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Abstract. We revisit the design of cloaks, without resorting to any geometric transform. Cancellation
techniques and anomalous resonances have been applied for this purpose. Instead of a deductive reasoning, we
propose a novel mono-objective optimization algorithm, namely a ternary grey wolf algorithm, and we adapt a
bi-objective optimization algorithm. Firstly, the proposed chaotic ternary grey wolf algorithm searches three-
valued spaces for all permittivity values in the cloak while minimizing the summation of a protection criterion
and an invisibility criterion. Secondly, a bi-objective genetic algorithm is adapted to find pairs of optimal values
of invisibility and protection.
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1 Introduction

Since the publication of works by the teams of Leonhardt [1]
andPendry [2] in the same issue of theSciencemagazine over
16–18 years ago, cloaking has become amature research area
optics. It isbynowwell knownthatonecandesign invisibility
cloaks via geometric transforms that either lead to the
anisotropic heterogeneous material parameters (e.g. rank-2
tensors of permittivity and permeability in optics), see [2], or
spatially varying, yet scalar valued, parameters [1]. The
latter is achieved through conformal maps, hence con-
strained to the 2D case, and besides from that the cloak is of
infinite extent. There is yet a third route to cloaking, that
relaxes the severe material constraints in [2] (notably some
infinite anisotropy on the inner boundary of cloak, rooted in
the blow up of a point onto a ball of finite extent known as
invisibility region, that can only be achieved over a narrow
frequency bandwidth in practice [3]), and avoids the infinite
extent of the cloak in [1]: so-called carpet cloaking is a
combination of the previous two approaches that is based on
quasi-conformalgrids [4].This third route requires only some
moderate anisotropy, but only achieves invisibility for an
object placed on a mirror.

Some works on cloaking focus on the mathematical
aspects that are connected to famous inverse problems in
particular on electric impedance tomography [5,6] wherein
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one wishes to uniquely determine the conductivity within a
bounded region, by applying a known static voltage to the
surface and recording the resulting current at the boundary
(a Dirichlet-to-Neumannmap). The Dirichlet-to-Neumann
map determines the conductivity [7], but this can only
happen if the conductivity is scalar-valued, positive and
finite. However, if some of these conditions are not met (e.g.
the conductivity is matrix valued) electric impedance
tomography fails [8]. This has been exploited to create non-
unique conductivities sharing the same boundary measure-
ments [9].

1.1 Main contributions

In the present work, we would like to revisit the design of
cloaks, without resorting to any geometric transform. Not
surprisingly, there is prior work that explored this
alternative route, notably through scattering cancellation
techniques [10,11] and anomalous resonances [12,13].
However, our rational for the design of cloaks is not based
on a deductive reasoning, but rather on some optimization
algorithm, and more precisely on some nature-inspired
optimizer known as theGreyWolf Optimizer (GWO). Here
again, one may point out former work on design of
invisibility cloaks [14,15] based on topology optimization
[16]. In [17], some mono-objective genetic optimization
algorithm has been applied to estimate the best value,
in terms of bias with respect to free-space propagation
conditions, of six parameters which define the desired
monsAttribution License (https://creativecommons.org/licenses/by/4.0),
in any medium, provided the original work is properly cited.
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Fig. 1. Sketch of the scattering problem: Perfectly Matched Layers (PMLs, light grey) surround the free-space region S2 (cyan) that
contains the source, the cloak (blue) and the protected region S1 (orange).
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cloak.However,we stress that thenature of the optimization
algorithms we shall use here is radically different:We aim at
estimating a very elevated number of parameters, compared
to some previous works such as [17], and we aim at
minimizing two contradictory criteria instead of one.

1.2 Layout of the paper

InSection 2,we introduce the cloakdesignproblem, pointing
out the need for the minimization of two antagonist criteria:
an invisibility criterion and a protection criterion. In
Section 3, we provide a state-of-the-art of mono-objective
and bi-objective optimization algorithms. We focus on
the mono-objective grey wolf optimizer, and on the
bi-objective non dominated sorting genetic algorithm. In
Section 4, we propose a novel ternary version of the greywolf
algorithm, which is dedicated to search spaces with three
values. We name it chaotic ternary grey wolf optimizer
(CTGWO). In Section 5, we present the results obtained on
cloak design with the mono-objective approach, including
CTGWO, and with the bi-objective approach involving
Non-dominated Sorting Genetic Algorithm - II (NSGA-II).
InSection 6wediscuss the results obtained.Wepoint out the
superiority of CTGWO over comparative algorithms in the
mono-objective approach; and we emphasize the interest of
the bi-objective approach for an end-user. Conclusions
are drawn in Section 7.

1.3 Notations

The following notations are used throughout the paper:
manifolds are denoted by blackboard bold, A, matrices by
boldface uppercase roman, A. Vectors are denoted by
boldface lowercase roman, a, and scalars by lowercase or
uppercase roman, a, b or A. The P scalar components of
a vector a are accessed via a1,a2,...,aP, such that
a ¼ a1; a2; . . . ; aP

� �Twith superscript T denoting the
transpose. The interval of real values between scalars a
and b is denoted by [a : b] with square brackets. A set of
values is denoted by {a,...,b} with curly brackets.

The symbol � denotes the Hadamard (also called
component-wise) product of two vectors: a �b is a vector
whoseK components are equal to a1b1, a2, b2,… , aKbK. The
symbol |a| means element-wise absolute value and is a
vector whose K components are equal to |a1|, |a2|, … , |aK|.
2 Cloak design problem: definition
of experimental conditions, protection
and invisibility criteria

We consider the 2D scattering problem sketched in
Figure 1a. A point source is located at (xs,ys) and radiates
from freespace (in blue color) in the vicinity of the yellow
zone S1 which is the area to be protected. This yellow region
is cloaked by the green rectangular zone. For computa-
tional purposes, the blue freespace zone is surrounded by
PerfectlyMatchedLayers (PMLs) thatmodelanunbounded
medium [18]. The scalar scattering problem amounts to
finding the total scalar field u such that:

div s gradu½ � þ k20xu ¼ dS; ð1Þ

where k0 is the freespace wavenumber (associated with the
unbounded region of space outside of the object and its
surrounding cloak and corresponding to a freespace
wavelength of l0= 2p/k0), and s and x represent the
scalar material properties. In the context of acoustic
pressure waves in isotropic non-viscous fluids, s is the
inverse of density and x the inverse of compressibility, and
p is the amplitude of the pressure wave. For anti-plane
shear waves in isotropic solids, s is the shear modulus and x
the density, whereas u stands for the component of the
displacement field perpendicular to the (xy)-plane. Finally,
for electromagnetic waves in transverse magnetic (TM)
polarization s is the inverse of the relative permittivity and
x the relative permeability. The relative permittivity will
be denoted by e in the rest of the paper. This is when u
represents the component of the magnetic field perpendic-
ular to the (xy)-plane. The roles of permittivity and
permeability are interchanged in transverse electric (TE)
polarization, whereby the electric field is perpendicular to
(xy)-plane. All these physical setups are equivalent from a
mathematical standpoint. In the rest of the paper, the
considered wavelength is l=500 nm the side of a triangle
mesh has length l/6 in the freespace; and l/12 in the cloak
and the protected zone.

In what follows, we focus on the TM case. In this scalar
Helmholtz equation (1), one can still consider a certain
form of anisotropy [19], provided that s can be written as a
2� 2 matrix.
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Indeed, even if isotropic cloak and protected area only
are considered here, the implementation of the PMLs
relies on anisotropy (and absorption), see [18]. As in
standard topology optimization, our design space is
constructed on the mesh of the cloak shown in Figure 1.
Each triangular element constitutes a voxel that can be
filled with a particular material whose isotropic physical
properties are represented by the scalar quantity s The
practical Finite Elements discretization and implementa-
tion of the problem follow quite closely those described
in reference [20] and its associated ONELAB open
source tutorials found in reference [21]. In short, a first
dummy run allows to initialize a table of discrete
values of g for a particular mesh (one entry of the table
corresponds to one triangle of the mesh in the design
region), and this table is used to control discrete g values
throughout the optimization procedure using the GetDP,
GmshRead and ScalarField functions [22]. Then, equa-
tion (1) is solved using second order Lagrange elements in
a standard manner.

Finally, we are in a position to define the optimization
criteria. The first one, C1 is a protection criterion, the
integral over the region to be protected of the square norm
of the field:

C1 ¼ 1

jS1j
Z

S1

juj2dS; ð2Þ

where |S1| is the area of S1 in Figure 1.
The second one, C2 is an invisibility criterion, the

integral over the freespace region of interest of the square
norm of the difference between the field and a reference
field denoted u0

C2 ¼ 1

jS2j
Z

S2

ju� u0j2dS; ð3Þ

where |S2| is the area of S2 in Figure 1 and u0 is the freespace
solution to the problem (i.e. the scalar Green function of
the problem without any cloak or region to protect).

Our goal is to minimize C1 and C2 to achieve both
protection and invisibility. Intuitively, we expect there
should be some trade-off between protection (i.e. a
vanishing field u inside the yellow region) and invisibility
(i.e. u as close as possible to u0 in the blue region). For
instance, surrounding the yellow region by an infinite
conducting boundary would ensure a vanishing field u
inside the orange region, but u and u0 would be very
different in freespace green region S2 due to a large
scattering. On the other hand, if we consider freespace in
the green region, then S1, the cloak and S2 are impedanced
matched at the interfaces between all three regions and
thus u = u0 in S2 (the cloak and S1 being transparent). But
in that case there is no protection at all in S1. Depending
upon their need, cloak designers might just wish to give
more weight to criterionC1 orC2C1 andC2 depend both on
P parameters, where P is equal to the number of voxels
(equivalently triangles) in the cloak. These parameters,
denoted by K1, K2, … , Ki, … , KP take their values in a
so-called ‘search space’, which can be either discrete or
continuous. In this paper we will firstly consider the
realistic case where three possible permittivity values can
be associated with each triangle. These values correspond
to three different materials and yield the search space
{7,10,12} Equivalently, once these values are set, we may
access them through the index values {0,1,2} This will
compound our ‘ternary search space’. Secondly, we will
perform a study which is less realistic: in our simulations
the permittivity for each voxel may be any real value in
[7:12] (up to seven decimal digits).

In a nutshell, we notice that we face a bi-objective
problem with either ternary, or continuous search spaces.
In the rest of the paper, the criteria C1 and C2 will also be
denoted by f1 (x):ℝ

P↦ℝ+ and f2 (x):ℝ
P↦ℝ+. Vector x

contains the parameter values K1, K2, … , Ki, … , KP.
3 Global single-objective and bi-objective
optimization methods

Optimization algorithms are meant to retrieve the location
of the minimum value reached with a set of parameters. In
the case of single-objective optimization, only one function
is considered for optimization; in the case of bi-objective
optimization, two functions should be minimized simulta-
neously.

Mono-objective problems are encountered in wave
propagation phenomena, for instance for the structural
optimization of a two-dimensional photonic crystal [23], or
to perform the inversion of ellipsometric data [24], thanks
to good convergence properties of bio-inspired optimiza-
tion methods. Multi-objective problems are faced when a
tradeoff should be found between two antagonistic
objectives, in particular for material design as in [25],
but also when considering electromagnetic wave propa-
gation, for instance when designing optical diffracting
devices [26].

We assume that P parameters should be estimated:K1,
K2, … , Ki, … , KPwhere P ≥ 1. We remind that, as
explained in Section 2, in the considered problem,P is equal
to the number of voxels in the cloak. The following
notations will be used:
– P is the number of expected parameters, which are

indexed with i.
– n denotes one iteration and nmax the maximum allowed
number of iterations.

– f(.) is a function to be optimized, also called the criterion.
It depends on the P parameters mentioned above. In this
paper, unless specified, minimization problems are
considered.
In the case of a single-objective optimization, there is

one function f(.) to be minimized. In the case of bi-objective
optimization, there are two functions f1(.) and f2(.) to be
minimized.
Both GWO and NSGA-II are agent-based algorithms i.
– xq(n) is a vector corresponding to an agent q = 1,...,Q at
iteration n. It takes the form of a vector with a P-tuple of
tested values xq(n)=[K1,K2,...,KP]T.
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In Section 3.1, we give a background on a single-
objective optimization: the grey wolf algorithm (GWO). In
Section 3.2, we give a background on a bi-objective
optimization algorithm, namely non-dominated sorting
genetic algorithm (NSGA) [27] and a fast version (NSGA-II)
[28].
3.1 Single-objective optimization: Grey Wolf Optimizer

The GWO is a nature-inspired optimizer based on the
observation of the social life of grey wolves in nature [29].
In this method an agent is called a wolf. It simulates the
common behaviour and hunting strategies of grey wolves
in their environment. The seminal GWO searches a
continuous space [29]. Among the search agents, there
are three leaders a, b, and d All other agents are the v
wolves.
– xa(n), xb(n), and xd(n) denote the position of the leaders
a, b and d respectively, at iteration n.
The position of anywolf at iteration n+1 is calculated as:

xq nþ 1ð Þ ¼ 1

3
ya nð Þ þ yb nð Þ þ yd nð Þ� �

: ð4Þ

It results from the equal contribution of the a, b and d
wolves. These contributions are computed at each iteration
iter as follows, for any leader l either a, b or d:

yl nð Þ ¼ xl nð Þ � b � dl nð Þ; ð5Þ

with: dlðnÞ ¼ j c �xlðnÞ � xqðnÞj; j·j denoting absolute
value.

The vectors b and c are calculated as b= 2a ◦ r1−a and
c = 2r2. In these expressions, vectors r1, r2 have random
components between 0 and 1.

For the ith parameter (i =1,...,P):
The component bi of b is provided by:

bi ¼ 2ar1 � a; ð6Þ
the same whatever i.

The component dilðnÞ of dl(n) is provided by:

dil nð Þ ¼ j2r2xi
l � xi

q nð Þj; ð7Þ

where r1 and r2 are two random values between 0 and 1;
xi
qðnÞ is the ith component of the qth agent at iteration n;xi

l
is the ith component of leader l.

The component yilðnÞ of yl
(n) is provided by:

yil nð Þ ¼ xi
l � bidil nð Þ: ð8Þ

During the hunt, the wolves firstly diverge from each
other to search for the prey, or equivalently to encircle it.
Secondly, they converge to kill the prey. This is
mathematically modeled through the deterministic vector
a. The components of vector a are all equal to a, a scalar
value which is a key parameter in the algorithm. When
a>1 the search agents are obliged to diverge from the prey:
this is the exploration phase. Conversely, when a � 1, the
search agents are obliged to attack towards the prey: this is
the exploitation phase. In the vanilla version of GWO [29],
the key parameter a decreased regularly from 2 to 0:

a ¼ 2 1� n

nmax

� �
: ð9Þ

In more recent works, various expressions have been
proposed for a such as a quadratic [30] or adaptive [31]
function.Whatever theversion [30, 31] the explorationphase
lasts until a=1, then the exploitation phase lasts from a= 1

to a = 0. Storing all values of f
�
xaðnÞ

	
across all iterations

from 1 to nmax yields a so-called convergence curve. The
outcomes of a single-objective optimization method are
mainly the solutionxa(nmax), but also the convergence curve.

3.2 Bi-objective optimization: non-dominated sorting
genetic algorithm

Non-dominated sorting genetic algorithms (NSGA and
NSGA-II) are inspired byDarwin’s rules of evolution. In this
method an agent is called a chromosome. The interest of
multi-objectiveoptimizationhasalreadybeenemphasized in
physical phenomenon modeling for instance in [32], where
NSGA-II isused tomodel turbulence; or in thedesignoffinite
3D periodic structures [33], etc. The main steps of the
algorithm are as follows: generate a random population of
chromosomes, calculate function values f1 and f2 for each
chromosome, sort chromosomes in the population, choose
parents in the next generation by tournament algorithm,
generate children by crossover and mutation, extract a new
generation through ranking, and repeat the process from
parent choice.The expected outcome ofNSGA-II is different
from the outcome of GWO: For a single-objective method,
we will represent the results as convergence curves, and the
solution is a single set of values extracted from the search
spaces.Wewill try tominimize our cost function so that our
objective tends as much as possible towards zero. It is up to
the user to determine a threshold value for our cost function,
from which we will retrieve one optimal solution. For a
bi-objective method, we will no longer have convergence
curves,butPareto fronts.Thesolution is composedof several
sets of values extracted from the search space and located on
the Pareto front. The principle of the Pareto front is that we
will represent the value of the first cost function on the
horizontal axis, and the value of the second cost function on
the vertical axis. Thus, visually, we will see very quickly if a
solution favors either f1 or f2. The main method to estimate
the quality of a solution is the ‘domination’principle. In fact,
for each solution, we will calculate the distance between the
point of origin of coordinates (0,0), and the considered
solution, with its coordinates. Of course, the solution which
has the smallest distance will ‘dominate’ the solution which
has a larger distance. Considering two solutions xq1 and xq2,
we cansay thatxq1 ‘dominates’xq2, if the following condition
is respected:

f1 xq1

� � � f1 xq2

� �� �
and f2 xq1

� � � f2 xq2

� �� �� �
;
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and

ððf1 xq1

� �
< f1 xq2

� �Þ or ðf2 xq1

� �
< f2 xq2

� �ÞÞ:
It is up to the user to choose the best solution(s) to keep.

Indeed, the user may very well want to favour one of the
two objectives, or seek the best compromise between the
two objectives.

Actually, in the last decades, different methods to
determine the ‘domination’ principle have been proposed,
and then, the ‘non-domination’ principle emerged, notably
thanks to Srinivas and Deb [27] who proposed the NSGA
algorithm[27] andthenan improvedversion, calledNSGA-II
[28]. This fast sorting method by ‘non-domination’ has been
widely spread by other algorithms as an efficient technique.
The particularity of NSGA-II is to hierarchize the levels of
‘domination’, with a first Pareto front containing only the
non-dominated solutions, a second Pareto front with the
solutions dominated by one or two solutions, and finally, a
third Pareto front with all the other solutions, those
dominated by more than two solutions. For this last
category, we compute ‘crowding distances’ for the solutions
of this category, thenwe sort the set of results thus obtained.
The ‘crowding distance’ is calculated criterion by criterion.
For example, for the criterion represented on the horizontal
axis, we will first determine the extreme solutions, which we
will call ‘min’ and ‘max’ it being understood that ‘min’ will
be the solution which will have the smallest value on the
horizontal axis, and ‘max’ the solution which will have the
largest value on the horizontal axis. Considering that we
haveQ 0<Q solutions on thePareto front,wewill then assign
an index to each solution, with the index 1 for ‘min’. and the
indexQ 0 for ‘max’Foreach solutionof indexqwith1< q<Q 0

wewill calculate the distance on the horizontal axis between
the (q�1)th solution and the solution (q+1)th solution, and
wewill divide this distance by the distance on the horizontal
axis between ‘max’ and ‘min’. Thus, it is this result that will
be considered as the crowding distance of each solution.

The next step is to create a ‘descendant’. To do this, we
first organize a selection tournament, i.e. we will randomly
draw pairs of solutions in the set of solutions, and for each
pair of solutions, we will determine which one can become
‘parent’, by comparing the hierarchical levels of the Pareto
front. For example, if the first solution belongs to the
second Pareto front and the second solution belongs to the
third Pareto front, then the selection tournament will be
won by the first solution because the second Pareto front
contains solutions that are better than the third Pareto
front. If two solutions belonging to the same Pareto front
were drawn, then the solution with the smallest crowding
distance would be selected as the ‘parent’. Then, for each
pair of ‘parents’, we will generate a child who will have the
values of the first ‘parent’ for some unknowns, and the
values of the other “parent” for the other unknowns. This
step is called ‘cross-over’. Finally, according to a percentage
defined beforehand, the values of some unknowns of the
child will be slightly modified. This last step is called the
‘mutation’. The whole process is repeated, as many times as
there are iterations, and in the end, we obtain the set of
‘optimized’ solutions.
4 Chaotic ternary grey wolf algorithm

We propose a ternary version of GWO, which searches
specifically ternary spaces with enhanced exploration
abilities.

Our first motivation is that, in the considered
application, the search space is associated to three values
of epsilon. But this method could be applied to other
situations and applications, involving for instance sensors
with three possible states.

Our second motivation is to propose a method with
enhanced explorationproperties. Indeedmetaheuristicswith
enhanced exploration properties are of great interest to cope
with applications where the objective function exhibits an
elevated number of local minima. We aim at achieving such
enhanced exploration properties while proposing a ternary
map which evolves across iterations, and inserting chaotic
sequences in the update rules of the agents.

Our third motivation is to improve the diversity of the
agents behavior. Indeed, GWO exhibits premature con-
vergence due to poor diversity of the population of wolves.
So we propose to divide the wolf pack into two groups: the
first with enhanced ‘exploration’ abilities, and the second
with ‘exploitation’ abilities.

The proposed chaotic ternary GWO is denoted by
CTGWO. In Section 4.1, we derive the update rules which
relies on specific transform functions depending on a
parameter a.We wish to preserve the original philosophy of
GWO: the number of leaders ruling the update of the
agents is superior to 1, and the parameter a permits to
distinguish between an exploration phase at the beginning
of the algorithm and an exploitation phase at the end. In
Section 4.1, we just assume about parameter a that it
decreases from 2 to 0 across the iterations. Then in
Section 4.2, we investigate a chaotic expression for a.

4.1 Ternary update rules based on dedicated
transform maps

We propose here innovative update rules, dedicated to a
ternary search space, performed with the help of an ad hoc
transform function. Firstly propose a novel manner to
compute the contribution of a leader, and the mean
contribution of several leaders. Secondly, we propose an
update rule depending on this mean contribution.

4.1.1 Contribution of a leader

We remind that in the continuous case, the contribution
yilðnÞ of a leader l is computed as in equation (8). In this case
yilðnÞ ¼ xi

l � bi bilðnÞ depends on the product bidilðnÞ which
decreases to 0 simultaneously with a, reaching 0 when
n ¼ nmax: So yilðnÞ is a real value which gets closer to xi

l
across the iterations. In the following we propose to
compute a contribution yilðnÞ which is a real value between
0 and 2. We propose, as expression of the contribution of
leader l:

yilðn Þ ¼ ðxi
l � bidilðn ÞÞmod2; ð10Þ
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where bi is defined as in equation (9) and dilðnÞ is defined as
in equation (7). Based on the hypothesis that themaximum
value of a is 2, we deduce from equations (6) and (7) that
the values of bidilðnÞ are between�8 and 8. So the values of
xi
l � bidilðnÞ can be out of the interval [0:2].
The ‘modulo’ operator, denoted by mod is meant to

enforce the contributions yilðnÞ to remain into the interval
[0:2]. It is defined as follows: whatever the values
z1 ∈ℝ and z2 ∈ℝ� :

z1 mod z2 ¼


z1 � z2⌊z1=z2⌋

z2

if
if
z1 ≠ z2
z1 ¼ z2; or z1 ¼ 0

ð11Þ

where |z1| denotes the largest value in ℤ which is smaller
than the scalar z1∈ℝ.

4.1.2 Weighted contribution of the leaders

We denote by yiðnÞ the weighted contribution of four
leaders a, b, d, and r:

yiðnÞ ¼
1

3
ðyiaðnÞ þ yibðnÞ þ ðð1� a=2ÞyidðnÞ þ a=2yirðnÞÞÞ

1

3
ðyiaðnÞ þ yibðnÞ þ yidðnÞÞ

if
if
a > 1
a � 1:

8><
>:

ð12Þ
In equation (12), leader r is a wolf which is selected at

random among the wolf pack.
We notice that yiðnÞ gets closer to

1
3

�
yiaðnÞ þ yibðnÞ þ yidðnÞ

	
when the iteration index

increases.
We can now derive a ternary rule which updates the

position of any wolf in a ternary search space.

4.1.3 Ternary update rule

We propose an evolving map which enhances exploration at
thebeginning of thealgorithm, andexploitation at the endof
the algorithm. Compared to recent works about the binary
GWO [34, 35], the new feature in the proposed transform
map is of course the division of the map into three regions
instead of 2, but also, the fact that the map evolves across
iterations:wewill introducea termwhich is proportional toa
in the transformfunctionsandwhichemphasizes exploration
at the beginning of the algorithmand exploitation at the end
of the algorithm.

The proposed novel process dedicated to ternary
search spaces permits to select either value 0, 1 or 2. In
dimension i(i = 1,...,P) wolf q is updated from iteration
n to iteration n + 1 as follows:

xi
q nþ 1ð Þ ¼

0 if r≥’u yi nð Þ; a
� 	

1 if r < ’u yi nð Þ; a
� 	

and r≥’d yi nð Þ; a
� 	

2 if r < ’d yi nð Þ; aÞ;
�

8>>><
>>>:

ð13Þ
where the scalar r is a random value between 0 and 1
and taken from a normal distribution. In equation (13)
we introduce two functions, which are necessary to
define the ternary map. These functions are denoted by
’u and ’d:

’u : 0 : 2½ � � ℝþ ! 0 : 1½ �; y↦’u y; að Þ

’d : 0 : 2½ � � ℝþ ! 0 : 1½ �; y↦’d y; að Þ:
Function ’u separates the uppermost part of the map

from the rest of the map; and function ’d separates the
lowermost part of the map from the rest of the map. The
basic idea is that if the random number r leads to the
region in-between, the value 1 will be chosen as an
updated value. If r leads to the region which is above ’u

(resp. below ’d), the value 0 (resp. 2) will be selected. We
will now detail the shape of the frontiers between regions
0, 1, and 2. We set a ternary map based on a ‘power
function’. The basic function we use is a power function
applied to any scalar y and depending on 5 parameters c1,
c2, c3, c4, and a:

’pðy; c1; c2; c3; c4; aÞ ¼ ðy� c3Þ=c1
�c2

þ c4

�

þ a

5
exp � y2

2

� �
� exp �ðy� 2Þ2

2

 ! !
: ð14Þ

In equation (14), the first term depending on c1, c2, c3
and c4 gives the overall shape of the function. The second
term depending on a permits to get ’pð0; c1; c2; c3; c4; aÞ
≥ 0 and’pð2; c1; c2; c3; c4; aÞ � 1. We use two versions of
this function to define the ternary map. The first one,
with c3 = 2 and c4 =1; the second one, with c3 = 0 and
c4 = 0:

’u y; að Þ ¼ ’p y; 2; 3; 2; 1; að Þ ð15Þ

’d y; að Þ ¼ ’p y; 2; 3; 0; 0; að Þ: ð16Þ
The second term depending on a (see Eq. (14)) permits

to get values on y = 0 which are slightly larger than 0, and
values on y = 2 which are slightly smaller than 1:

’P ð0; c1; c2; c3; c4; aÞ ¼ a

5

�
1� exp ð�2Þ

	
;

and ’P ð2; c1; c2; c3; c4; aÞ ¼ 1� a

5

�
1� exp ð�2Þ

	
in both equations (15) and (16).

So:

’u 0; að Þ ¼ ’d 0; að Þ ¼ a

5
1� exp �2ð Þð Þ ð17Þ

and

’u 2; að Þ ¼ ’d 2; að Þ ¼ 1� a

5
1� exp �2ð Þð Þ: ð18Þ



Fig. 2. Ternary ‘Power’ selection map with different values of parameter a. (a) a = 2; (b) a = 1; (c) a = 0.
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The functions ’u (y, a) and ’d (y, a) defined in equations
(15) and (16) can then be used in equation (13) to get the
‘Power’ transform map.

4.1.4 Representation of the ternary transform map and
interpretation

Figure 2 shows the ‘Power’ ternary map. In each case the
uppermost region maps for 0, the central region maps for 1,
and the lowermost region maps for 2. It can be noticed that
the shape of the functions ’u and ’d is consistent with the
derivations in equations (17) and (18).

We can check that:
– The term which is proportional to a in equation (14)
yields a map which evolves across the iterations; this is
an important difference compared to the binary map
presented in [34];

– For a value of parameter awhich is 2, either the value 0 or
2 may be selected with an elevated probability when all
leader contributions are equal to 0, or 2;

– For a value of parameter a which is 0, the value
0 (resp. 2) is selected with probability 1 when
yiðn Þ ¼ 0 ðresp: yiðn Þ ¼ 2Þ;

– Whatever the value of a, either the values 0, 1, or 2 may
be selected when yiðnÞ= 1.

Indeed, as defined in equation (10) the values of yi1ðnÞ
are real and between 0 and 2, whatever i and 1. In
Section 4.2 we embed chaotic sequences in the expression of
a to improve again the exploration abilities of our
algorithm.
4.2 Embedding chaotic sequences in the ternary grey
wolf optimizer
4.2.1 Chaotic expression of parameter ‘a’ for improved
exploration abilities

We modify the expression of parameter a with respect to
other versions of GWO, and propose:

a ¼ 2

�
1� ð n

nmax
Þðhqð1þG ðc1q;nÞÞÞ

�
: ð19Þ
In equation (19), we notice that, for the first time in this
paper, the expression of a depends on the agent index q.
Firstly, we reposition the worst agents closer to the three
leaders, with a value of h which depends on the score of the
agent: for the worst half of the agents (associated with the
largest scores), hq ¼ 2

3 ; for the best half of the agents
(associated with the smallest scores), hq ¼ 3

2 : Secondly,
inserting a chaotic sequence G ðc1q ;nÞ enhances the
variability of the behavior of the agents. c1q is the initial
value of the chaotic sequence, which is different for every
agent q. The principles of the proposed method is that the a
parameter of the GWOwhich rules the displacement of the
agents is perturbed through the value of a chaotic sequence.

Choosing a different value of c1q or each agent permits to
emphasize diversity in the displacement of the agents.
Meanwhile, we choose a sequence with one attractor to
ensure that G ðc1q ;nmaxÞ is the same whatever q.

4.2.2 Construction of the chaotic sequences

To privilege exploration abilities, the behaviors of the
agents should differ one from the other. To privilege
exploitation abilities at the end of the algorithm, the agents
behavior should get closer to each other while the iteration
index increases. So we set the following constraints on the
chaotic sequences:
– The values of G ðc1q ; nÞ are positive, in the interval [0:1];
– The last value should be G ðc1q ;nmaxÞ ¼ 0 whatever the

initial value G c1q ; 1
� 	

. In this way, at the last iteration

n = nmax, the behavior of all agents is the same.
To fulfill easily those constraints, we have to choose a

sequence with one known attractor. We base our sequence
G on a logistic sequence, denoted by c(n). Given an initial
term c(1), each subsequent term (for n = 2,...,nmax) is
defined as:

c nþ 1ð Þ ¼ kc nð Þ 1� c nð Þð Þ; ð20Þ
where k∈ℝ�

þ: The number of attractors for this sequence
depends on the value of k. Figure 3 shows chaotic sequences
with one (Fig. 3a), two (Fig. 3b), or an infinite number of
attractors (Fig. 3c). We chose k = 2.8 in Figure 3a, k = 3.2
in Figure 3b, k = 3.99 in Figure 3c. In Figures 3a–3c, each



Fig. 3. Chaotic sequences with various values of chaos parameter k. (a) k = 2.80, one attractor; (b) k = 3.20, two attractors;
(c) k = 3.99, an infinite number of attractors.
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Fig. 4. Chaotic values of parameter a for all agents, and all
iterations n =1,..,50.
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plot with a given color corresponds to a different value for
c(1). There are ten chaotic sequences in each case. We
choose a sequence such as in Figure 3a, where c (nmax) bears
the same value, equal to 0.65 approximately, whatever the
sequence. For this we set with k = 2.8.

For any agent q and for n = 1,...,nmax, we define the ad
hoc chaotic sequence G ðc1q ;nÞ as follows, based on the
logistic sequence of equation (20):

G ðc1q ;nÞ ¼ 0:1ðcðnÞ � cðnmaxÞÞ: ð21Þ

Hence, for any agent qG ðc1q ;nmaxÞ ¼ 0. We notice that
the initial term c1q is defined as follows:

c1q ¼ 0:1 c 1ð Þ � c nmaxð Þð Þ: ð22Þ

We set the initial term c(1) of the logistic sequence as a
random value between 0 and 1, taken from a normal
distribution. As c(1) is a random value, c1q is also random
and a different sequence is generated for each agent.

Figure 4 shows the sequences of values for a for all
agents. We clearly distinguish two families of agents: the
first family with hq ¼ 3

2 and rather elevated values of a, and
the second family with hq ¼ 2

3 and smaller values of a, which
tend more rapidly towards 0.
5 Results: mono-objective and bi-objective
approaches

5.1 Experimental conditions and metrics

In this section, the test environment is a server running
Linux, equipped with 4 Intel(R) Xeon(R) CPU X7560 @
2.27GHz (64 processors, Hyper-threading activated) and
1000 GB RAM. The software is Python.

We consider cloaks with P = 329 voxels (of
triangular shape) and the expected outcomes of the
algorithms are vectors x containing permittivity values
K1, K2, … , Ki, … , KP.
In Section 5.2 we display the results obtained with a
monoobjective approach. The criterion which is minimized
is f (x):ℝP↦ℝ+: fðxÞ ¼ 1

2 ðf1ðxÞ þ f2ðxÞÞ. We remind (see
Sect. 2) that f1 stands for protection, and f2 stands for
invisibility.

We remind that topological optimization limits the
number of possible materials to two. Instead, and for the
first time in this paper, we adapt our new variant CTGWO
of the GWO which searches solutions among three
materials. We compare the proposed CTGWO with the
adaptive mixed GWO in discrete mode [31] (denoted by
amixedGWO), and the vanilla continuous GWO [29]. The
computational time for one trial of either f1 or f2 is 0.99 sec
by trial. ForGWOand amixedGWO,we use the expression
of a presented in equation (9). For CTGWO, we use the
expression of a presented in equation (19). The search space
for the values of the permittivity e is {7,10,12}. CTGWO



Table 1. Cloak design experimental conditions: mono-
objective approach (GWO, amixedGWO, CTGWO); and
bi-objective approach (NSGA-II).

Approach Search space nmax Q Link

Mono-objective Ternary 250 100 5.2
Bi-objective Ternary 250 100 5.3.1

Ternary 1000 200 5.3.2
Continuous 250 100 5.3.3
Continuous 1000 200 5.3.4

Fig. 5. Convergence curve of GWO, amixedGWO, andCTGWO
algorithms.
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and amixedGWO access these values via indices retrieved
from the discrete search space {1,1,2}. GWO access these
values via rounded indices retrieved from the continuous
search space [0:2]. We run the three algorithms with Q =
100 agents and nmax = 250 iterations, that is, 25 × 103 trials
of the objective function. The agents are initialized with
random integers between 0 and 2.

In Section 5.3, we display the results obtained with a
biobjective approach. The couple of criteria which are
jointly minimized are f1 (x) :ℝ

P↦ℝ+, and f2 (x):ℝ
P↦ℝ+.

We display the results of GWO, amixed GWO, and the
proposed CTGWO; as well as the results obtained by
NSGA-II in four situations. These five experimental
conditions are summarized in Table 1. The ternary search
space mentioned in Table 1 is {7,10,12}: NSGA-II accesses
these values via rounded indices retrieved from the
continuous search space [0:2]. The continuous search space
mentioned in Table 1 is [7:12]. This last situation is
prospective in the sense that we assume that we afford any
material with any permittivity value between 7 and 12.
5.2 Mono-objective approach

In this section, we display the results obtained by CTGWO,
amixedGWO,andGWO:theconvergencecurves inFigure5;
the scores reached by each method, and corresponding
protectionand invisibilityperformances inTable2; thecloak
design and wave propagation field in Figure 6.

In Table 2, we display, for GWO, amixedGWO, and
CTGWO, the score of wolf a at the last iteration

f
�
xaðnmaxÞ

	
. For instance, the solution provided by

CTGWO is xa(nmax)=[7,12,12,...,10]T. We notice that, in
CTGWO, the power map is such that there is still a small
probability that thenumber of the area inwhichwearegoing
to place ourselves does not correspond to the value obtained,
used as a position on the horizontal axis. The interest of such
a mismatch is to avoid our algorithm to be locked in a local
minimum. The chaotic sequences also play a role in the good
behavior of CTGWO shown by the convergence curve in
Figure 5. Figure 6f indicates that the protection abilities of
the cloak designed by CTGWO are clearly better than for
GWO and amixedGWO. Values in Table 2 confirm this
impression: the protection criterion is two times smaller,
while the mean criterion is also significantly smaller.

5.3 Bi-objective approach

In a second step, we used a bi-objective genetic algorithm as
an optimization method. Thus, we no longer work on
convergence curves, but on Pareto fronts, to balance the
two minimized criteria.

The parameter values for NSGA-II are as follows:
mutation and crossover probabilities are pm=1/P≃ 0.003
and pc = 0.9; mutation and crossover distribution indices
are hm = 20 and hc = 15.

5.3.1 Bi-objective ternary optimization with 250 iterations,
100 research agents

In this section, we display the results obtained by NSGA-II:
the Pareto front in Figure 7; the protection and invisibility
performances in Table 3; the cloak design and wave
propagation field in Figure 8.

5.3.2 Bi-objective ternary optimization with 1000
iterations, 200 research agents

In this subsubsection, we display the results obtained by
NSGA-II: the Pareto front in Figure 9; the protection and
invisibility performances in Table 4; the cloak design and
wave propagation field in Figure 10.

5.3.3 Bi-objective continuous optimization with 250
iterations, 100 research agents

In this section, we display the results obtained by NSGA-II:
the Pareto front in Figure 11; the protection and
invisibility performances in Table 5; the cloak design
and wave propagation field in Figure 12.

5.3.4 Bi-objective continuous optimization with 1000
iterations, 200 research agents

In this section, we display the results obtained by NSGA-II:
the Pareto front in Figure 13; the protection and
invisibility performances in Table 6; the cloak design
and wave propagation field in Figure 14.



Table 2. Comparison of GWO, amixedGWO and CTGWO mono-objective methods in protection (f1) and invisibility
(f2) for a rectangular and half-rectangular cloak. nmax= 250, Q =100.

Protection f1(xa(nmax)) Invisibility f2(xa(nmax)) Scoref(xa(nmax)) Links to figures

GWO 4.234 � 10−3 1.740 � 10−3 2.987 � 10−3 Figure 6d
AmixedGWO 3.481 � 10−4 9.572 � 10−4 6.527 � 10−4 Figure 6e
CTGWO 1.561 � 10−4 8.696 � 10−4 5.128 � 10−4 Figure 6f

Fig. 6. Column 1: in (a) GWO optimized cloak, in (b) discrete GWO optimized cloak, and in (c), CTGWO optimized cloak; column 2:
in (d) GWO result, in (e) Discrete GWO result, and in (f), CTGWO result.
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Table 3. Comparison of a NSGA-II bi-objective method in protection and invisibility for a half-rectangular cloak.
nmax=250,Q =100, see Figure 7 for the Pareto front and Figure 8 for 2D plots of cloak design and wave fields.

Protection f1 Invisibility f2
f1þf2

2 Links to figures

Best protection 1.690 � 10−4 8.922 � 10−4 5.306 � 10−4 Figure 8f
Best invisibility 1.077 � 10−3 5.363 � 10−4 8.064 � 10−4 Figure 8d
Best compromise 4.643 � 10−4 6.527 � 10−4 5.585 � 10−4 Figure 8e

Fig. 7. Left: Pareto front for NSGA-II Table with 250 iterations, 100 research agents and four selected solutions marked in red. Right:
Magnified view of the four selected solutions, three of which appear in Table 3.
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5.4 Spectral tolerance and comparison with random
cloaks

To further verify the robustness of our approach to a
change in frequency, we compute the invisibility and
protection criteria for several frequency values around the
central freespace wavelength l0. We compare the results
obtained on the optimized cloaks to the results obtained
with random cloaks obtained by filling each voxel of the
design space by an arbitrary integer (resp. real) value in
{7,10,12} (resp. [7:12]). For the central freespace wave-
length l0: for both C1 (protection) and C2 (invisibility)
these criteria are 20 times smaller for the optimized cloaks: 1.5
� 10−4 vs 2.2� 10−3 forC1; and 6� 10−5 vs 1.2� 10−3 forC2.

We infer fromthese results that it isworthoptimizing the
structure of the cloaks: this good behavior at the target
frequency is obtained at the expense of slightly worse
performances at other frequencies, in particular for the
invisibility which appears to be quite resonant (optimized
cloaks lead to a better invisibility than any random
realizations for l/l0∈ [0.95 : 1.03]), as opposed to the
protection which turns out to bemore broadband (the cloak
optimizedwithC-NSGA-II+ lead toabetterprotection than
any random realizations for l/l0∈ [0.82 : 1.22]). We note
that the optimization method operating over a continuous
space lead to amore broadband response (see red and purple
curves in Fig. 15).
6 Discussion

We distinguish two situations: the ternary case, where we
afford three possible values for epsilon, and the continuous
case, where we afford any real value between 7 and 12.

In the ternary case, when nmax= 250 and Q = 100, the
mono-objective approach implemented with the proposed
CTGWO yields the best results in terms of protection, that
is, 1.56 � 10−4 and score, that is, f1þf2

2 ¼ 5:128� 10�4.
Figure 6f confirms this with a good protection behavior
obtained with CTGWO. So in these conditions the
proposed CTGWO algorithm yields the best trade-off
between protection and invisibility.

NSGA-II yields the best result in terms of invisibility,
that is, 5.363 � 10−4, at the expense of a mean value
f1þf2

2 ¼ 8:063� 10�4 which is larger than the score
obtained by CTGWO. However the interest of NSGA-II
is to enable an end-user to choose to favor one criterion
(for instance invisibility) rather than the other. When nmax
= 1000 and Q = 200 affording therefore 8 times more trials
of each objective function, the best protection reaches
1.233�10−4, with an associated mean value
f1þf2

2 ¼ 4:021 � 10�4. In Figures 8 and 10, we can check
the coherence of the shape of the wavefront and the score
values obtained. A less realistic manner to improve the
results is to enable the search for any real permittivity
value between 7 and 12.



Fig. 8. Column 1: in (a) best invisibility cloak, in (b) best compromise between invisibility and protection cloak, and in (c), best
protection cloak; column 2: in (d) best invisibility result, in (e) best compromise between invisibility and protection result, and in
(f), best protection result. See Table 3 for numerical values.
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In the continuous case, still with 2.5 ×104 trials of both
f1 and f2, we reach a best protection criterion 7.845 � 10�5,
a best invisibility criterion 3.274 � 10�5, and a best mean
value 1.416 � 10�4. The results are improved but the
corresponding physical constraints are verymuch strength-
ened, as we assume we can choose any material for any
voxel in the cloak. In the continuous case, with nmax =1000
and Q= 200, we reach very low best protection (6.30584 �
10�5), best invisibility (2.59173 � 10−5), and best mean
(1.10285 � 10�4) values. The visual results in the
continuous case (see Figs. 12 and 14) are very convincing,
and clearly illustrate the difference between the best
protection, the best invisibility, the best compromise, and
the best protection cases. Finally, the tolerance with
respect to the operating freespace incident wavelength
showed a broadband behavior in terms of protection and a
rather narrowband behavior for the invisibility criterion, as
shown by the comparison to random cloaks in Figure 15.



Fig. 9. Pareto front for NSGA-II Table with 250 iterations, 100 research agents, with four selected solutions out of a total of 175.

Table 6. Comparison of a NSGA-II bi-objective method in protection and invisibility for a half-rectangular cloak.
nmax=1000,Q = 200 .

Protection f1 Invisibility f2
f1þf2

2 Links to figures

Best protection 6.306 � 10−5 2.341 � 10−4 1.486 � 10−4 Figure 14f
Best invisibility 7.782 � 10−4 2.592 � 10−5 4.021 � 10−4 Figure 14d
Best compromise 1.530 � 10−4 6.741 � 10−5 1.102 � 10−4 Figure 14e

Table 4. Comparison of a NSGA-II bi-objective method in protection and invisibility for a half-rectangular cloak.
nmax =1000, Q = 200. See Figure 7 for the Pareto front and Figure 8 for 2D plots of cloak design and wave fields.

Protection f1 Invisibility f2
f1þf2

2 Links to figures

Best protection 1.234 � 10−4 6.808 � 10−4 4.021 � 10−4 Figure 10f
Best invisibility 1.006 � 10−3 4.312 � 10−4 7.188 � 10−4 Figure 10d
Best compromise 4.060 � 10−4 5.198 � 10−4 4.629 � 10−4 Figure 10e

Table 5. Comparison of a NSGA-II bi-objective method in protection and invisibility for a half-rectangular cloak.
nmax = 250, Q = 100.

Protection f1 Invisibility f2
f1þf2

2 Links to figures

Best protection 7.845 � 10−5 4.302 � 10−4 2.543 � 10−4 Figure 12f
Best invisibility 4.419 � 10−4 3.274 � 10−5 2.373 � 10−4 Figure 12d
Best compromise 1.666 � 10−4 1.167 � 10−4 1.416 � 10−4 Figure 12e
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7 Conclusion

In this work, we address the issue of an electromagnetic
cloak’s design in the transverse magnetic TM polariza-
tion (whereby the magnetic field is perpendicular to the
(xy)-plane containing the computational domain). This
polarization has been chosen as the model can then be
adapted to plasmonics by assuming some Drude-like
dispersion in the permittivity [36]. More precisely, this
means that s in equation (1) should be frequency
dependent, and x is set to 1. However, the transverse
electric polarization would be also worth investigating,
in that case s is set to 1 in equation (1), and x plays
the role of the permittivity.



Fig. 10. Column 1: in (a) best invisibility cloak, in (b) best compromise between invisibility and protection cloak, and in (c), best
protection cloak; column 2: in (d) best invisibility result, in (e) best compromise between invisibility and protection result, and in
(f), best protection result.

Fig. 11. In red, the four selected solutions.

14 R. Aznavourian et al.: EPJ Appl. Metamat. 11, 11 (2024)



Fig. 12. Column 1: in (a) best invisibility cloak, in (b) best compromise between invisibility and protection cloak, and in (c), best
protection cloak; column 2: in (d) best invisibility result, in (e) best compromise between invisibility and protection result, and in
(f), best protection result.

Fig. 13. In red, the four selected solutions.

R. Aznavourian et al.: EPJ Appl. Metamat. 11, 11 (2024) 15



Fig. 14. Column 1: in (a) Best invisibility cloak, in (b) Best compromise between invisibility and protection cloak, and in (c), Best
protection cloak; Column 2: in (d) Best invisibility result, in (e) Best compromise between invisibility and protection result, and in
(f), Best protection result.
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Fig. 15. Spectral tolerance of the best candidates in terms of protection (C1, left panel) and invisibility (C2, right panel). The
wavelength in abscissa is normalized by l0, the freespace wavelength targeted for the optimization process. The blue curves correspond
to the CTGWOmethod, the orange ones to T-NSGA-II, the green ones to T-NSGA-II+, the red ones to C-NSGA-II and the purple ones
to C-NSGA-II+. The five grey (resp. black) curves in each plot represent the spectral behavior ofC1 andC2 for random cloaks obtained
by filling each voxel of the design space by an arbitrary integer (resp. real) value in {7, 10, 12} (resp. [7:12]).
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Our objective is here to achieve the best compromise
between protection and invisibility for TM waves. In other
words, we are looking for the best trade-off between
protection while considering the wave amplitude inside the
cloak, and invisibility while considering the wave behavior
outside of the cloak. This is a large scale bi-objective
optimization problem. We propose two approaches: in
the first one we transform this problem into a mono-
objective optimization problem and seek for the best mean
value of protection and invisibility criteria. In the second
one we look for the best protection, the best invisibility,
and the best trade-off with a bi-objective optimization
algorithm. GWO is a well known mono-objective optimi-
zation algorithm which reaches the desired solution with a
reduced number of iterations. We propose a novel mono-
objective version of GWO, namely the chaotic ternary
GWO, with three main innovations: ad hoc update rules to
face ternary search spaces, evolving map and chaotic
sequences to improve exploration abilities, and division
of the pack into two groups to improve diversity. We apply
this algorithm, and the comparative GWO and amix-
edGWO (both mono-objective) as well as the NSGA-II
(bi-objective) to solve the considered cloak design problem.
In the considered cloaking application, and with the help of
2.5 × 104 evaluations of these criteria, the proposed
CTGWO algorithm yields the best mean value, that is,
5.128� 10�4, hence the best ‘trade-off’, between protection
and invisibility.

It surpasses GWO (29.871 � 10�4), amixedGWO
(6.526� 10�4); and the best trade-off provided by NSGA-II
(5.306� 10�4). A possible prospect could consist in altering
the ternary map in CTGWO to favor one particular
material, among the three which are chosen to build the
cloak. This could help in implementing the cloak with a
preferred material.
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