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Fast manipulation of a quantum gas on an atom chip with a strong microwave field

Manon Ballu, Bastien Mirmand, Thomas Badr, Hélène Perrin and Aurélien Perrin
Université Sorbonne Paris Nord, Laboratoire de Physique des Lasers,

CNRS UMR 7538, 99 av. J.-B. Clément, F-93430 Villetaneuse, France

We report on an experimental platform based on an atom chip encompassing a coplanar waveguide
which enables the manipulation of a quantum gas of sodium atoms with strong microwave fields. We
describe the production with this setup of a very elongated degenerate quantum gas with typically
106 atoms, that can be prepared all along the cross-over from the three-dimensional to the one-
dimensional regime depending on the atom number and trapping geometry. Using the microwave
field radiated by the waveguide, we drive Rabi oscillations between the hyperfine ground states, with
the atoms trapped at various distances from the waveguide. At the closest position explored, the
field amplitude exceeds 5G, corresponding to a Rabi frequency on the strongest transition larger
than 6MHz. This enables fast manipulation of the atomic internal state.

I. INTRODUCTION

Atom chips are a versatile technology for the manip-
ulation of ultracold neutral atoms [1–7]. They primarily
refer to surface-mounted structures enabling the produc-
tion of magnetic traps of micrometric dimensions [3–7].
Microfabrication gives access to a large variety of mag-
netic potentials resulting from the set of current-carrying
wires. It also enables us to include waveguides radiating
microwave fields near their surface [8]. The latter has
proven to be an effective tool for the coherent manipula-
tion of the internal states of atoms with a hyperfine struc-
ture, such as alkali-metal atoms in their ground state
[9, 10], opening a wide range of applications such as com-
pact atomic clocks [11–14] or interferometers [9, 15, 16],
spectroscopy of the elementary excitations of a quantum
gas [17] or entanglement between quantum states [9, 18].
In these works, the microwave field is used either near res-
onance, driving coherent one-photon or two-photon Rabi
oscillations with a long coherence time [8, 11], or far from
resonance to dress the atomic states [13].

Another promising application of microwave fields for
neutral atoms on a chip concerns the manipulation of
the collisional properties of a quantum gas. It has been
proposed that a microwave field could be used to tune the
scattering length of alkali-metal atoms near a microwave
Feshbach resonance [19]. The field amplitude required
for this application is however very large, on the order
of several gauss. Microwave guides deposited on atom
chips offer strong field amplitudes in the vicinity of the
chip, providing an ideal platform for applications where
a large field is required.

In this paper, we report on the manipulation of a
sodium Bose-Einstein condensate confined in a magnetic
microtrap with a strong microwave field produced by a
coplanar waveguide in the immediate proximity of the
atomic cloud. We observe fast coherent oscillations of the
atomic states, driven by the large amplitude microwave
field. We achieve a field amplitude exceeding 5G. These
results pave the way to fast manipulation of atomic states
for applications in quantum technologies.

The paper is organized as follows: In Sec. II, we de-
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FIG. 1. Trapping elements layout and orientation. The on-
chip trapping wires (with current flowing along the x direc-
tion) are located 4mm above the zero point of the quadrupole
field. The Z-wire that creates the intermediate trap lies above
the chip (see Fig. 2 for details). Coils generating homoge-
neous magnetic fields are not shown. Absorption imaging is
performed with a pulse of a resonant laser beam aligned along
−y.

scribe the atom chip design and present the different
trapping potentials that can be obtained with our exper-
imental platform. In Sec. III, we report on the produc-
tion of a Bose-Einstein condensate with this setup and
discuss its dimensionality, from three-dimensional (3D)
to one-dimensional (1D). Finally in Sec. IV, we present
the observation of fast coherent Rabi oscillations enabled
by the strong microwave field. Additional technical de-
tails on the experimental sequence, the calibration of the
static magnetic fields used to produce the magnetic trap,
the calibration of atom number in absorption imaging,
the transmission of the coplanar waveguide and the mi-
crowave coupling amplitude are given in the appendixes.

II. EXPERIMENTAL CONFIGURATION

The overall layout of our experimental configuration is
depicted in Fig. 1. During the experimental sequence,
three different magnetic traps are subsequently used to
confine the atoms (see details in Appendix A). Two coils
of axis z with currents flowing in opposite directions pro-
duce a spherical quadrupole magnetic trap. The atom
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FIG. 2. (a) Drawing of the Z-wire for the intermediate trap.
The dimensions of the central part are given in millimeters.
(b) Position of the chip relative to the Z-wire. (c) Zoom
of sketch (b). The distance between the top surface of the
chip and the median plane of the Z-wire is 1.1mm. (d) Per-
spective top-view of the assembly. (e) Close-up view of the
chip. For clarity, the four U-shaped wires are coloured in
red. (f) Zoom in on the central part of the chip. Gold wires
in yellow, insulating gaps in black. The coplanar waveguide
(CPW) consists of three conductors (37, 6 and 37µm wide re-
spectively) separated by 10µm gaps. The two trapping wires
‘DC100’ and ‘DC50’ are 100µm and 50 µm wide respectively.
The four tracks marked by circled numbers are 10 µm wide
and are not used in this work.

chip lies in the horizontal plane approximately 4mm
above the center of the quadrupole trap, facing down-
wards. It is made of a silicon wafer of thickness 500 µm,
oxidized on a layer of thickness 20 nm. On this face,
2 µm-thick microfabricated wires have been evaporated
(see Figs. 2(d-f)). Two wires are colinear with the x-axis
and will be referred to as ‘main trapping wires’ in the fol-
lowing: ‘DC50’ and ‘DC100’ with respective transverse
widths 50µm and 100µm, see Fig. 2(f). Two pairs of
U-shaped wires, or U-wires, of transverse width 100 µm
and spaced by 2mm along the x-axis (in red in Fig. 2(e))
sit on both sides. In between the two main trapping
wires, three wires colinear with the x-axis and of re-
spective widths 37 µm, 6 µm and 37 µm form a coplanar
waveguide that induces a near-field microwave radiation.
The geometry of the waveguide has been optimized for
a good impedance matching between 1.5 and 2GHz (see
Appendix D).

Setting currents in one of the main trapping wires as
well as in the U-wires and combining with homogeneous
external bias fields produced by macroscopic coils sur-
rounding the vacuum chamber, see Appendix B for de-
tails, leads to very elongated Ioffe-Pritchard magnetic
traps sitting below the atom chip plane [3, 4]. The
external bias field has both a transverse component,
Bbias,⊥ = Bbias,yey + Bbias,zez, whose modulus Bbias,⊥
tunes the distance of the trap minimum to the main wire
while the ratio Bbias,z/Bbias,y tunes its angular position,
and a longitudinal component Bbias,xex which controls
the value of the magnetic field at the trap minimum Bmin.
This geometry results in an almost isotropic harmonic

trapping in the transverse plane yz for low-field seek-
ing atomic states. The longitudinal harmonic trapping is
controlled independently from the current in the U-wires,
that provides a weak curvature to the magnetic poten-
tial in the x direction. The longitudinal and transverse
oscillation frequencies obtained from this geometry for
the magnetic trap are very different, with a longitudinal
frequency ωx/(2π) between 10 and 25Hz and a trans-
verse frequency ω⊥/(2π) ranging between 1 and 10 kHz,
depending on the parameters.

A millimeter-sized Z-shaped wire, or Z-wire, is placed
200 µm above the top surface of the atom chip, see Figs. 1
and 2(a-d). The central bar of this Z-wire plays the role
of the main trapping wire and its two side bars the role of
longitudinal trapping for a ‘Z-trap’ used as an interme-
diate step between the macroscopic quadrupole trap and
the final microtrap, which have a very different trapping
volume (see Appendix A).

III. DEGENERATE BOSE GAS IN THE 3D-1D
CROSSOVER

In this section, we briefly describe the steps taken
to produce a Bose-Einstein condensate in the chip trap
and examine the dimensionality regime depending on the
atom number and temperature.

A. Overview of the experimental steps to
degeneracy

Sodium atoms are loaded in a magneto-optical trap
from a permanent-magnet Zeeman slower [20, 21]. The
cold gas is then compressed and further cooled in an
optical molasses. A quadrupole magnetic trap is sub-
sequently switched on to capture atoms in the |F =
1,mF = −1⟩ state, where F is the total angular momen-
tum of an atom in its ground state and mF its projection
along the local magnetic field direction. Taking advan-
tage of a magnetic transport with a sequence of 13 pairs
of coils [22, 23], we move the trapped gas over 60 cm up
to the science chamber. At the end of the procedure, typ-
ically 109 atoms are confined at a temperature of 130 µK
in the spherical quadrupole trap below the atom chip (see
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Fig. 1 for the layout).

The route from this initial trap to the evaporation
to degeneracy in the atom chip trap proceeds in two
main steps. The first step brings the atoms from the
quadrupole trap to the intermediate Z-trap, for a bet-
ter mode matching to the tight and elongated final mi-
crotrap. A first evaporation ramp is performed in this
intermediate trap. The microtrap is loaded during the
second step where cooling to degeneracy is performed.
Appendix A gives further details on the experimental
sequence, together with the evolution of atom number,
temperature and phase-space density during the two
evaporation steps. In the end, we obtain condensates
with typically 106 atoms at a temperature of 1 µK.

B. 3D-1D crossover

Adjusting the final frequency of the forced evaporative
cooling ramp allows us to decrease the temperature of the
system even further. At some point the thermal fraction
becomes negligible and in order to evaluate the temper-
ature T of the gas, we cannot rely on the usual time-of-
flight technique. Instead, we take advantage of the very
elongated nature of the system: it is responsible for vis-
ible density fluctuations along the long direction of the
trap that develop during time-of-flight expansion [24–26].
The power spectrum of these fluctuations contains infor-
mation on the temperature of the system [27, 28]. These
effects become significant as soon as the energy scales
of the gas, chemical potential µ and kBT , approach the
transverse trapping energy ℏω⊥, where ℏ is the reduced
Planck constant and kB is the Boltzmann constant. In
this case, the system enters the 3D-1D crossover, where
the physics is mainly governed by the longitudinal char-
acteristics of the gas. The gas cannot be considered as a
true Bose-Einstein condensate anymore but is rather re-
ferred to as a quasicondensate, where longitudinal ther-
mal excitations population is significant compared with
the true ground-state population.

To evaluate in which regime of the 3D-1D crossover
the gas is prepared, we should compare µ and kBT to
ℏω⊥. Let us first examine the criterion involving µ. To
this aim, we use the parameter χ = Naa⊥/a

2
x intro-

duced in Ref. [30], where a is the scattering length de-
scribing the two-body interaction between the atoms and
ax,⊥ =

√
ℏ/mωx,⊥ are the harmonic-oscillator lengths

along the respective trap axes, with m the atom mass.
According to Ref. [30], the boundary between the 3D
and 1D regimes occurs for χ = χcross ≃ 3.73. Another
criterion is obtained by comparing directly the chemical
potential µ to ℏω⊥. µ is always larger than ℏω⊥ due
to the contribution of the zero-point energy ℏω⊥ of the
transverse ground state. The cross-over thus occurs when
µ is of order 2ℏω⊥. The chemical potential µ can be eval-

FIG. 3. (a) Temperature and atom number of the system
in the degenerate regime for different final frequencies of
the evaporative cooling ramp (blue diamond, black triangle,
red square and green disk). The blue line corresponds to
the usual three-dimensional temperature threshold for Bose-
Einstein condensation kBTc = 0.94 ℏωN1/3 [29] which as-

sumes kBTc ≫ ℏω with ω = (ωxω
2
⊥)

1/3. The red line gives the
exact calculation for Tc in our elongated geometry where the
semiclassical approximation does not always hold. The red
dashed dotted line corresponds to the limit χ = χcross (see
text) and the blue dashed dotted line to kBT = ℏω⊥. The
red dotted line corresponds to the limit µ = 2ℏω⊥. Finally,
the black line corresponds to the limit where the thermal co-
herence length of the gas is equal to the longitudinal radius
of the system. (b) and (c) show typical examples of the gas
after 10ms time of flight and obtained with absorption imag-
ing. They correspond to the red square and blue diamond
data of (a) respectively.

uated by solving [30]

32

(
µ

ℏω⊥
− 1

)3 (
µ

ℏω⊥
+ 4

)2

= (15χ)
2
. (1)

The boundary between the 1D and 3D regimes trans-
lates into a threshold for the atom number N which is
represented in Fig. 3 using these two criteria.
We now examine the criterion on the temperature. The

1D regime is reached when kBT < ℏω⊥. As mentioned
above, T can be extracted from the analysis of the power
spectrum of the density fluctuations that arise during the
time of flight expansion. To this aim, we repeat the ex-
periment about 50 times in the same conditions in terms
of atom number and final frequency of the evaporative
cooling ramp and let the atoms expand for 10ms. The
analysis of the pictures recorded by absorption imaging
gives access to the power spectrum of the density fluctua-
tions that we compare with the analytical model detailed
in Ref. [28]. It allows us to extract the thermal coherence
length of the gas ℓc = 2ℏ2n0/(mkBT ), where n0 is the
peak density of the longitudinal profile integrated along
the transverse directionsnearly equal to its value in the
trap as the expansion along the longitudinal direction x
during the time of flight is very small [31].
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In Fig. 3, we show the results obtained for four differ-
ent values of the final frequency at the end of the evap-
orative cooling ramp, in a trap where ωx = 2π × 20Hz
and ω⊥ = 2π × 7.3 kHz. Comparing the atom number
to the one set by χcross and the temperature to ℏω⊥/kB ,
we observe that our system smoothly crosses the 3D-1D
crossover. For the two coldest samples, the estimated
thermal coherence length ℓc gets very close to the longitu-
dinal radius of the gas Rx = a2x/a⊥

√
2(µ/ℏω⊥ − 1) (see

Ref. [30]). This means that the system crosses over to
a finite-size one-dimensional Bose-Einstein condensate,
where the ground-state population becomes preponder-
ant compared with thermal excitations.

IV. OBSERVATION OF FAST COHERENT
RABI OSCILLATIONS

Once the degenerate gas is prepared in the chip trap,
we can manipulate its internal state using the strong mi-
crowave field produced in the vicinity of the microwave
guide.

A. Moving the cloud below the microwave
waveguide

The quantum gas is prepared at the vertical of the
DC100-wire. On the other hand, the microwave waveg-
uide produces an oscillating magnetic field whose am-
plitude decreases with the distance to the center of the
waveguide. To benefit from large microwave ampli-
tudes, we need to move the center of the atom chip trap
closer to the waveguide. For this, we change the ratio
Bbias,z/Bbias,y in order to rotate the position of the cen-
ter of the trap around the main trapping wire.

From the position where we have reached degeneracy,
we linearly increase Bbias,z while decreasing Bbias,y in
100ms, just before the final evaporative cooling ramp.
In Fig. 4, we show different final positions that can be
reached depending on the final components of Bbias,⊥.
We also indicate the value of the amplitude of the mi-
crowave field that can be deduced from a simple model
which assumes static currents in the waveguide, as fol-
lows. The skin depth in a gold wire for a signal around
1.77GHz is about 1.8 µm, and we assume a homogeneous
current density in the central wire. For the two ground
wires, the current flows in the opposite direction with
half the amplitude and we assume a homogeneous cur-
rent density at the two inner edges facing the central
wire, spread over a width set by the skin depth.

The positions shown in Fig. 4 are deduced from a
model which takes into account the geometry of the
DC100- and U-wires assuming a homogeneous current
density. The two components of Bbias,⊥ have been cal-
ibrated independently by microwave spectroscopy (see
Appendix B).

FIG. 4. Position of the center of the atom chip trap in the
yz plane for different values of Bbias,⊥ : the black point cor-
responds to the position of the atoms after the atom chip
trap loading. The blue point is the closest position to the mi-
crowave waveguide explored in this work. Magenta, green and
red points are in-between positions. On the upper edge of the
figure, the main trapping wire DC100 and the three parts of
the microwave waveguide are represented as black rectangles.
The black lines correspond to the microwave field isomagnetic
lines as deduced from a static model for the waveguide (see
text). The modulus of the microwave magnetic field is indi-
cated on each line (in gauss).

B. Calibration of the microwave field amplitude

A more precise calibration of the microwave field am-
plitude with respect to the simple model introduced
in Sec. IVA is performed by a direct measurement of
the field amplitude using the atomic cloud as a local
probe. This also gives access to the amplitude of the
different components of the microwave field polariza-
tion. To this aim, we drive Rabi oscillations between
the trapped |F = 1,mF = −1⟩ state and one of the
|F = 2,mF = −2,−1, 0⟩ states that are accessible due
to selection rules. Figure 5 shows a spectrum where
these three lines are visible, evincing different coupling
strengths. To observe clear oscillations of the population
in the initial state, we need to choose a Rabi frequency
ΩR larger than the chemical potential of the trapped gas,
to limit the loss of coherence due to the inhomogeneous
magnetic field in the trap, see Sec. IVC, but smaller
than the Zeeman splitting to resolve a single two-level
transition. The expression of the Rabi frequency ΩR

for a given isolated hyperfine transition is detailed in
Appendix E. Its relation to the microwave amplitudes
Ω±,0 = −|gF |µBB±,0/ℏ in units of frequency, where B±
and B0 are the microwave field polarization components,
depends on the matrix elements of the transition. Briefly,
ΩR is equal to the microwave amplitude Ω+ for the |F =
1,mF = −1⟩ → |F = 2,mF = 0⟩ transition addressed by

the σ+ component of the polarization, to
√
3Ω0 for the

|F = 1,mF = −1⟩ → |F = 2,mF = −1⟩ π transition and

to
√
6Ω− for the |F = 1,mF = −1⟩ → |F = 2,mF = −2⟩

σ− transition. The chemical potential is h × 20 kHz or



5

FIG. 5. Microwave spectroscopy of the trapped atoms (see
Appendix B for the exact experimental procedure). The three
peaks correspond to the different polarizations present in the
microwave field. The distance between the peaks is used to
determine Bmin precisely as described in Appendix B. Here
we find Bmin = 1.02G. The red line is a fit including three
Lorentzian peaks.

below for the typical atom numbers and trap geome-
tries that we have investigated. The Zeeman frequency
splitting is on the order of 700 kHz at the trap bottom,
such that we aim for Rabi frequencies on the order of
ΩR = 2π × 100 kHz.

At each trap position shown in Fig. 4, we adjust the
amplitude of the current in the microwave waveguide in
order to observe clear oscillations of the population of
the trapped |F = 1,mF = −1⟩ state while scanning the
microwave pulse duration. A typical example is shown
in Fig. 6. We keep the atoms in the trap for 20ms af-
ter the pulse in order to get rid of the F = 2 popula-
tion which is not trapped. We then fit the frequency
of the oscillations in order to determine the Rabi fre-
quency ΩR, and thus the amplitude of the component
of the microwave field which drives the oscillations. In
the case of Fig. 6, the microwave is resonant with the
|F = 1,mF = −1⟩ → |F = 2,mF = −2⟩ transition and
we find |B−| ≃ 46 mG. We also observe a damping of
the oscillations that we attribute to a gradient of ampli-
tude of the microwave field over the vertical size of the
cloud and to the inhomogeneity of the magnetic field in
the trap, see Sec. IVC.

We have repeated this procedure for all the trap posi-
tions shown in Fig. 4, calibrating |B−| and |B+|. Even
though we observe a small coupling to |F = 2,mF = −1⟩
due to |B0| for a long pulse duration (see Fig. 5), its con-
tribution is much smaller. This can be understood from
the static model for the microwave waveguide introduced
in Sec. IVA. It predicts that the polarization of the field
should be linear and orthogonal to the x axis.
We still expect a faint contribution from the π polar-

ization component of the microwave field with respect to
the quantization axis set by the local static field due to
two effects. First, the static field at the center of the
trap axis is slightly tilted in the (xy) plane from the x

FIG. 6. Rabi oscillations of the population of the |F =
1,mF = −1⟩ state coupled to the |F = 2,mF = −2⟩ state
with the σ− component of the microwave field. From the
fit of the Rabi frequency ΩR, which includes an exponential
damping of the oscillations, we deduce a microwave amplitude
|Ω−| = ΩR/

√
6 ≃ 2π× 32 kHz. The different contributions to

the damping of the oscillations are discussed in the text.

axis by approximately 18mrad. Second, the direction
of the static field varies over the atomic cloud by up to

arctan
[√

2µ/(|gF |µBBmin)
]
= 235mrad at the edge for

a chemical potential of µ = h× 20 kHz and Bmin = 1G.
This last contribution is larger, leading to a small cou-
pling to the π transition, limited to a few percent of the
coupling to the σ− transition when averaged over the size
of the cloud. In addition, it is responsible for an associ-
ated spread of the microwave amplitude for the σ+ and
σ− transition. However, it remains below 3%, and in the
following we assume that the direction of the static field
is uniform over the cloud.
To compare the results obtained at different positions,

we have rescaled the measured microwave amplitude
|Ω+,−| assuming that it depends linearly on the ampli-
tude of the current in the microwave waveguide. The re-
sults are shown in Fig. 7, the color code matching the one
of Fig. 4. From the static model, the decay of the ampli-
tude of the microwave field is expected to scale as 1/d at
short distance and as 1/d3 at long distance. Most of our
data belong to a region which interpolates between these
two regimes. We also see that the amplitudes of the σ−

and σ+ components of the microwave field are not exactly
equal at a given position. This effect is not captured by
the static model of the waveguide. The measured values
of |Ω+,−| before rescaling are given in Table I.

C. Damping at moderate microwave amplitude

We now discuss the origin of the damping observed at
moderate microwave amplitude, as illustrated in Fig. 6.
Damping may have several origins such as different inter-
actions in the different hyperfine states, inhomogeneous
magnetic frequency shifts, microwave amplitude inhomo-
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FIG. 7. Relative microwave amplitudes |Ω+|/Ωref (filled dia-
mond) and |Ω−|/Ωref (circle) as a function of the distance to
the center of the waveguide, normalized by the value Ωref of
|Ω−| at the initial position, the farthest from the waveguide.
The color code is the same as in Fig. 4. The solid (dashed)
line is an interpolation of |Ω−|/Ωref (|Ω+|/Ωref).

geneity, or the effect of external motion during the pulse.
Let us estimate the importance of these effects for our
parameters.

We first remark that the scattering lengths in the dif-
ferent hyperfine states of F = 1 and F = 2 differ by
at most 40% [32–34], leading to a small positive shift
of the transition [35] (a fraction of the chemical poten-
tial). As the density is inhomogeneous, the main effect
is a small frequency broadening. However this broaden-
ing is smaller that the frequency broadening due to the
inhomogeneous Zeeman effect, and is further reduced if
the cloud expands during the pulse. Its contribution to
the damping observed in each of our data is thus minor
compared with other sources.

Frequency broadening due to the Zeeman effect is ex-
pected because the initial state |F = 1,mF = −1⟩
is trapped with an energy spread equal to mω2

⊥R
2
⊥/2

where R⊥ is the transverse radius. In contrast, the
final state is either independent of magnetic field for
the σ+ transition, or undergoes an opposite magnetic
shift for the |F = 2,mF = −1⟩ state, doubled for the
|F = 2,mF = −2⟩ state. The transition thus acquires a
half-width ∆Z = κµ/2ℏ where κ = 1, 2 or 3 for the σ+,
π, and σ− transitions, respectively. If the local detuning
due to the Zeeman shift is δ, the off-resonant frequency
(Ω2

R + δ2)1/2 of the Rabi oscillation leads to a broad-
ening of the oscillation frequency in the gas scaling as
∆2

Z/ΩR for ∆Z < ΩR. This results in a damping time
of order τZ = 2πΩR/∆

2
Z , corresponding to a number of

Rabi oscillation periods of ΩRτZ/(2π) = [ΩR/∆Z ]
2. For

∆Z > ΩR, Rabi oscillations are suppressed.
An amplitude broadening is also present, due to a gra-

dient of microwave amplitude over the radial size of the
atomic cloud 2R⊥, more pronounced for the positions
closest to the waveguide. The relative microwave am-
plitude difference η between the two edges of the gas
when it is initially trapped is about η = 3% at the po-

sition furthest from the waveguide, and increases up to
about η = 12% at the position closest to the waveguide
that we have investigated, as estimated from the sim-
ple static model of the microwave field, Sec. IVA. The
time constant for damping associated with this effect is
τΩ ≈ 2π/∆Ω where ∆Ω = ηΩR is the difference in Rabi
frequency between the two edges of the cloud. It sets
a maximum number of Rabi periods ΩRτΩ/(2π) = η−1

that can be observed, ranging between 8 near the waveg-
uide to 30 at the largest distance probed here.

The comparison of these two timescales τZ and τΩ
shows that frequency broadening will set the shortest
damping time at small amplitude, while amplitude gra-
dient will set the limit at large amplitude, namely for
ΩR > ∆Z/

√
η. We note that in our experiment, ∆Z/

√
η

is always at least five times larger that ω⊥ such that in
the regime where amplitude gradient effects dominate the
damping, the transverse motion can be neglected.

In contrast, the damping mechanism due to frequency
broadening may be affected by the external motion in
the transverse direction. For the three transitions inves-
tigated in this paper, the final sublevel in F = 2 hyperfine
state is not trapped. The external degrees of freedom will
thus evolve, with a time constant set by the oscillation
frequencies ω−1

x ≃ 10ms and ω−1
⊥ ≃ 40 µs. While the

longitudinal motion is very slow with respect to the Rabi
oscillations observed in this work, the radial motion has
a timescale comparable to the pulse duration at moder-
ate microwave Rabi frequency ΩR/(2π) ≤ 200 kHz. As
a consequence, the cloud radius R⊥ can expand or os-
cillate radially during the pulse. If R⊥ increases by a
factor λ⊥, the Zeeman width ∆Z is increased by λ2

⊥ and
the damping time τZ reduced by a factor λ4

⊥.

We evaluate this expansion in a Castin-Dum approach
[31], assuming that it results in a time-dependent trans-
verse scaling factor λ⊥(t) for the transverse radius R⊥
while Rx is unchanged. We assume that the atoms un-
dergo an average potential resulting from equal popula-
tion in the initial and final state, and solve the Castin-
Dum equations for λ⊥:

λ̈⊥ =
ω2
⊥

λ3
⊥

+
κ− 2

2
ω2
⊥λ⊥. (2)

This estimation leads to (i) an exponential growth for
the σ− transition where the average potential is repul-

sive (κ = 3), with λ⊥(t) =
[
1 + 3 sinh2(ω⊥t/

√
2)
]1/2

,

(ii) a scaling λ⊥(t) =
[
1 + ω2

⊥t
2
]1/2

similar to a time-
of-flight expansion for the π transition where the av-
erage potential vanishes (κ = 2), and (iii) a scaling

λ⊥(t) =
[
1 + sin2(ω⊥t/

√
2)
]1/2

corresponding to a trans-
verse monopole excitation for the σ+ transition where
the average potential is a harmonic trap with a reduced
frequency (κ = 1). In this last case, the effect of the
transverse motion is limited as the transverse radius in-
creases by at most a factor

√
2, reducing τZ by at most

a factor 4.
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d Power |Ω−|/2π |B−| |Ω+|/2π |B+|
[µm] [dBm] [kHz] [mG] [kHz] [mG]

176
36 43 61 67 96
32 27 39

159
32 40 57 51 73
23 15 21

117 23 32 46 36 51

63
23 137 200 146 210
18 78 110

23
18 461 660
13 262 370 294 420

TABLE I. Raw data used to produce Fig. 7. The distance d
of the trap position to the main trapping wire is computed
assuming a homogeneous current density in the atom chip
wires. The microwave power is measured at the input of the
circuit of the coplanar waveguide (see Appendix D for its spec-
tral response). The amplitude |Ω−| and |Ω+| and microwave
amplitudes |B−| and |B+| are deduced from a fit of the pop-
ulation oscillations between the trapped |F = 1,mF = −1⟩
state and the |F = 2,mF = −2⟩ and |F = 2,mF = 0⟩, re-
spectively (see for instance Fig. 6). The microwave frequency
is adapted to be resonant with the probed transition.

For the two other cases where the transverse radius
expands, we can estimate the damping time set by the
Zeeman effect as the time τ ′Z after which the frequency
broadening ∆Zλ

2
⊥ reaches ΩR. It turns out that in our

case, this time is always shorter than τZ or of the same
order. We find τ ′Z = ω−1

⊥
√
ℏΩR/µ− 1 for the π tran-

sition and τ ′Z =
√
2ω−1

⊥ arcsinh
√
(2ℏΩR/(3µ)− 1) /3 for

the σ− transition. For the data presented in Fig. 6 this
estimation yields τ ′Z ≈ 50 µs, a bit shorter than the ob-
served damping time of 75µs.

D. Large amplitude coherent oscillations

We have studied the evolution of the hyperfine state
population in the case where the trap is brought at its
closest position to the waveguide (blue point in Fig. 4),
using a strong microwave amplitude. With these large
amplitudes, we observe rapid coherent oscillations of the
population of the trapped |F = 1,mF = −1⟩ state as
shown in Fig. 8. In this case, both the σ+ and σ− polar-
ization contribute since the amplitudes |Ω+,−| are larger
than the Zeeman splitting. Five levels in W configuration
then contribute to the shape of the coherent signal, see
Appendix E. With these very large amplitudes and fast
oscillation, the expansion due to the repulsive potential
in the upper hyperfine state is negligible, and damping
is dominated by the amplitude gradient in the direction
normal to the waveguide, as discussed in Sec. IVC. At
the closest position to the waveguide where η = 12%, the
simple estimate considering only the σ− transition yields
τΩ = 1.2µs, compatible with the data presented in Fig. 8.
From the model described in Appendix E, we can com-

pute the evolution of the population in the initial state.

FIG. 8. Evolution of the population of the |F = 1,mF = −1⟩
trapped state coupled to the F = 2 states with a large ampli-
tude microwave field resonant with the |F = 1,mF = −1⟩ →
|F = 2,mF = −2⟩ transition. The red line corresponds to
theoretical expectations for a static field of 1G and a linearly
polarized microwave field with |Ω−| = |Ω+| ≃ 2π × 2.8MHz.
For the two levels coupled by the σ− transition, this corre-
sponds to a Rabi frequency ΩR = 2π×6.9MHz. The damping
is captured by a Gaussian distribution of microwave ampli-
tudes |Ω+,−| of 1/

√
e half-width 2π × 92 kHz.

The amplitude gradient can be taken into account by av-
eraging the oscillating populations over a Gaussian dis-
tribution of microwave amplitude. Assuming a perfect
linear polarization Bmw cos(ωt)ey, and adjusting to the
experimental data of Fig. 8, we deduce |Ω−| = |Ω+| ≃
2π × 2.8MHz for the center of microwave amplitude dis-
tribution. This corresponds to |B−| = |B+| ≃ 4G or
equivalently Bmw = 5.7G. Hence, the Rabi coupling on
the |F = 1,mF = −1⟩ → |F = 2,mF = −2⟩ σ− transi-
tion is ΩR = 2π × 6.9MHz while it is 2π × 2.8MHz for
the |F = 1,mF = −1⟩ → |F = 2,mF = 0⟩ σ+ transition.
Such a large field enables a fast manipulation of the in-
ternal state, as the spin can be flipped from F = 1 to
F = 2 in 72 ns only. The fit also leads to a 1/

√
e half-

width of the microwave amplitude |Ω+,−| distribution of
2π×92 kHz. This corresponds to η = 16% which is a bit
larger than our rough estimation, but also includes the
contribution from the spread in static field orientation
discussed in Sec. IVB as well as possible microwave field
inhomogeneity along the x axis.

V. CONCLUSION

In this paper we have described the production of de-
generate quantum gases of sodium atoms in a magnetic
microtrap relying on an atom chip. The latter encom-
passes a coplanar waveguide that we use to manipulate
the hyperfine state of the trapped atoms thanks to a
large amplitude microwave field. We observe coherent
Rabi oscillations of the atomic population that allow us
to determine the corresponding Rabi frequency and hence
the amplitude of the microwave field. Depending on the
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distance of the magnetic trap minimum to the coplanar
waveguide and on the microwave power used, we can tune
the Rabi coupling on the strongest transition from a few
tens of kHz up to 6.9MHz.

Such a large coupling can be interesting for quantum
technology applications where fast manipulation of the
atomic spin states are needed. In this work, F = 2
spin states that we can couple to with the microwave
field are untrapped in the magnetic confinement. It is
nevertheless possible to use a two-photon transition, re-
lying on an additional radio-frequency source, to couple
to |F = 2,mF = 1⟩, which is trapped. This state has
also the advantage, for a static field of 0.68 G, to experi-
ence the same second-order Zeeman shift than the initial
trapped state |F = 1,mF = −1⟩, allowing for long co-
herence times [8]. To avoid coupling to other untrapped
states, one should limit the two-photon microwave cou-
plings to below the Zeeman shift between the different
spin states, i.e., to about 500 kHz at this optimum mag-
netic field.

Large coupling also allows for the realization of adia-
batic potentials relying on microwave fields [36] as also
demonstrated with radio-frequency fields [37]. In this
case, effects beyond the rotating wave approximation
should be negligible [38]. In the end, the most promising
application of this work concerns the possibility to ad-
dress molecular resonances as explained for alkali atoms
in Ref. [19] and recently demonstrated for rubidium
atoms [39]. Close to the resonance, the scattering length
of the atoms is expected to be modified as is the case
with static magnetic-field Feshbach resonances. Since the
width of the resonance depends on the square of the mi-
crowave field amplitude, working with large amplitude
microwave fields would allow for finer tuning of the scat-
tering length.
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Appendix A: Experimental sequence

In this Appendix, we give additional details on the
experimental sequence for the production of a degenerate
gas. Figure 9 summarizes the timeline for the currents,
bias fields and evaporative cooling frequency νev used to
bring the atoms from the initial quadrupole trap to the
atom chip trap and then close to the coplanar waveguide.
The values shown here correspond to the blue position in
Fig. 4. We give further details on stage (1) and (2) in
the next two sections and Fig. 10 gives an overview of
the atom number, temperature and phase-space density
along the route to degeneracy.

1. First step: Transfer to the intermediate Z-trap
and pre-cooling stage

The ‘Z-trap’ is an elongated Ioffe-Pritchard trap. It
relies on the field produced by a current of 110A flowing
in the Z-wire combined with a bias field as introduced in
Sec. II. The x-component of the bias field is chosen to
fix a minimum field of order 2G, preventing Majorana
losses.
The transfer from the initial quadrupole trap to the in-

termediate Z-trap is performed in two parts: a fast trans-
fer to a tighter quadrupole trap resulting from the Z-wire,
step (1a) of Fig. 9, followed by a slower transfer to the
Ioffe-Pritchard trap with a nonzero magnetic minimum
(1b). Step (1a) is completed in 50ms through a linear
increase of the current in the Z-wire from 0 to 110A,
while the current of the quadrupole coils is decreased lin-
early down to zero. Simultaneously, we ramp up Bbias,x

and Bbias,y in two successive linear ramps of 25ms each.
Near the end of the ramps, the trap is strongly deformed
which leads to significant atomic losses. At the end of
this part of the transfer, the center of the trap is close
to its initial position and Bmin = 0. At this stage we are
left with 55% of the initial atoms.
The second part (1b) is much slower. During the

next 500ms, we increase further both Bbias,x and Bbias,y,
which brings the atoms closer to the surface of the chip,
enhances the transverse magnetic gradients and sets the
magnetic-field minimum Bmin at about 2G, resulting in
a Ioffe-Pritchard configuration. At this point, the cloud
size is large enough for the most energetic atoms to col-
lide with the atom chip surface. For the next compression
stage of 4 s, we continue to move the trap upwards and
compress it very slowly, until the collision rate becomes
favorable to start a forced evaporative cooling ramp.
For the next 6 s (1c), we perform evaporation in the Z-

trap, at a distance of about 550 µm from the atom chip
surface. To expel the most energetic atoms from the mag-
netic trap, we rely on a radio-frequency field produced by
a coil located just above the atom chip. We start evapo-
ration with a frequency νev of 20MHz and linearly ramp
it down to 3MHz.
The blue circles in Fig. 10 show the temperature (left)



9

FIG. 9. Timeline of the experimental sequence. From bottom to top, currents in the Z-wire and the quadrupole coils, x, y and
z components of Bbias, currents in the main trapping wire and U-wires and frequency νev of the evaporative cooling ramp. The
sequence is split into three main steps, each divided into substeps: 1a Transfer from the quadrupole trap to the intermediate
Z-trap - 1b Compression of the Z-trap - 1c Z-trap evaporative cooling ramp - 2a Switch on of the main trapping wire and
U-wires current - 2b Transfer to the atom chip trap - 2c Compression of the atom chip trap - 3a Transport to below the
microwave waveguide - 3b Final evaporative cooling ramp to degeneracy.

or phase-space density (right) as a function of the atom
number during this evaporation stage. The calibration
of atom number is explained in Appendix C. The peak
phase-space density is estimated from the measured atom
number N and temperature T , and from the knowledge
of the magnetic landscape (see Appendix B). It is equal
to n(r0)λ

3
T , with

n(r0) =
N exp [−V (r0)/kBT ]∫
dr exp [−V (r)/kBT ]

(A1)

being the density at the position r0 of the magnetic-field
minimum and

λT =

√
2πℏ2
mkBT

(A2)

being the thermal de Broglie wavelength. The magnetic
potential V seen by the trapped atomic state is calculated
numerically from the geometry of the different wires in-
volved and relying on an independent calibration of Bbias

explained in Appendix B.

2. Second step: Transfer to the atom chip trap and
final evaporation

The transfer from the Z-trap to the atom chip trap
is performed in 350ms. We first linearly ramp up the
current in the DC100-wire and the U-wires to their final
values in 100ms (2a). In the next 250ms we linearly de-
crease the current in the Z-wire while linearly ramping
down Bbias,x and Bbias,y (2b). Note that 5ms before the
end of the ramp, Bbias,x vanishes and then changes sign.
This procedure allows us to increase the offset field pro-
duced by the U-wires along x and maintain the magnetic-
field minimum between 1 and 2G during the whole trans-
fer. At this point the atoms are confined at a distance of
210 µm from the chip surface.
We then move up and compress the trap further by

linearly increasing Bbias,y to its final value in 100ms
(2c). The distance of the atoms to the chip surface is
now 120 µm, the measured transverse trapping frequency
reaches ω⊥/(2π) = 3.2 kHz and the magnetic-field mini-
mum is now Bmin = 1G. During the transfer and com-
pression stages, we also keep a radio-frequency knife at a
frequency νev = 3MHz. When needed, we then modify
the ratio between the bias currents to displace the cloud
at the desired distance from the microwave waveguide
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FIG. 10. Left - Evolution of the atom number and temperature during the two forced evaporative cooling ramps, respectively
in the Z-trap (blue circles) and in the atom chip trap (red circles). The shaded area indicates the region where the system
reaches Bose-Einstein condensation. The red filled circle corresponds to a partially degenerate gas and the temperature is
evaluated from its thermal fraction. Right - Same results—apart from the last point—in terms of phase-space density and
atom number. The evaluation of the phase-space density relies on a modeling of the trapping potential (see Appendix B).

(3a). During the next 500ms (3b), we proceed to the
final forced evaporative cooling ramp from 3MHz down
to 750 kHz where we reach degeneracy and observe Bose-
Einstein condensation. The red circles in Fig. 10 summa-
rize our results in term of temperature (left), phase-space
density (right) and atom number during this last evapo-
ration stage.

Appendix B: Characterization of the static magnetic
landscape

To estimate the phase-space density in the trap or lo-
cate the position of the trap center, a good knowledge of
the full magnetic potential V (r) and hence of the mag-
netic landscape is required. To this aim, we look for a
relation between the value of the currents in the chip
wires, Z-wire and coils, and the resulting static magnetic
field. This relation is obtained by an accurate modeling
of the wire configuration for the chip wires and Z-wire,
and by a direct measurement of the field produced by the
macroscopic coils for the bias fields.

Each wire on the atom chip as well as the Z-wire
are approximated by a succession of rectangular cuboids
with homogeneous current density. The geometry of the
cuboids and wires are identical apart close to regions
where the current is bent. The magnetic field induced
by each of these cuboids is known analytically. Sum-
ming their contribution, we obtain a formula which only
depends on the current amplitude in each of the wires.
We have checked that this numerical model is in good
agreement with the measured oscillation frequencies for
various trap parameters.

On the experimental setup, the external bias fieldBbias

is obtained from four independent macroscopic pairs of
coils surrounding the vacuum chamber (not shown in
Fig. 1). For each pair, the current of the two coils flows
in the same direction. Two of them are aligned along the

x axis and contribute to Bbias,x in an opposite way. This
is necessary to either compensate partially the offset field
created by the Z-wire along the x-axis, that would other-
wise be too large and prevent reaching strong transverse
trapping frequencies, or to increase the longitudinal field
produced by the U-wires for reaching a value for Bmin

large enough to avoid Majorana losses. The third pair
of coils along the y-axis sets the value of Bbias,y. The
last pair is provided by the quadrupole coils themselves,
which can be switched to a configuration where current
in both coils flow in the same direction using electrome-
chanical switches. In the latter configuration they are
used to set Bbias,z.

The experimental sequence used to calibrate the dif-
ferent components of the homogeneous magnetic field
Bbias from the Zeeman shift of the magnetic sublevels
is the following: we prepare a Bose-Einstein condensate
and switch off abruptly all the currents contributing to
the magnetic potential apart from the current produc-
ing the field component that we want to calibrate. Af-
ter a time of flight of 5ms, we switch on the microwave
field for 100 µs and scan its frequency. The cloud free
fall and expansion over this short time of flight is small
with respect to the range over which the magnetic field
is homogeneous. Since the atoms are trapped in the
|F = 1,mF = −1⟩ state, we can only couple them to
the |F = 2,mF = −2,−1, 0⟩ states depending on the mi-
crowave polarization because of selection rules. The res-
onance frequencies are shifted due to the Zeeman effect
∆ν = |gF (m1 +m2)|µBB/h, where |gF | = 1/2 is the hy-
perfine Landé g-factor, µB the Bohr magneton, m1,2 the
projections of the total spin for the initial and final states
and B is the modulus of the total magnetic field that re-
mains after the trap switch off. Note that B contains the
contribution of the Earth’s magnetic field in addition to
the field component that we want to calibrate. We finally
record the population of the F = 2 state with absorption
imaging. We observe three resonances, from which we de-
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FIG. 11. Top - Effective absorption cross section of the imag-
ing beam in units of the resonance cross section σ0 deduced
from the optical Bloch equations for a fixed pulse duration as
a function of the imaging beam detuning ∆0 in units of the
linewidth Γ. Bottom - Same quantity for a fixed imaging
beam detuning ∆0/Γ = 0 as a function of the imaging pulse
duration ∆t. The shaded area indicates the region where
the signal saturates the CCD sensor of the camera. In both
graphs, each curve corresponds to a different imaging beam
intensity.

duce B. Repeating the experiment for different currents
in the external coils and fitting all the results together we
deduce the relation between each magnetic-field compo-
nent and the current in the external coils. Note that we
also let the three components of Earth’s magnetic field
(and possible other stray fields) as free parameters. The
modulus of the magnetic field that we estimate for this
contribution is 0.55G which is close to the Earth’s mag-
netic field (0.47G), such that stray fields at the position
of the atoms remain limited. This method allows us to
determine the magnetic-field components of Bbias with
an uncertainty of 1mG.

A similar technique is also used to measure Bmin with
a higher accuracy than the one provided by our modeling
of the magnetic landscape. We shine the microwave field
on the trapped atoms during 200 µs and wait for 20ms
before switching off the confinement in order to let the
high-field seeker F = 2 atoms be expelled by the mag-

netic potential. Scanning the frequency of the microwave
field and detecting the remaining population in F = 1,
we can clearly distinguish three resonances correspond-
ing to the different polarizations of the microwave field
as shown in Fig. 5. The frequency difference between the
resonances gives access to Bmin with an uncertainty of
10mG.

Appendix C: Simulations of the effective cross
section for absorption imaging

Absorption imaging relies on the knowledge of the cross
section σ describing the interaction between the imaging
beam and the atoms [40]. In the case of a two-level atom,
we can write

σ =
σ0

1 + 4 (∆/Γ)
2
+ I/Isat

(C1)

where σ0 = ℏωΓ/(2Isat) is the resonant cross section,
ω/2π is the laser frequency, ∆ = ω − ωat is the laser
detuning from the atomic resonance of frequency ωat, Γ ≃
2π × 9.79MHz is the natural linewidth of the excited
state, I is the laser intensity and Isat = 6.26mWcm−2 is
the saturation intensity.
Sodium atoms are alkali atoms. Their hyperfine struc-

ture encompasses 8 levels in the ground state. The
first-excited state is a fine-structure doublet and only
the D2 line, including 16 levels, presents cycling tran-
sitions [41]. The excited-state structure is not very large
compared with Γ which makes the two-level atom ap-
proximation relatively inaccurate. Moreover, sodium
atoms are quite light which means that the Doppler shift
∆Dop ≃ 2π × 50 kHz associated with the absorption of
a single photon is not negligible. This limits to a few
hundreds the number of photons that can be scattered
by an atom from the imaging beam before becoming off-
resonant and in turn sets an upper bound on the pulse
duration of a few µs.
To have a better insight of the performance of the ab-

sorption imaging setup, we have solved the optical Bloch
equations taking into account the 24 electronic levels in-
volved within the D2 line. The Doppler shift due to the
absorption of photons is taken into account through a
time-dependent detuning ∆(t)

∆(t) = ∆0 −∆Dop

∫ t

0

Γρeedt (C2)

where ∆0 is the laser detuning with respect to the
F = 2 → F ′ = 3 transition, and ρee =∑

F ′=0...3

∑F ′

mF ′=−F ′ ρF ′,mF ′ ;F ′,mF ′ corresponds to the

total population of the excited states. Hence Γρee(t) is
the total scattering rate.

In the experiment, the atoms occupy the |F = 1,mF =
−1⟩ state right before the magnetic trap is switched off.
After time of flight, they are repumped to the F = 2
states thanks to a short laser pulse at resonance with the
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F = 1 → F ′ = 2 transition. The repumper beam is
oriented along the x axis and circularly polarized. Right
after this pulse, we shine another laser beam oriented
along the y axis and linearly polarized in the (xz) plane.
Relying on the model described above, we have calculated
the effective cross-section for our imaging sequence. The
results are shown in Fig. 11. We see that the optimum
imaging pulse duration depends on the laser intensity and
that the largest effective cross-section is about 0.45σ0. To
maximize the signal to noise ratio without saturating the
camera, we have to work with an intensity corresponding
to a fraction of the saturation intensity and then the
optimum pulse duration lies around 10µs.
We have checked that the effective cross-section eval-

uated from these calculations is in good agreement with
a careful calibration of the atom number performed from
the expansion of Bose-Einstein condensates during a time
of flight. The radii of the cloud scale according to equa-
tions derived in Ref. [31] which are independant of the
atom number. The initial radii however depends on the
atom number through the chemical potential. Compar-
ing the expansion of clouds with different atom num-
ber and originating from different trap geometry, we
could check that the experimental effective cross-section
is about 0.4σ0.

Appendix D: Scattering parameters of the coplanar
waveguide

Using a commercial vector network analyzer, we have
characterized the spectral response of the full circuit of
the coplanar waveguide by measuring its S11 and S21

scattering parameters (see Fig. 12). The amplitude re-
flection (transmission) parameter S11 (S21) corresponds
to the ratio of the reflected (transmitted) signal to the
incident signal when the output of the waveguide is per-

fectly matched: S11 = b1
a1

∣∣∣
a2=0

and S21 = b2
a1

∣∣∣
a2=0

. The

transmission of the coplanar waveguide is −5.2 ± 0.4 dB
within the range 1.5−2GHz. This modest value of power
transmission (≈ 30%) is attributed to losses in the in-
vacuum leads, in the micrometric-sized gold wires that
ensure connection to the chip’s pads, and in the on-chip
wires.

Appendix E: Microwave field coupling

The Hamiltonian describing the coupling of a sodium
atom in its ground state with a microwave field in the
presence of a static magnetic field can be split into two
terms

Ĥ(t) = Ĥhfs + ĤB(t) (E1)
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FIG. 12. (upper frame) Scattering parameters of a 2-port
device. (middle and lower frames) Measured S21 and S11

parameters of the on-chip coplanar waveguide (CPW).

where

Ĥhfs =
ℏωhfs

2

Î · Ĵ
ℏ2

, (E2)

ĤB(t) =
µB

ℏ

(
gJ Ĵ+ gI Î

)
· (Bs +Bmw(t)) . (E3)

Here, Î is the nuclear-spin operator, Ĵ the total electronic
spin operator, gI the nuclear g-factor, gJ the Landé g-
factor, ωhfs ≃ 2π · 1771.6MHz the hyperfine splitting fre-
quency, µB the Bohr magneton, Bs the external static
field and Bmw(t) the microwave field. Since the contri-

bution from ĤB remains small compared with the hyper-
fine splitting energy in the situations we describe in this
paper, we can write

ĤB(t) ≃
µB

ℏ
gF F̂ · (Bs +Bmw(t)) (E4)

with F̂ = Î + Ĵ and |gF | = 1/2 the hyperfine Landé
g-factor.
The most general expression for the microwave field

can be written as

Bmw(t) = BX cos (ωt+ ϕX) eX +BY cos (ωt+ ϕY ) eY

+BZ cos (ωt+ ϕZ) eZ (E5)

where we have chosen the quantization axis eZ along the
static field Bs = Bminex such that eX ≡ ez, eY ≡ −ey,



13

FIG. 13. (left) Coherent evolution of the population of the |F = 1,mF ⟩ states under the coupling with a microwave field
taking into account the rotating wave approximation. We assume here that Bmin = 1G, BY = 5.4G, BX = BZ = 0G, and
ϕX = ϕY = ϕZ = 0 which corresponds to a pure linear polarization. The microwave frequency ω is chosen in order that
the |F = 1,mF = −1⟩ state is resonant with the |F = 2,mF = −2⟩ state. All the atoms start in the |F = 1,mF = −1⟩ state.
(right) Same for the |F = 2,mF ⟩ states.

eZ ≡ ex. We then introduce the unitary transform in-

duced by the operator Ûhfs(t) = exp
(
−iωt Ĥhfs/ℏωhfs

)
.

Applying Ûhfs to Ĥ and neglecting all time-dependent

terms according to the rotating wave approximation leads
to

Ĥeff = Û†
hfsĤÛhfs − iℏÛ†

hfs

dÛhfs

dt
≃ ℏ

2
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where δ = (ωhfs − ω)/4, δs = |gF |µBBmin/ℏ,
and Ω0,+,− = −|gF |µBB0,+,-/ℏ. We have intro-

duced B+ = (−BXe−iϕX + iBY e
−iϕY )/

√
2, B− =

(BXe−iϕX + iBY e
−iϕY )/

√
2, and B0 = BZe

−iϕZ , the
σ+, σ−, and π components of the microwave field.
The matrix is written in the basis {|F = 1,mF = −1⟩ ,
|F = 1,mF = 0⟩, |F = 1,mF = 1⟩, |F = 2,mF = −2⟩,
. . . , |F = 2,mF = 2⟩}. With these definitions, the
microwave field can also be expressed as Bmw(t) =
1

2

[
Be−iωt + c.c.

]
with B = B+e+ + B−e− + B0eZ and

(e+, e−, e0) is the spherical basis: e+ = −(eX+ieY )/
√
2,

e− = (eX − ieY )/
√
2, e0 = eZ .

In Ĥeff, the off-diagonal coefficients directly correspond
to the Rabi frequency ΩR of the population oscillations
for a given transition between two hyperfine states [10].
The amplitude |Ω0,+,−| scales as 2π× 0.7MHz·G−1 with
the modulus of the corresponding component of the mi-
crowave field |B0,+,−|.

It is now straightforward to compute numerically the
evolution of the density matrix over time and a typi-
cal result is shown in Fig. 13, assuming a linear polar-
ization of the microwave field, ϕX = ϕY = ϕZ = 0,
BY = 5.4G and BX = BZ = 0G. These parameters
reproduces well the results observed in Fig. 8 when a
Gaussian amplitude broadening is taken into account
in the calculation. The calculation clearly shows that
the decrease in the |F = 1,mF = −1⟩ state at the max-
ima is due to an off-resonant coupling through the σ+

line to the |F = 2,mF = 0⟩ state, which in turns pop-
ulates the |F = 1,mF = 1⟩ state through a σ− line.
Hence, at this large amplitude, the population dynam-
ics cannot be reduced to the two states at resonance
with the microwave field. Instead, the system is well
described by a W configuration, with the five states
|F = 2,mF = −2⟩, |F = 1,mF = −1⟩, |F = 2,mF = 0⟩,
|F = 1,mF = 1⟩ and |F = 2,mF = 2⟩.
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Hänsch, and J. Reichel, Phys. Rev. Lett. 92, 203005
(2004).
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F. Reinhard, C. Deutsch, T. Schneider, and J. Reichel,
Adv. Space Res. 47, 247 (2011).
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