following continuity estimate

∥z∥2L2(0,T ;H4(0,L)) ≤ Cs

∫∫
Q

e−2s pφξ5|g|2 + Cs3
∫∫

Q

e−2s pφξ9|z|2. (3.14)

Next, we define z̃(t, x) = ρ̃(t)z(t, x) with ρ̃(t) = s1/2ξ1/2e−s pφ. Then z̃ satisfies
∂tz̃ + ∂xz̃ + ∂3xz̃ + ∂5xz̃ = ρ̃ g + ∂tρ̃ z in Q,

z̃(t, 0) = z̃(t, L) = ∂xz̃(t, 0) = ∂xz̃(t, 0) = ∂2xz̃(t, 0) = 0 for t ∈ (0, T ),

z̃(T ) = 0, in (0, L).

(3.15)

Note that ∂tρ̃ z = ∂tρ̃ ρ
−1z, and

∣∣∂tρ̃ ρ−1
∣∣ ≤ Cs. Then, using the fact that z ∈ L2(0, T ;H4(0, L)) and

g ∈ L2(0, T ;H1(0, L)), one has

∥ρ̃ g + ∂tρ̃ z∥2L2(0,T ;H1(0,L)) ≤ C

(
s

∫ T

0

ξe−2s pφ ∥g∥2H1(0,L) + s2
∫ T

0

∥z∥2H1(0,L)

)
.

As a consequence, thanks to the Lemma 2.2, we get existence of the unique solution z̃ ∈ X3,T =
C([0, T ];H3(0, L)) ∩ L2(0, T ;H5(0, L)) of (3.15) satisfying the estimate

∥z̃∥2X3,T
≤ C

(
s

∫ T

0

ξe−2s pφ ∥g∥2H1(0,L) + s2
∫ T

0

∥z∥2H1(0,L)

)
. (3.16)

Let us now use the estimate (3.14) in the last one to get

s

∫ T

0

ξe−2s pφ ∥z∥2H5(0,L) ≤ C

(
s

∫ T

0

ξe−2s pφ ∥g∥2H1(0,L) + s3
∫∫

Q

e−2s pφξ5|g|2 + s5
∫∫

Q

e−2s pφξ9|z|2
)
.

(3.17)

Upon adding the estimates (3.11) and (3.17), we obtain:

Ikw(z)+s
∫ T

0

ξe−2s pφ∥z∥2H5(0,L)

≤ C

(∫∫
Q

e−2sφ|g|2 + s9
∫ T

0

∫
ω0

e−2sφξ9|z|2 + s

∫ T

0

∫
ω0

ξe−2sφ|∂4xz|2

+ s

∫ T

0

e−2s pφξ5∥g∥2H1(0,L) + s3
∫∫

Q

ξe−2s pφ|g|2 + s5
∫∫

Q

e−2s pφξ9|z|2
)
. (3.18)

Note that the last term of right hand side of the above inequality can be dominated by

s5
∫∫

Q

e−2sφξ9|z|2
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as −pφ ≤ −φ, which can be absorbed by Ikw in the left hand side of (3.18) by choosing sufficiently large
s. The relation −pφ ≤ −φ can be used for the second last term of the right hand side of (3.18) as well
to combine it with the first term of the right hand side. Thus we finally obtain

Ikw(z) + s

∫ T

0

ξe−2s pφ∥z∥2H5(0,L) ≤ C

(
s9
∫ T

0

∫
ω0

e−2sφξ9|z|2 + s

∫ T

0

∫
ω0

ξe−2sφ|∂4xz|2

+ s3
∫∫

Q

ξe−2sφ|g|2 + s

∫ T

0

e−2s pφξ5∥g∥2H1(0,L)

)
. (3.19)

Our final aim is to eliminate the local term involving |∂4xz| from right hand side of the above estimate.
Noting the fact that ξ and qφ do not depend on space variable, and using the Sobolev interpolation
inequality and Young’s inequality, we have

s

∫ T

0

∫
ω0

ξe−2sφ|∂4xz|2 ≤ s

∫ T

0

e−2s qφξ∥z∥2H4(ω0)

≤ C s

∫ T

0

∫
ω0

ξe−2s qφ ∥z(t, ·)∥
8
5

H5(ω0)
∥z(t, ·)∥

2
5

L2(ω0)

≤ ϵ

∫ T

0

ξe−2s pφ ∥z(t, ·)∥2H5(ω0)
+ Cϵs

5

∫ T

0

ξes(−10 qφ+8 pφ) ∥z(t, ·)∥2L2(ω0)
. (3.20)

Also, using the fact qφ− pφ < 0, we have

s9
∫ T

0

∫
ω0

ξ9e−2s qφ|z|2 = s9
∫ T

0

ξ9es(−10 qφ+8 pφ)e8s( qφ− pφ) ∥z(t, ·)∥2L2(ω0)

≤ s9
∫ T

0

ξ9es(−10 qφ+8 pφ) ∥z(t, ·)∥2L2(ω0)
. (3.21)

Thus substituting the estimates (3.20) and (3.21) in (3.19), and choosing ϵ > 0 sufficiently small, we
finally get the desired estimate (3.9). □

Remark 3.2. One can also consider the boundary conditions:

z(t, 0) = z(t, L) = zx(t, L) = ∂xz(t, 0) = ∂2xz(t, L) = 0 for t ∈ (0, T ), (3.22)

as a replacement for the set of boundary conditions in (3.1), and this will not affect the Carleman
estimate (3.9).

3.2. Carleman estimate for the adjoint system. We are now in a position to derive the main
Carleman estimate for the coupled system (1.9), which is crucial to deduce the main null controllability
result for the system (1.5), as stated in Theorem 1.4.

Theorem 3.3 (Main Carleman estimate). Let T > 0 be given and ω̃ ⊂ O ∩ ω be a nonempty open
subset. Then there exist constants C > 0 and s0 > 0, depending on T such that for any given source
terms g1, g2 ∈ L2(0, T ;H1

0 (0, L)), and ψ0 ∈ L2(0, L), the solution to (1.9) satisfies

Ĩkw(v) + Ĩkw(ψ) ≤ C

(
s17
∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2

+ s9
∫∫

Q

ξ9e−2s(10 qφ−9 pφ)
(
|∂xg1|2 + |∂xg2|2

))
, (3.23)

for all s ≥ s0, where Ĩkw(·) has been defined in (3.8).

Proof. Let pω be any nonempty open subset of (0, L) such that pω ⋐ ω̃ ⊂ O ∩ ω. Then we apply
Proposition 3.1, more specifically the estimate (3.9) to the state solution v and ψ of the adjoint system
(1.9) for the local domain ω0 = pω. In what follows, for sufficiently large s0 the states v and ψ satisfies
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the following estimate

Ĩkw(v) + Ĩkw(ψ) ≤ C

(
s

∫ T

0

ξ5e−2s pφ
(
∥g1∥2H1(0,L) + ∥ψ∥2H1(0,L) + ∥g2∥2H1(0,L)

)
+ s3

∫∫
Q

ξe−2sφ
(
|g1|2 + |ψ|2 + |g2|2

)
+ s9

∫ T

0

ξ9e−2s(5 qφ−4 pφ)
(
∥v∥2L2(pω) + ∥ψ∥2L2(pω)

))
, (3.24)

for any s ≥ s0 and for some constant C > 0.

I. Handling the global terms of rhs. Note that using the fact that φ ≤ pφ and ξ(t) ≥ 4/T 2 for
t ∈ (0, T ), we get the following estimate

s

∫ T

0

ξ5e−2s pφ∥ψ∥2H1(0,L) + s3
∫∫

Q

ξe−2sφ|ψ|2 ≤ C

(
s3
∫∫

Q

ξ5e−2sφ|ψ|2 + s

∫∫
Q

ξ5e−2sφ|∂xψ|2
)
,

which can be absorbed in Ĩkw for sufficiently large s.

For i ∈ {1, 2}, the gi terms can also be clubbed together using same argument to get

s

∫ T

0

ξ5e−2s pφ∥gi∥2H1(0,L) + s3
∫∫

Q

ξe−2sφ|gi|2 ≤ C

(
s3
∫∫

Q

ξ5e−2sφ|gi|2 + s

∫∫
Q

ξ5e−2sφ|∂xgi|2
)
.

Since gi ∈ L2(0, T ;H1
0 ), so we use the Poincarè inequality in the above estimate to deduce

s

∫ T

0

ξ5e−2s pφ∥gi∥2H1(0,L) + s3
∫∫

Q

ξe−2sφ|gi|2 ≤ Cs3
∫∫

Q

ξ5e−2sφ|∂xgi|2.

Thus, for sufficiently large s0, the estimate (3.24) reduces to

Ĩkw(v) + Ĩkw(ψ) ≲ s3
∫∫

Q

ξ5e−2sφ
(
|∂xg1|2 + |∂xg2|2

)
+ s9

∫∫
Q

pω

ξ9e−2s(5 qφ−4 pφ)
(
|v|2 + |ψ|2

)
, (3.25)

for all s ≥ s0.
II. Absorbing the local term of ψ. In this part, we eliminate the local integral associated to ψ. Let

us first consider a function ζ̃ ∈ C∞
c (ω̃) such that 0 ≤ ζ ≤ 1 in ω̃ and ζ = 1 in pω. From the differential

equation of v, that is (1.9)1, we have

ψ = −∂tv − ∂xv − ∂3xv − ∂5xv − g1 in (0, T )×O (consequently in (0, T )× ω̃),

which yields

s9
∫∫

Q
pω

ξ9e−2s(5 qφ−4 pφ)|ψ|2 ≤ s9
∫ T

0

∫
ω̃

ξ9e−2s(5 qφ−4 pφ) ζ̃ ψ
(
−∂tv − ∂xv − ∂3xv − ∂5xv − g1

)
=

5∑
i=1

Qi.

We now estimate the terms Qi, for i ∈ {1, 2, 3, 4, 5}.
(a) Estimate of Q1. Integrating by parts with respect to time t, the term Q1 becomes

Q1 =s9
∫ T

0

∫
ω̃

ζ̃ ∂t

(
ξ9e−2s(5 qφ−4 pφ)

)
ψv + s9

∫ T

0

∫
ω̃

ξ9e−2s(5 qφ−4 pφ) ζ̃ ∂tψ v

=Q1,1 +Q1,2. (3.26)

Thanks to the fact ∣∣∣(ξ9e−2s(5 qφ−4 pφ)
)
t

∣∣∣ ≤ Cs ξ11e−2s(5 qφ−4 pφ), (3.27)

and the Young’s inequality, we first deduce that

|Q1,1| ≤ Cs10
∫ T

0

∫
ω̃

e−2s(5 qφ−4 pφ)ξ11|ψv|

≤ ϵs9
∫∫

Q

e−2sφξ9|ψ|2 + Cϵs
11

∫ T

0

∫
ω̃

e2(−10s qφ+9s pφ)ξ13|v|2,
(3.28)

for any given ϵ > 0.
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Next, we use the equation (1.9)2 to see

Q1,2 =s9
∫ T

0

∫
ω̃

ξ9e−2s(5 qφ−4 pφ) ζ̃ v
(
−∂5xψ − ∂3xψ − ∂xψ + g2

)
=

4∑
i=1

Qi
1,2.

For
{
Qi

1,2

}4
i=2

, we use the Young’s ineqaulity to get

•
∣∣Q1

1,2

∣∣ ≤ ϵs

∫ T

0

∫
ω̃

ξe−2s pφ
∣∣∂5xψ∣∣2 + Cϵs

17

∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2.

•|Q2
1,2| ≤ ϵs3

∫∫
Q

ξ3e−2sφ|∂3xψ|2 + Cϵs
15

∫ T

0

∫
ω̃

ξ15e−2s(10 qφ−9 pφ)|v|2.

•|Q3
1,2| ≤ ϵs7

∫∫
Q

ξ7e−2sφ|ψ|2 + Cϵs
11

∫ T

0

∫
ω̃

ξ11e−2s(10 qφ−9 pφ)|v|2.

•|Q4
1,2| ≤ s

∫∫
Q

ξe−2sφ|g2|2 + Cs17
∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2.

Combining all the above estimates, we have for any small ϵ > 0,

|Q1| ≤ ϵ Ĩkw(ψ) + s

∫∫
Q

ξe−2sφ|g2|2 + Cs17
∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2.

(b) Estimate of {Qi}5i=2. Integrating by parts with respect to time x, and then using Young’s

inequality, the terms {Qi}5i=2 can be estimated as

•Q2 = s9
∫ T

0

∫
ω̃

ξ9e−2s(5 qφ−4 pφ)
(
∂xζ̃ ψ + ζ̃ ∂xψ

)
v

≤ ϵs9
∫∫

Q

e−2sφξ9|ψ|2 + ϵs7
∫∫

Q

e−2sφξ7|∂xψ|2 + Cϵs
9

∫ T

0

∫
ω̃

ξ9e−2s(10 qφ−9 pφ)|v|2

+ Cϵs
11

∫ T

0

∫
ω̃

ξ11e−2s(10 qφ−9 pφ)|v|2

≤ ϵ Ikw(ψ) + Cϵs
11

∫ T

0

∫
ω̃

ξ11e−2s(10 qφ−9 pφ)|v|2.

•Q3 = s9
∫ T

0

∫
ω̃

ξ9e−2s(5 qφ−4 pφ)
(
∂3xζ̃ψ + 3∂2xζ̃∂xψ + 3∂xζ̃∂

2
xψ + ζ̃∂3xψ

)
v

≤ ϵ Ikw(ψ) + Cϵs
15

∫ T

0

∫
ω̃

ξ15e−2s(10 qφ−9 pφ)|v|2.

•Q4 = s9
∫ T

0

∫
ω̃

ξ9e−2s(5 qφ−4 pφ)
(
∂5xζ̃ ψ + 5 ∂4xζ̃ ∂xψ + 10 ∂3xζ̃ ∂

2
xψ

+ 10 ∂2xζ̃ ∂
3
xψ + 5 ∂xζ̃ ∂

4
xψ + ζ̃ ∂5xψ

)
v

≤ ϵ Ĩkw(ψ) + Cϵs
17

∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2.

•Q5 ≤ ϵs9
∫∫

Q

ξ9e−2sφ|ψ|2 + Cs9
∫∫

Q

ξ9e−2s(10 qφ−9 pφ)|g1|2.

Thus combining all above estimates, we have

s9
∫ T

0

∫
pω

ξ9e−2s(5 qφ−4 pφ)|ψ|2 ≤ 5ϵ Ĩkw(ψ) + Cs17
∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2

+ Cs

∫∫
Q

ξe−2sφ|g2|2 + Cs9
∫∫

Q

ξ9e−2s(10 qφ−9 pφ)|g1|2.
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Hence, substituting this estimate in (3.25) for sufficiently small ϵ gives

Ĩkw(v) + Ĩkw(ψ) ≤ C

(
s17
∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2 + s3
∫∫

Q

ξ5e−2sφ
(
|∂xg1|2 + |∂xg2|2

)
+ s9

∫∫
Q

ξ9e−2s(10 qφ−9 pφ)|g1|2
)
, (3.29)

for all s ≥ s0.
To this end, due to the choices of gi ∈ L2(0, T ;H1

0 (0, L)) for i ∈ {1, 2}, and the definitions of qφ, pφ, we
have

s3
∫∫

Q

ξ5e−2sφ
(
|∂xg1|2 + |∂xg2|2

)
+ s9

∫∫
Q

ξ9e−2s(10 qφ−9 pφ)|g1|2

≤ Cs9
∫∫

Q

ξ9e−2s(10 qφ−9 pφ)
(
|∂xg1|2 + |∂xg2|2

)
,

and hence the estimate (3.29) finally reduces to the desired Carleman estimate (3.23). □

4. The Observability inequality

In this section, we derive an observability inequality to the solutions of the adjoint system (1.9) which
essentially helps to establish the null controllability of the linear system (1.8). Let us first define some
modified Carleman weights that do not vanish at t = T . We consider

Z(t) =


1

t(T − t)
, 0 < t ≤ T/2,

4

T 2
, T/2 ≤ t ≤ T,

(4.1)

and the weight function

S(t, x) = ϕ(x)Z(t), ∀(t, x) ∈ (0, T ]× [0, L], (4.2)

where the function ϕ satisfies the properties mentioned in (3.2).
We further define

qS(t) = min
[0,L]

S(t, x), ∀t ∈ (0, T ),

pS(t) = max
[0,L]

S(t, x), ∀t ∈ (0, T ).
(4.3)

Remark 4.1. Recall the former weight functions ξ, φ, and qφ, pφ from (3.3), (3.4) and (3.5). Then, by
construction we observe that

Z(t) = ξ(t), for t ∈ (0, T/2], S(t, x) = φ(t, x), for t ∈ (0, T/2]× [0, L],

and further,

qS(t) = qφ(t), pS(t) = pφ(t), for t ∈ (0, T/2].

With all these, we derive the following observability inequality associated to the adjoint system (1.9),
which is crucial for the null controllability of the system (1.8).

Proposition 4.2. Let s be fixed in accordance with Theorem 3.3, and let ω̃ ⊂ O ∩ ω be any nonempty
open subset. Then, there exists some constant C > 0 that depends on s, T , ω and O such that for
any gi ∈ L2(0, T ;H1

0 (0, L)) for i = 1, 2 and ψ0 ∈ L2(0, L), the solution to (1.9) satisfies the following
estimate

∥ψ(T )∥2L2(0,L) +
∥∥∥e−s pSZ5/2(v, ψ)

∥∥∥2
[C([0,T ];L2(0,L))]2

+

∫∫
Q

e−2s pSZ7
(
|∂xv|2 + |∂xψ|2

)
≤ C

∫ T

0

∫
ω̃

Z17e−2s(10 qS−9 pS)|v|2 + C

∫∫
Q

Z9e−2s(10 qS−9 pS)
(
|∂xg1|2 + |∂xg2|2

)
.

(4.4)

Proof. We break the proof in two steps, as described below:
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• Step 1. Using the fact that φ ≤ pφ in the Carleman estimate (3.23) for fixed value of s satisfying
s ≥ s0, we obtain the following estimate∫∫

Q

e−2s pφξ9
(
|v|2 + |ψ|2

)
+

∫∫
Q

e−2s pφξ7
(
|∂xv|2 + |∂xψ|2

)
≤ C

∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2 + C

∫∫
Q

ξ9e−2s(10 qφ−9 pφ)
(
|∂xg1|2 + |∂xg2|2

)
. (4.5)

Let us choose a function γ ∈ C1([0, T ]) such that

γ = 0 in [0, T/4], γ = 1 in [T/2, T ]. (4.6)

It is clear that Supp(γ) ⊂ [T/4, T ], and Supp(γ′) ⊂ [T/4, T/2].
Let (v, ψ) is the solution of the adjoint equations (1.9). Then the pair (γv, γψ) solves the following
coupled system

−∂t(γv)− ∂x(γv)− ∂3x(γv)− ∂5x(γv) = γg1 + χOγψ − γ′v, (t, x) ∈ Q,

∂t(γψ) + ∂x(γψ) + ∂3x(γψ) + ∂5x(γψ) = γg2 + γ′ψ, (t, x) ∈ Q,

(γv)(t, 0) = (γv)(t, L) = ∂x(γv)(t, 0) = ∂x(γv)(t, L) = ∂2x(γv)(t, L) = 0, t ∈ (0, T ),

(γψ)(t, 0) = (γψ)(t, L) = ∂x(γψ)(t, 0) = ∂x(γψ)(t, L) = ∂2x(γψ)(t, 0) = 0, t ∈ (0, T ),

(γψ)(0, ·) = 0, (γv)(T, ·) = 0, in (0, L).

(4.7)

Applying Proposition 2.5 to (4.7), we get

∥(γv, γψ)∥[L2(0,T ;H2
0 (0,L))]

2 + ∥(γv, γψ)∥[C([0,T ];L2(0,L))]2

≤ C
(
∥(γg1, γg2)∥[L2(0,T ;L2(0,L))]2 + ∥(γ′v, γ′ψ)∥[L2(0,T ;L2(0,L))]2

)
. (4.8)

Next, we use the properties of γ introduced in (4.6), in the above inequality (4.8) to obtain

∥(v, ψ)∥[L2(T/2,T ;H2
0 (0,L))]

2 + ∥ψ(T )∥L2(0,L)

≤ C
(
∥(g1, g2)∥[L2(T/4,T ;L2(0,L))]2 + ∥(v, ψ)∥[L2(T/4,T/2;L2(0,L))]2

)
.

(4.9)

Using the fact Z(t) = 1
t(T−t) and e−2s pS(t)Z(t)9 ≥ C for t ∈ [T/4, T/2] and some C > 0, one can estimate

the last term of right hand sides of (4.9) as

∥(v, ψ)∥2[L2(T/4,T/2;L2(0,L))]2 ≤ C

∫ T/2

T/4

∫ L

0

e−2s pSZ9
(
|v|2 + |ψ|2

)
= C

∫ T/2

T/4

∫ L

0

e−2s pφξ9
(
|v|2 + |ψ|2

)
.

Thanks to the Carleman estimate (4.5) with the fact that Z = ξ and pS = pφ in [T/4, T/2] (see Re-
mark 4.1), we get

∥(v, ψ)∥2[L2(T/4,T/2;L2(0,L))]2 ≤ C

∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2

+ C

∫∫
Q

ξ9e−2s(10 qφ−9 pφ)
(
|∂xg1|2 + |∂xg2|2

)
. (4.10)

Next, note that{
ξ17e−2s(10 qφ−9 pφ) = Z17e−2s(10 qS−9 pS), ξ9e−2s(10 qφ−9 pφ) = Z9e−2s(10 qS−9 pS) in [0, T/2],

ξ17e−2s(10 qφ−9 pφ), ξ9e−2s(10 qφ−9 pφ) ≤ C and Z17e−2s(10 qS−9 pS), Z9e−2s(10 qS−9 pS) ≥ C in [T/2, T ].

(4.11)

Utilizing the above observations in (4.10), we deduce

∥(v, ψ)∥2[L2(T/4,T/2;L2(0,L))]2

≤ C

∫ T

0

∫
ω̃

S17e−2s(10 qS−9 pS)|v|2 + C

∫∫
Q

S9e−2s(10 qS−9 pS)
(
|∂xg1|2 + |∂xg2|2

)
.

(4.12)
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Substituting this estimate in (4.9), and using the fact e−2s pSZn is bounded above in [T/2, T ] for any
n ∈ N in the left hand sides of (4.9), we get

∥ψ(T )∥2L2(0,L) +

∫ T

T/2

∫ L

0

e−2s pSZ9
(
|v|2 + |ψ|2

)
+

∫ T

T/2

∫ L

0

e−2s pSZ7
(
|∂xv|2 + |∂xψ|2

)
≤ C

∫ T

0

∫
ω̃

S17e−2s(10 qS−9 pS)|v|2 + C

∫∫
Q

S9e−2s(10 qS−9 pS)
(
|∂xg1|2 + |∂xg2|2

)
. (4.13)

In the above estimate, we have clubbed the ∥(g1, g2)∥[L2(T/4,T ;L2(0,L))]2 terms with the |∂xgi| term using

Poincarè inequality as gi ∈ L2(0, T ;H1
0 (0, L)).

Using the fact that Z = ξ and pS = pφ in (0, T/2] (Remark 4.1), and using the Carleman estimate (4.5),
we have∫ T/2

0

∫ L

0

e−2s pSZ9
(
|v|2 + |ψ|2

)
+

∫ T/2

0

∫ L

0

e−2s pSZ7
(
|∂xv|2 + |∂xψ|2

)
≤ C

∫ T

0

∫
ω̃

ξ17e−2s(10 qφ−9 pφ)|v|2 + C

∫∫
Q

ξ9e−2s(10 qφ−9 pφ)
(
|∂xg1|2 + |∂xg2|2

)
.

Next, we use the observation (4.11) in the last estimate to conclude∫ T/2

0

∫ L

0

e−2s pSZ9
(
|v|2 + |ψ|2

)
+

∫ T/2

0

∫ L

0

e−2s pSZ7
(
|∂xv|2 + |∂xψ|2

)
≤ C

∫ T

0

∫
ω̃

Z17e−2s(10 qS−9 pS)|v|2 + C

∫∫
Q

Z9e−2s(10 qS−9 pS)
(
|∂xg1|2 + |∂xg2|2

)
. (4.14)

As a consequence of (4.13) and (4.14), we have the following estimate

∥ψ(T )∥2L2(0,L) +

∫∫
Q

e−2s pSZ9
(
|v|2 + |ψ|2

)
+

∫∫
Q

e−2s pSZ7
(
|∂xv|2 + |∂xψ|2

)
≤ C

∫ T

0

∫
ω̃

Z17e−2s(10 qS−9 pS)|v|2 + C

∫∫
Q

Z9e−2s(10 qS−9 pS)
(
|∂xg1|2 + |∂xg2|2

)
.

(4.15)

• Step 2. Let us define pρ(t) = e−s pSZ5/2 so that pρ(0) = 0. Again, by applying Proposition 2.5 to the
equations satisfied by (pρv, pρψ), we get

∥(pρv, pρψ)∥[C([0,T ];L2(0,L))]2 ≤ C
(
∥(pρg1, pρg2, )∥[L2(0,T ;L2(0,L))]2 + ∥(pρtv, pρtψ)∥[L2(0,T ;L2(0,L))]2

)
. (4.16)

Note that |pρt| ≤ CsZ9/2e−s pS for some constant C > 0, and therefore

∥(pρtv, pρtψ)∥2[L2(0,T ;L2(0,L))]2 ≤ C

∫∫
Q

e−2s pSZ9
(
|v|2 + |ψ|2

)
. (4.17)

Using the above estimate in (4.16) along with (4.15), we get the desired observability inequality (4.4).
This completes the proof. □

5. Null-controllability for the linear system

This section is devoted to prove the null-controllability of the extended linearized system (1.8) with
u0 = 0, and source terms f1, f2 ∈ L1(0, T ;L2(0, L)).
Let us denote the following operator:

Lu = ∂tu+ ∂5xu+ ∂3xu+ ∂xu,

and its formal adjoint

L∗u = −∂tu− ∂5xu− ∂3xu− ∂xu.
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Denote the Banach space

E :=
{
(u,w, h) | es(10 qS−9 pS)Z−9/2(u,w) ∈

[
L2(0, T ;H−1(0, L))

]2
,

es(10
qS−9 pS)Z−17/2h ∈ L2(Q),

es(10
qS−9 pS)Z−11(u,w) ∈ [X0,T ]

2
,

es
pSZ−5/2(Lu− hχω), e

s pSZ−5/2(L∗w − uχO) ∈ L1(0, T ;L2(0, L)),

w(T, ·) = 0 in (0, L)
}

(5.1)

Then we have the following null-controllability result.

Proposition 5.1. Let s be fixed parameter according to Theorem 3.3 and f1, f2 be the functions satis-
fying

es
pSZ−5/2

(
f1, f2

)
∈
[
L1(0, T ;L2(0, L))

]2
. (5.2)

Then, there exist control h ∈ L2
(
0, T ;L2(ω)

)
and the associated solution (u,w) to (1.8) such that the

tuple (u,w, h) ∈ E, in particular, we have w(0, ·) = 0 in (0, L).

Proof. We consider the space

Q0 :=
{
(v, ψ) ∈ [C4(Q)]2 | v(t, 0) = v(t, L) = ∂xv(t, 0) = ∂xv(t, L) = ∂2xv(t, L) = 0,

ψ(t, 0) = ψ(t, L) = ∂xψ(t, 0) = ∂xψ(t, L) = ∂2xψ(t, 0) = 0,

L(ψ)(t, 0) = L(ψ)(t, L) = 0,

(L∗(v)− ψχO)(t, 0) = (L∗(v)− ψχO)(t, L) = 0
}
,

(5.3)

and define the bilinear form

B : Q0 ×Q0 → R (5.4)

given by

B ((v1, ψ1), (v2, ψ2))

=

∫∫
Q

e−2s(10 qS−9 pS)Z9

[(
L∗v1 − χOψ1

)
x

(
L∗v2 − χOψ2

)
x
+
(
Lψ1

)
x

(
Lψ2

)
x

]
+

∫ T

0

∫
ω

e−2s(10 qS−9 pS)Z17v1 v2.

(5.5)

Note that due to the observability inequality (4.4) and the fact that ω̃ ⊂ ω, we have

B ((v, ψ), (v, ψ)) ≥
∥∥∥e−s pSZ5/2(v, ψ)

∥∥∥2
[C([0,T ];L2(0,L))]2

, (5.6)

which defines a norm on Q0. We denote the closure of Q0 w.r.t. the norm B(·, ·)1/2 by Q, which is a
Hilbert space endowed with the inner product (5.5).

Next, for any given
(
f1, f2

)
∈
[
L1(0, T ;L2(0, L))

]2
we define the linear map F on Q0 as

F (v, ψ) =
〈
f1, v

〉
L1(L2),L∞(L2))

+
〈
f2, ψ

〉
L1(L2),L∞(L2))

. (5.7)

Observe that due to (5.2) and the observability inequality (4.4), the linear functional F satisfies the
following estimate

|F(v, ψ)| ≤
∥∥es pSZ−5/2

(
f1, f2

)∥∥
[L1(0,T ;L2(0,L))]2

×
∥∥e−s pSZ5/2

(
v, ψ

)∥∥
[L∞(0,T ;L2(0,L))]2

<∞. (5.8)

This shows that the map F is a continuous linear map on Q as Q0 is dense in Q.
Therefore, for any given

(
f1, f2

)
∈
[
L1(0, T ;L2(0, L))

]2
, there exists unique (ṽ, ψ̃) ∈ Q × Q by

Lax-Milgram’s theorem which satisfies

B
(
(ṽ, ψ̃), (v, ψ)

)
= F (v, ψ) , ∀ (v, ψ) ∈ Q. (5.9)
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Now, we set

ũ = Z9e−2s(10 qS−9S̃)
(
L∗ṽ − ψ̃ χO

)
xx
, (5.10)

w̃ = Z9e−2s(10 qS−9S̃)(Lψ̃ )
xx
, (5.11)

h̃ = Z17e−2s(10 qS−9S̃) ṽ 1ω. (5.12)

(a) Let us first show that (ũ, w̃, h̃) ∈
[
L2
(
0, T ;H−1(0, L)

)]2 × L2 ((0, T )× ω) .
• Note that∫ T

0

e2s(10
qS−9 pS)Z−9∥ũ∥2H−1(0,L) =

∫ T

0

e2s(10
qS−9 pS)Z−9 sup

∥ϑ∥
H1

0
=1

|⟨ũ, ϑ⟩|2H−1,H1
0

≤
∫∫

Q

e−2s(10 qS−9 pS)Z9
∣∣∣(L∗ṽ − ψ̃ χO

)
x

∣∣∣2
≤ B

(
(ṽ, ψ̃), (ṽ, ψ̃)

)
< +∞.

• Similarly, one can easily show that w̃ ∈ L2(0, T ;H−1(0, L)).
• Straightforward computation gives∥∥es(10 qS−9S̃)Z−17/2h̃

∥∥2
L2((0,T )×ω)

=

∫ T

0

∫
ω

e−2s(10 qS−9S̃)Z17 |ṽ|2

≤ B
(
(ṽ, ψ̃), (ṽ, ψ̃)

)
< +∞.

Combining the above estimates together, we get:∥∥es(10 qS−9S̃)Z−9/2 (ũ, w̃)
∥∥2
[L2((0,T );H−1(0,L))]2

+
∥∥es(10 qS−9S̃)Z−17/2h̃

∥∥2
L2((0,T )×ω)

≤ B
(
(ṽ, ψ̃), (ṽ, ψ̃)

)
< +∞. (5.13)

(b) Note that this pair (ũ, w̃) is the unique solution to the linearized system (1.8) in the sense of

transposition with the control function h̃ due to (5.9).

(c) Lastly, we show es(10
qS−9 pS)Z−11(ũ, w̃) ∈ [X0,T ]

2
. Let us define

(u,w) := es(10
qS−9 pS)Z−11(ũ, w̃). (5.14)

Using the expression of w̃ from (5.11), we have

w = es(10
qS−9 pS)Z−11Z9e−2s(10 qS−9 pS)(Lψ̃ )

xx
= e−s(10 qS−9 pS)Z−2

(
Lψ̃
)
xx
.

Thus, using 10qζ − 9pζ > 0 due to the properties of ϕ as mentioned in (3.6), it is clear that
w(0) = 0. Similarly, u(0) = 0. Furthermore, the pair (u,w) satisfies the following system:

∂tu+ ∂xu+ ∂3xu+ ∂5xu = f1 + χωh+
(
es(10

qS−9 pS)Z−11
)
t
ũ, (t, x) ∈ Q,

−∂tw − ∂xw − ∂3xw − ∂5xw = f2 + χOu−
(
es(10

qS−9 pS)Z−11
)
t
w̃, (t, x) ∈ Q,

u(t, 0) = u(t, L) = ∂xu(t, 0) = ∂xu(t, L) = ∂2xu(t, 0) = 0, t ∈ (0, T ),

w(t, 0) = w(t, L) = ∂xw(t, 0) = ∂xw(t, L) = ∂2xw(t, L) = 0, t ∈ (0, T ),

u(0, ·) = 0, w(T, ·) = 0, in (0, L),

(5.15)

where h := es(10
qS−9 pS)Z−11h̃ ∈ L2((0, T )× ω) due to (5.13).

Also, we have

(f1, f2) := es(10
qS−9 pS)Z−11(f1, f2) ∈ [L1(0, T ;L2(0, L))]2,

since es(10
qS−9 pS)Z−11 ≤ Ces

pSZ−5/2. Further, one can compute that∣∣∣(es(10 qS−9 pS)Z−11
)
t

∣∣∣ ≤ Ces(10
qS−9 pS)Z−9,

and so due to the bound (5.13), we get(
es(10

qS−9 pS)Z−11
)
t
(ũ, w̃) ∈

[
L2(0, T ;H−1(0, L))

]2
.
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Altogether, we have shown that each source term in the set of equations (5.15) belongs to the
space L2(0, T ;H−1(0, L)) ⊂ L2(0, T ;H−2(0, L)). As a result, by applying Proposition 2.4, we
have

(u,w) ∈ [C([0, T ];L2(0, L))]2 ∩ [L2(0, T ;H2
0 (0, L))]

2,

in other words,

es(10
qS−9 pS)Z−11(ũ, w̃) ∈ [X0,T ]

2
.

Thus, combining all the three points we conclude that the tuple (ũ, w̃, h̃) ∈ E solves the control system
(1.8), which completes the proof. □

6. Local null-controllability of the extended nonlinear system

In this last section, we establish the main result of this article concerning the insensitizing property
of the functional Jτ given by (1.2), as stated in Theorem 1.1. As explained in Section 1, to establish
this result we prove the equivalent local null-controllability result for the extended system (1.5), i.e.,
Theorem 1.4. Thus, in this section we give a proof for the local null controllability result, Theorem 1.4.

Before starting the proof, let us first recall the well-known Inverse Mapping Theorem on which our
proof relies.

Theorem 6.1. Let G1, G2 be two Banach spaces and A : G1 → G2 be a map satisfying A ∈ C1(G1;G2).
Assume that b1 ∈ G1, A(b1) = b2 ∈ G2 and A′(b1) : G1 → G2 is surjective. Then, there exists δ > 0 such

that for every b̃ ∈ G2 satisfying ∥b̃− b2∥G2
< δ, there exists a solution of the equation

A(b) = b̃, b ∈ G1.

Proof of Theorem 1.4. The proof is just an application of the above theorem as described below.
Setup. Consider the spaces

G1 = E , G2 = F × F ,
where E is defined by (5.1) and

F :=
{
f | es pSZ−5/2f ∈ L1(0, T ;L2(0, L))

}
. (6.1)

Now, define the map A : G1 → G2 given by

A (u,w, h)

=
(
∂tu+ ∂xu+ ∂3xu+ ∂5xu+ up∂xu− χωh, −∂tw − ∂xw − ∂3xw − ∂5xw − up∂xw − χOu

)
. (6.2)

Continuously differentiability. Let us first check that A ∈ C1(G1;G2). In this regard, we denote the
space

Y :=
{
y | es(10 qS−9 pS)Z−11y ∈ L2(0, T ;H1

0 (0, L))
}
. (6.3)

Observe that all the terms, except up ∂xu and up∂xw in the definition of A are linear. Thus, to prove
A ∈ C1(G1;G2), it is enough to show that the map

(y, z) ∈ Y × Y 7→ yp∂xz ∈ F (6.4)

is continuous.
Recall the construction of weight functions pS, qS in (4.3). Due to the last property of the function ϕ

mentioned in (3.2), we have (
10sqS− 9spS

)
≥ c0sZ(t),

for all t ∈ (0, T ] and for some c0 > 0. Consequently,

es
pSZ−5/2 ≤ e(10s

qS−9s pS)Z−11e−c0sZ(t)Z11− 5
2 ≤ Ce(10s

qS−9s pS)Z−11, (6.5)

for some constant C > 0. Thus, for any two functions y, z ∈ Y, we have

∥ypzx∥F =

∫ T

0

es
pSZ−5/2∥ypzx∥L2(0,L)

≤ C

∫ T

0

e
s
2 (10 qS−9 pS)Z−11/2∥y∥pL∞(0,L) e

s
2 (10 qS−9 pS)Z−11/2∥zx∥L2(0,L)

≤ C(T (2−p)/4 +
√
T )∥y∥pY∥z∥Y . (6.6)
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Mimicking the arguments of Lemma 2.7, one can deduce the continuity of the map (6.4) using the above
estimate (6.6). This ultimately proves that the map A ∈ C1(G1;G2).

Surjectivity. Set b1 = (0, 0, 0) ∈ G1, and b2 = A′(0, 0, 0) = (0, 0) ∈ G2. Then we aim to prove that the
map A′(0, 0, 0) is surjective. Note that the map A′(0, 0, 0) : G1 → G2 is given by

A′(0, 0, 0)(u,w, h) =
(
∂tu+ ∂xu+ ∂3xu+ ∂5xu− χωh, −∂tw − ∂xw − ∂3xw − ∂5xw − χOu

)
,

which is surjective due to the controllability result given by Proposition 5.1.

Conclusion. Let us consider b̃ = (ξ, 0) ∈ G2, where ξ is the given external source term in (1.5) or in
(1.1). Then, according to Theorem 6.1, there is a δ > 0 such that for given ξ verifying

∥(ξ, 0)∥G2
< δ,

there exists a solution-control pair ((u,w), h) ∈ G1 = E to the system (1.5). In particular, w(0, ·) = 0 in
(0, L). This completes the proof of Theorem 1.4, and hence of Theorem 1.1. □

7. Acknowledgement

Manish Kumar acknowledges financial support from Prime Minister Research Fellowship, Govt. of
India (PMRF ID: 0501091). Subrata Majumdar received financial support from the institute post-
doctoral fellowship of IIT Bombay during the initial stage of the work. Currently this work is supported
by the post-doctoral scholarship of the Universidad Nacional Autónoma de México.
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