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EXPONENTIAL DECAY OF SOLUTIONS OF DAMPED WAVE

EQUATIONS IN ONE DIMENSIONAL SPACE IN THE LP

FRAMEWORK FOR VARIOUS BOUNDARY CONDITIONS

Yacine Chitour1 and Hoai-Minh Nguyen2,*

Abstract. We establish the decay of the solutions of the damped wave equations in one dimensional
space for the Dirichlet, Neumann, and dynamic boundary conditions where the damping coefficient
is a function of space and time. The analysis is based on the study of the corresponding hyperbolic
systems associated with the Riemann invariants. The key ingredient in the study of these systems is
the use of the internal dissipation energy to estimate the difference of solutions with their mean values
in an average sense.
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1. Introduction

This paper is devoted to the decay of solution of the damped wave equations in one dimensional space in the
Lp-framework for 1 < p < +∞ for various boundary conditions where the damping depends on space and time.
More precisely, we consider the damped wave equation{

∂ttu− ∂xxu+ a∂tu = 0 in R+ × (0, 1),

u(0, ·) = u0, ∂tu(0, ·) = u1 on (0, 1),
(1.1)

equipped with the following boundary conditions:

Dirichlet boundary condition: u(t, 0) = u(t, 1) = 0, for t ≥ 0, (1.2)

Neumann boundary condition: ∂xu(t, 0) = ∂xu(t, 1) = 0, for t ≥ 0, (1.3)

and, for κ > 0,

dynamic boundary condition: ∂xu(t, 0)− κ∂tu(t, 0) = ∂xu(t, 1) + κ∂tu(t, 1) = 0, for t ≥ 0. (1.4)
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Here u0 ∈ W 1,p(0, 1) (with u0(0) = u0(1) = 0, i.e., u0 ∈ W 1,p
0 (0, 1), in the case where the Dirichlet boundary

condition is considered), and u1 ∈ Lp(0, 1) are the initial conditions. Moreover, a ∈ L∞(R+ × (0, 1)
)
is assumed

to verify the following hypothesis:

a ≥ 0, and ∃λ, ε0 > 0, (x0 − ε0, x0 + ε0) ⊂ (0, 1) such that a ≥ λ on R+ × (x0 − ε0, x0 + ε0), (1.5)

i.e, a is non-negative and a(t, x) ≥ λ > 0 for t ≥ 0 and for x in some open subset of (0, 1). The region where
a > 0 represents the region in which the damping term is active.

The decay of the solutions of (1.1) equipped with either (1.2), or (1.3), or (1.4) has been extensively inves-
tigated in the case where a is independent of t, i.e., a(t, x) = a(x) and mainly in the L2-framework, i.e. within
an Hilbertian setting. In this case, concerning the Dirichlet boundary condition, under the additional geometric
multiplier condition on a, by the multiplier method, see e.g., [1, 2], one can prove that the solution decays
exponentially, i.e., there exist positive constants C and γ independent of u such that

∥∂tu(t, ·)∥L2(0,1) + ∥∂xu(t, ·)∥L2(0,1) ≤ Ce−γt
(
∥∂tu(0, ·)∥L2(0,1) + ∥∂xu(0, ·)∥L2(0,1)

)
, t ≥ 0. (1.6)

The assumption that a satisfies the geometric multiplier condition is equivalent to the requirement that a(x) ≥
λ > 0 on some neighbourhood of 0 or 1. Based on more sophisticate arguments in the seminal work of Bardos,
Lebeau, and Rauch on the controllability of the wave equation [3], Lebeau [4] showed that (1.6) also holds
without the geometric multiplier condition on a, see also the work of Rauch and Taylor [5]. When the damping
coefficient a is also time-dependent, similar results have been obtained recently by Le Rousseau et al. in [6]. It is
worth noticing that strong stabilization, i.e., the energy decay to zero for each trajectory, has been established
previously using LaSalle’s invariance argument [7, 8]. The analysis of the nonlinear setting associated with (1.1)
can be found in [9–15] and the references therein. Similar results holds for the Neumann boundary condition
[3, 6, 13, 15]. Concerning the dynamic boundary condition without interior damping effect, i.e., a ≡ 0, the
analysis for L2-framework was previously initiated by Quinn and Russell [16]. They proved that the energy
exponentially decays in L2-framework in one dimensional space. The exponential decay for higher dimensional
space was proved by Lagnese [17] using the multiplier technique (see also [16]). The decay hence was established
for the geometric multiplier condition and this technique was later extended in [18], see also [19] for a nice
account on these issues.

Much less is known about the asymptotic stability of (1.1) equipped with either (1.2), or (1.3), or (1.4) in
Lp-framework. This is probably due to the fact that for linear wave equations considered in domains of Rd

with d ≥ 2 is not a well defined bounded operator in general in Lp framework with p ̸= 2, a result due to Peral
[20]. As far as we know, the only work concerning exponential decay in the Lp-framework is due to Kafnemer
et al. [21], where the Dirichlet boundary condition was considered. For the damping coefficient a being time-
independent, they showed that the decay holds under the additional geometric multiplier condition on a for
1 < p < +∞. Their analysis is via the multiplier technique involving various non-linear test functions. In the
case of zero damping and with a dynamic boundary condition, previous results have been obtained in [22] where
the problem has been reduced to the study of a discrete time dynamical system over appropriate functional
spaces.

The goal of this paper is to give a unified approach to deal with all the boundary considered in (1.2), (1.3),
and (1.4) in the Lp-framework for 1 < p < +∞ under the condition (1.5). Our results thus hold even in the case
where a is a function of time and space. The analysis is based on the study of the corresponding hyperbolic
systems associated with the Riemann invariants for which new insights are required.

Concerning the Dirichlet boundary condition, we obtain the following result.

Theorem 1.1. Let 1 < p < +∞, ε0 > 0, λ > 0, and let a ∈ L∞(R+ × (0, 1)
)
be such that a ≥ 0 and a ≥ λ > 0

in R+ × (x0 − ε0, x0 + ε0) ⊂ R+ × (0, 1) for some x0 ∈ (0, 1). Then there exist positive constants C and γ
depending only on p, ∥a∥

L∞
(
R+×(0,1)

), ε0, and λ such that for all u0 ∈ W 1,p
0 (0, 1) and u1 ∈ Lp(0, 1), the unique
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weak solution u ∈ C([0,+∞);W 1,p
0 (0, 1)) ∩ C1([0,+∞);Lp(0, 1)) of (1.1) and (1.2) satisfies

∥∂tu(t, ·)∥Lp(0,1) + ∥∂xu(t, ·)∥Lp(0,1) ≤ Ce−γt
(
∥u1∥Lp(0,1) + ∥∂xu0∥Lp(0,1)

)
, t ≥ 0. (1.7)

The meaning of the (weak) solutions given Theorem 1.1 is given in Section 2 (see Def. 2.1) and their well-
posedness is also established there (see Prop. 2.5). Our analysis is via the study of the decay of solutions of
hyperbolic systems which are associated with (1.1) via the Riemann invariants. Such a decay for the hyperbolic
system, even in the case p = 2, is new to our knowledge. The analysis of these systems has its own interest and
is motivated by recent analysis on the controllability of hyperbolic systems in one dimensional space [23–26].

As in [21, 27], we set

ρ(t, x) = ux(t, x) + ut(t, x) and ξ(t, x) = ux(t, x)− ut(t, x) for (t, x) ∈ R+ × (0, 1). (1.8)

One can check that for a smooth solution u of (1.1) and (1.2), the pair of functions (ρ, ξ) defined in (1.8) satisfies
the system


ρt − ρx = − 1

2a(ρ− ξ) in R+ × (0, 1),

ξt + ξx = 1
2a(ρ− ξ) in R+ × (0, 1),

ρ(t, 0)− ξ(t, 0) = ρ(t, 1)− ξ(t, 1) = 0 in R+.

(1.9)

One cannot hope the decay of a general solutions of (1.9) since any pair (c, c) where c ∈ R is a constant
is a solution of (1.9). Nevertheless, for (ρ, ξ) being defined by (1.9) for a solution u of (1.1), one also has the
following additional information

� 1

0

ρ(t, x) + ξ(t, x) dx = 0 for t ≥ 0. (1.10)

Concerning System (1.9) itself (i.e., without necessarily assuming (1.10)), we prove the following result, which
takes into account (1.10).

Theorem 1.2. Let 1 < p < +∞, ε0 > 0, λ > 0, and a ∈ L∞(R+ × (0, 1)
)
be such that a ≥ 0 and a ≥ λ > 0

in R+ × (x0 − ε0, x0 + ε0) ⊂ R+ × (0, 1) for some x0 ∈ (0, 1). There exist a positive constant C and a positive
constant γ depending only on on p, ∥a∥

L∞
(
R+×(0,1)

), ε0, and λ such that the unique solution (ρ, ξ) of (1.9) with

the initial condition ρ(0, ·) = ρ0 and ξ(0, ·) = ξ0 satisfies

∥(ρ− c0, ξ − c0)(t, ·)∥Lp(0,1) ≤ Ce−γt∥(ρ(0, ·)− c0, ξ(0, ·)− c0)∥Lp(0,1), t ≥ 0, (1.11)

where

c0 :=
1

2

� 1

0

(
ρ(0, x) + ξ(0, x)

)
dx, (1.12)



4 Y. CHITOUR AND H.-M. NGUYEN

In Theorem 1.2, we consider the broad solutions. It is understood through the broad solution in finite time:
for T > 0 and 1 ≤ p < +∞, a broad solution u of the system



ρt − ρx = − 1
2a(ρ− ξ) in (0, T )× (0, 1),

ξt + ξx = 1
2a(ρ− ξ) in (0, T )× (0, 1),

ρ(t, 0)− ξ(t, 0) = ρ(t, 1)− ξ(t, 1) = 0 in (0, T ),

ρ(0, ·) = ρ0, ξ(0, ·) = ξ0 in (0, 1),

(1.13)

is a pair of functions (ρ, ξ) ∈ C([0, T ];
[
Lp(0, 1)

]2) ∩ C([0, 1];
[
Lp(0, T )

]2)
which obey the characteristic rules,

see e.g., [24]. The well-posedness of (1.13) can be found in [24] (see also the appendix of [28]). The analysis
there is mainly for the case p = 2 but the arguments extend naturally for the case 1 ≤ p < +∞.

In the Lp-framework, the Neumann boundary condition and its corresponding hyperbolic systems are dis-
cussed in Section 5 and the dynamic boundary condition and its corresponding hyperbolic systems are discussed
in Section 6. Concerning the dynamic boundary condition, the decay holds even under the assumption a ≥ 0.
The analysis for the Neumann case shares a large part in common with the one of the Dirichlet boundary
condition. The difference in their analysis comes from taking into account differently the boundary condition.
The analysis of the dynamic condition is similar but much simpler.

The study of the wave equation in one dimensional space via the corresponding hyperbolic system is known.
The controllability and stability of hyperbolic systems has been also investigated extensively. This goes back
to the work of Russel [29, 30] and Rauch and Taylor [5]. Many important progress has been obtained recently,
see, e.g., [31] and the references therein. It is worth noting that many works have been devoted to the L2-
framework. Less is studied in the Lp-scale. In this direction, we want to mention [23] where the exponential
stability is studied for dissipative boundary condition.

Concerning the wave equation in one dimensional space, the exponential decay in L2-setting for the dynamic
boundary condition is also established via its corresponding hyperbolic systems [16]. However, to our knowledge,
the exponential decay for the Dirichlet and Neumann boundary conditions has not been established even in
L2-framework via this approach. Our work is new and quite distinct from the one in [16] and has its own interest.
First, the analysis in [16] uses essentially the fact that the boundary is strictly dissipative, i.e., κ > 0 in (1.4).
Thus the analysis cannot be used for the Dirichlet and Neumann boundary conditions. Moreover, it is not clear
how to extend it to the Lp-framework. Concerning our analysis, the key observation is that the information of
the internal energy allows one to control the difference of the solutions and its mean value in the interval of
time (0, T ) in an average sense. This observation is implemented in two lemmas (Lem. 3.2 and Lem. 3.3) after
using a standard result (Lem. 3.1) presented in Section 3. These two lemmas are the main ingredients of our
analysis for the Dirichlet and Neumann boundary conditions. The proof of the first lemma is mainly based on
the characteristic method while as the proof of the second lemma is inspired from the theory of functions with
bounded mean oscillations due to John and Nirenberg [32]. As seen later that, the analysis for the dynamic
boundary condition is much simpler for which the use of Lemma 3.1 is sufficient.

An interesting point of our analysis is the fact that these lemmas do not depend on the boundary conditions
used. In fact, one can apply it in a setting where a bound of the internal energy is accessible. This allows us to
deal with all the boundary conditions considered in this paper by the same way. Another point of our analysis
which is helpful to be mentioned is that the asymptotic stability for hyperbolic systems in one dimensional
space has been mainly studied for general solutions. This is not the case in the setting of Theorem 1.2 where the
asymptotic stability holds under condition (1.10). It is also worth noting that the time-dependent coefficients
generally make the phenomena more complex, see [28] for a discussion on the optimal null-controllable time.

The analysis in this paper cannot handle the cases p = 1 and p = +∞. Partial results in this direction for
the Dirichlet boundary condition can be found in [21] where a is constant and in some range. These cases will
be considered elsewhere by different approaches.
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The paper is organized as follows. The well-posedness of (1.1) equipped with one of the boundary conditions
(1.2) and (1.3) is discussed in Section 2, where a slightly more general context is considered (the boundary
condition (1.4) is considered directly in Sect. 6; comments on this point is given in Rem. 6.5). Section 4 is
devoted to the proof of Theorem 1.1 and Theorem 1.2. We also relaxed slightly the non-negative assumption on
a in Theorem 1.1 and Theorem 1.2 there (see Thm. 4.1 and Thm. 4.2) using a standard perturbative argument.
The Neumann boundary condition is studied in Section 5 and the Dynamic boundary condition is considered
in Section 6.

2. The well-posedness in Lp-setting

In this section, we give the meaning of the solutions of the damped wave equation (1.1) equipped with
either the Dirichlet boundary condition (1.2) or the Neumann boundary condition (1.3) and establish their
well-posedness in the Lp-framework with 1 ≤ p ≤ +∞. We will consider a slightly more general context. More
precisely, we consider the system

{
∂ttu− ∂xxu+ a∂tu+ b∂xu+ cu = f in (0, T )× (0, 1),

u(0, ·) = u0, ∂tu(0, ·) = u1 in (0, 1),
(2.1)

equipped with either

Dirichlet boundary condition: u(t, 0) = u(t, 1) = 0 for t ∈ (0, T ), (2.2)

or

Neumann boundary condition: ∂xu(t, 0) = ∂xu(t, 1) = 0 for t ∈ (0, T ). (2.3)

Here a, b, c ∈ L∞((0, T )× (0, 1)) and f ∈ Lp((0, T )× (0, 1)).
We begin with the Dirichlet boundary condition.

Definition 2.1. Let T > 0, 1 ≤ p < +∞, a, b, c ∈ L∞((0, T )× (0, 1)), f ∈ Lp((0, T )× (0, 1)), u0 ∈ W 1,p
0 (0, 1),

and u1 ∈ Lp(0, 1). A function u ∈ C([0, T ];W 1,p
0 (0, 1)) ∩ C1([0, T ];Lp(0, 1)) is called a (weak) solution of (2.1)

and (2.2) (up to time T ) if

u(0, ·) = u0, ∂tu(0, ·) = u1 in (0, 1), (2.4)

and

d2

dt2

� 1

0

u(t, x)v(x) dx+

� 1

0

ux(t, x)vx(x) dx+

� 1

0

a(t, x)ut(t, x)v(x) dx

+

� 1

0

b(t, x)ux(t, x)v(x) dx+

� 1

0

c(t, x)u(t, x)v(x) dx =

� 1

0

f(t, x)v(x) dx (2.5)

in the distributional sense in (0, T ) for all v ∈ C1
c (0, 1).

Definition 2.1 can be modified to deal with the case p = +∞ as follows.
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Definition 2.2. Let T > 0, a, b, c ∈ L∞((0, T ) × (0, 1)), f ∈ L∞((0, T ) × (0, 1)), u0 ∈ W 1,∞
0 (0, 1), and u1 ∈

L∞(0, 1). A function u ∈ L∞([0, T ];W 1,∞
0 (0, 1))∩W 1,∞([0, T ];L∞(0, 1)) is called a (weak) solution of (2.1) and

(2.2) (up to time T ) if u ∈ C([0, T ];W 1,2
0 (0, 1)) ∩ C1([0, T ];L2(0, 1))1 and satisfies (2.4) and (2.5).

Concerning the Neumann boundary condition, we have the following definition.

Definition 2.3. Let T > 0, 1 ≤ p < +∞, a, b, c ∈ L∞((0, T )× (0, 1)), f ∈ Lp((0, T )× (0, 1)), u0 ∈ W 1,p(0, 1),
and u1 ∈ Lp(0, 1). A function u ∈ C([0, T ];W 1,p(0, 1)) ∩ C1([0, T ];Lp(0, 1)) is called a (weak) solution of (2.1)
and (2.3) (up to time T ) if (2.4) is valid and

d2

dt2

� 1

0

u(t, x)v(x) dx+

� 1

0

ux(t, x)vx(x) dx

+

� 1

0

b(t, x)ux(t, x)v(x) dx+

� 1

0

c(t, x)u(t, x)v(x) dx+

� 1

0

a(t, x)ut(t, x)v(x) dx =

� 1

0

f(t, x)v(x) dx (2.6)

holds in the distributional sense in (0, T ) for all v ∈ C1([0, 1]).

Definition 2.1 can be modified to deal with the case p = +∞ as follows.

Definition 2.4. Let T > 0, a, b, c ∈ L∞((0, T ) × (0, 1)), f ∈ L∞((0, T ) × (0, 1)), u0 ∈ W 1,∞(0, 1), and u1 ∈
L∞(0, 1). A function u ∈ L∞([0, T ];W 1,∞(0, 1)) ∩ W 1,∞([0, T ];L∞(0, 1)) is called a (weak) solution of (2.1)
and (2.3) (up to time T ) if u ∈ C([0, T ];W 1,2(0, 1)) ∩ C1([0, T ];L2(0, 1))2, (2.4) is valid, and (2.5) holds in the
distributional sense in (0, T ) for all v ∈ C1([0, 1]).

Concerning the well-posedness of the Dirichlet system (2.1) and (2.2), we establish the following result.

Proposition 2.5. Let T > 0, 1 ≤ p ≤ +∞, and a, b, c ∈ L∞((0, T ) × (0, 1)), and let u0 ∈ W 1,p
0 (0, 1), u1 ∈

Lp(0, 1), and f ∈ Lp
(
(0, T )× (0, 1)

)
. Then there exists a unique (weak) solution u of (2.1) and (2.2). Moreover,

it holds

∥∂tu(t, ·)∥Lp(0,1) + ∥∂xu(t, ·)∥Lp(0,1) ≤ C
(
∥u1∥Lp(0,1) + ∥∂xu0∥Lp(0,1) + ∥f∥

Lp
(
(0,T )×(0,1)

)), t ≥ 0 (2.7)

for some positive constant C = C(p, T, ∥a∥L∞ , ∥b∥L∞ , ∥c∥L∞) which is independent of u0, u1, and f .

Concerning the well-posedness of the Neumann system (2.1) and (2.3), we prove the following result.

Proposition 2.6. Let T > 0, 1 ≤ p ≤ +∞, and a, b, c ∈ L∞((0, T ) × (0, 1)), and let u0 ∈ W 1,p(0, 1), u1 ∈
Lp(0, 1), and f ∈ Lp

(
(0, T )× (0, 1)

)
. Then there exists a unique (weak) solution u of (2.1) and (2.3) and

∥∂tu(t, ·)∥Lp(0,1) + ∥∂xu(t, ·)∥Lp(0,1) ≤ C
(
∥u1∥Lp(0,1) + ∥∂xu0∥Lp(0,1) + ∥f∥

Lp
(
(0,T )×(0,1)

)), t ≥ 0 (2.8)

for some positive constant C = C(p, T, ∥a∥L∞ , ∥b∥L∞ , ∥c∥L∞) which is independent of u0, u1, and f .

Remark 2.7. The definition of weak solutions and the well-posedness are stated for p = 1 and p = +∞ as well.
The existence and the well-posedness is well-known in the case p = 2. The standard analysis in the case p = 2
is via the Galerkin method.

1By interpolation, one can use C([0, T ];W 1,2
0 (0, 1))∩C1([0, T ];L2(0, 1)) instead of C([0, T ];W 1,2

0 (0, 1))∩C1([0, T ];L2(0, 1)) for
any 1 ≤ q < +∞. This condition is used to give the meaning of the initial conditions.

2By interpolation, one can use C([0, T ];W 1,2
0 (0, 1))∩C1([0, T ];L2(0, 1)) instead of C([0, T ];W 1,2(0, 1))∩C1([0, T ];L2(0, 1)) for

any 1 ≤ q < +∞. This condition is used to give the meaning of the initial conditions.
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The rest of this section is devoted to the proof of Proposition 2.5 and Proposition 2.6 in Section 2.1 and
Section 2.2, respectively.

2.1. Proof of Proposition 2.5

The proof is divided into two steps in which we prove the uniqueness and the existence.
• Step 1: Proof of the uniqueness. Assume that u is a (weak) solution of (2.1) with f = 0 in (0, T )× (0, 1)

and u0 = u1 = 0 in (0, 1). We will show that u = 0 in (0, T )× (0, 1). Set

g(t, x) = −a(t, x)∂tu(t, x)− b(t, x)∂xu(t, x)− c(t, x)u(t, x). (2.9)

Then u is a weak solution of the system
∂ttu− ∂xxu = g in (0, T )× (0, 1),

u(t, 0) = u(t, 1) = 0 for t ∈ (0, T ),

u(0, ·) = 0, ∂tu(0, ·) = 0 in (0, 1).

(2.10)

Extend u and g in (0, T ) × R by appropriate reflection in x first by odd extension in (−1, 0), i.e., u(t, x) =
−u(t,−x) and g(t, x) = −g(t,−x) in (0, T )× (−1, 0) and so on, and still denote the extension by u and g. Then
u ∈ C([0, T ];W 1,p(−k, k)) ∩ C1([0, t];Lp(−k, k)) and g ∈ Lp

(
(0, T ) × (−k, k)

)
for k ≥ 1 and for 1 ≤ p < +∞,

and similar facts holds for p = +∞. We also obtain that u(0, ·) = 0 and ∂tu(0, ·) = 0 in R, and

∂ttu− ∂xxu = g in (0, T )× R in the distributional sense. (2.11)

The d’Alembert formula gives, for t ≥ 0, that

u(t, x) =
1

2

� t

0

� x+t−τ

x−t+τ

g(τ, y) dy dτ. (2.12)

We then obtain for t ≥ 0

∂tu(t, x) =
1

2

� t

0

g(τ, x+ t− τ) + g(τ, x− t+ τ) dτ (2.13)

and

∂xu(t, x) =
1

2

� t

0

g(τ, x+ t− τ)− g(τ, x− t+ τ) dτ. (2.14)

Using (2.9), we derive from (2.12), (2.13) and (2.14) that, for 1 ≤ p < +∞ and for t ≥ 0,

� 1

0

|∂tu(t, x)|p + |∂tu(t, x)|p + |∂xu(t, x)|p dx

≤ C

� t

0

� 1

0

(
|∂tu(s, y)|p + |∂xu(s, y)|p + |u(s, y)|p

)
dy ds, (2.15)
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and, for p = +∞,

∥u(t, ·)∥L∞(0,1) + ∥∂tu(t, ·)∥L∞(0,1) + ∥∂xu(t, ·)∥L∞(0,1)

≤ Ct
(
∥∂tu(t, ·)∥

L∞
(
(0,t)×(0,1)

) + ∥∂xu(t, ·)∥
L∞
(
(0,t)×(0,1)

) + ∥u(t, ·)∥
L∞
(
(0,t)×(0,1)

)), (2.16)

for positive constant C only depending only on p, T, ∥a∥L∞ , ∥b∥L∞ , ∥c∥L∞ . In the sequel, such constants will
again be denoted by C.

It is immediate to deduce from the above equations that u = 0 on [0, 1/2C]× (0, 1) and then u = 0 in (0, T )×
(0, 1). The proof of the uniqueness is complete.

• Step 2: Proof of the existence. Let (an), (bn), and (cn) be smooth functions in [0, T ] × [0, 1] such that
supp an, supp bn, supp cn ∩ 0× [0, 1] = ∅,

(an, bn, cn) ⇀ (a, b, c) weakly star in
(
L∞((0, T )× (0, 1)

))3
,

and

(an, bn, cn) → (a, b, c) in
(
Lq
(
(0, T )× (0, 1)

))3
for 1 ≤ q < +∞.

Let u0,n ∈ C∞
c (0, 1) and u1,n ∈ C∞

c (0, 1) be such that, if 1 ≤ p < +∞,

u0,n → u0 in W 1,p
0 (0, 1) and u1,n → u1 in Lp(0, 1),

and, if p = +∞ then the following two facts hold

u0,n ⇀ u0 weakly star in W 1,∞
0 (0, 1) and u1,n ⇀ u1 weakly star in L∞(0, 1),

and, for 1 ≤ q < +∞,

u0,n → u0 in W 1,q
0 (0, 1) and u1,n → u1 in Lq(0, 1).

The existence of (an, bn, cn) and the existence of u0,n and u1,n follows from the standard theory of Sobolev
spaces, see, e.g., [33].

Let un be the weak solution corresponding to (an, bn, cn) with initial data (u0,n, u1,n). Then un is smooth in
[0, T ]× [0, 1]. Set

gn(t, x) = −an(t, x)∂tun(t, x)− bn(t, x)∂xun(t, x)− cn(t, x)un(t, x) in (0, T )× (0, 1).

Extend un, gn, and f in (0, T )×R by first odd refection in (−1, 0) and so on, and still denote the extension by
un and gn, and f . We then have

∂ttun − ∂xxun = gn + f in (0, T )× R, (2.17)

The d’Alembert formula gives

u(t, x) =
1

2

� t

0

� x+t−τ

x−t+τ

gn(τ, y) + f(τ, y) dy dτ +
1

2

(
un(0, x − t) + un(0, x + t)

)
+

1

2

� x+t

x−t

∂tun(0, y) dy.
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As in the proof of the uniqueness, we then have, for 1 ≤ p < +∞ and 0 < t < T ,

� 1

0

|un(t, x)|p + |∂tun(t, x)|p + |∂xun(t, x)|p dx

≤ C

� t

0

� 1

0

(
|∂tu(s, y)|p + |∂xu(s, y)|p

)
dy ds

+ C

(
∥un(0, ·)∥pW 1,p + ∥∂tun(0, ·)∥pLp +

� t

0

� 1

0

|f(s, y)|p dy ds
)
, (2.18)

and, for p = +∞,

∥u(t, ·)∥L∞(0,1) + ∥∂tu(t, ·)∥L∞(0,1) + ∥∂xu(t, ·)∥L∞(0,1)

≤ Ct

(
∥∂tu(t, ·)∥

L∞
(
(0,t)×(0,1)

) + ∥∂xu(t, ·)∥
L∞
(
(0,t)×(0,1)

))

+ C

(
∥un(0, ·)∥W 1,∞ + ∥∂tun(0, ·)∥L∞ + ∥f∥

L∞
(
(0,t)×(0,1)

)) . (2.19)

Letting n → +∞, we derive (2.8) from (2.18) and (2.19).
To derive that u ∈ C([0, T ];W 1,p

0 (0, 1)) ∩ C1([0, T ];Lp(0, 1)) in the case 1 ≤ p < +∞ and u ∈
C([0, T ];W 1,2

0 (0, 1)) ∩ C1([0, T ];L2(0, 1)) otherwise, one just notes that (un) is a Cauchy sequence in these
spaces correspondingly.

The proof is complete.

Remark 2.8. Our proof on the well-posedness is quite standard and is based on the d’Alembert formula. This
formula was also used previously in [21].

Remark 2.9. There are several ways to give the notion of weak solution even in the case p = 2, see, e.g.,
[34, 35]. The definitions given here is a nature modification of the case p = 2 given in [34].

2.2. Proof of Proposition 2.6

The proof of Proposition 2.6 is similar to the one of Proposition 2.5. To apply the d’Alembert formula, one just
needs to extend various function appropriately and differently. For example, in the proof of the uniqueness, one
extend u and g in (0, T )×R by appropriate reflection in x first by even extension in (−1, 0), i.e., u(t, x) = u(t,−x)
and g(t, x) = g(t,−x) in (0, T )× (−1, 0) and so on. The details are left to the reader.

3. Some useful lemmas

In this section, we prove three lemmas which will be used through out the rest of the paper. The first one
is quite standard and the last two ones are the main ingredients of our analysis for the Dirichlet and Neumann
boundary condition. We begin with the following lemma.

Lemma 3.1. Let 1 < p < +∞, 0 < T < T̂0, and a ∈ L∞((0, T ) × (0, 1)) be such that a ≥ 0 in (0, T ) ×
(0, 1). There exists a positive constant C depending only on p, T̂0, and ∥a∥L∞ such that, for (ρ, ξ) ∈
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[
Lp
(
(0, T )× (0, 1)

)]2
,

� T

0

� 1

0

a|ρ− ξ|p(t, x) dxdt ≤

{
Cmp if p ≥ 2,

C(mp +m
2/p
p ) if 1 < p < 2,

(3.1)

where

mp =

� 1

0

� T

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dtdx. (3.2)

Proof. The proof of Lemma 3.1 is quite standard. For the convenience of the reader, we present its proof. There
exists a positive constant Cp depending only on p such that

� for 2 ≤ p < +∞, it holds, for α, β ∈ R,

(α− β)(α|α|p−2 − β|β|p−2) ≥ Cp|α− β|p;

� for 1 < p < 2, it holds, for α, β ∈ R3

(α− β)(α|α|p−2 − β|β|p−2) ≥ Cp min
{
|α− β|p, |α− β|2

}
.

Using this, we derive that

� T

0

� 1

0
|ρ−ξ|≥1

a|ρ− ξ|p dxdt+
� T

0

� 1

0
|ρ−ξ|<1

a|ρ− ξ|max{p,2} dx dt ≤ mp.

This yields

� T

0

� 1

0

a|ρ− ξ|p(t, x) dxdt ≤ Cmp if p ≥ 2, (3.3)

and, using Hölder’s inequality, one gets

� T

0

� 1

0

a|ρ− ξ|p(t, x) dxdt ≤ C(mp +m2/p
p ) if 1 < p ≤ 2, (3.4)

The conclusion follows from (3.3) and (3.4).

The following lemma is one of the main ingredients in the analysis of the Dirichlet and Neumann boundary
conditions.

Lemma 3.2. Let 1 < p < +∞, 0 < T < T̂0, ε0 > 0, λ > 0, and a ∈ L∞((0, T )× (0, 1)) be such that T > 4ε0,
a ≥ 0 and a ≥ λ > 0 in (0, T ) × (x0 − ε0, x0 + ε0) ⊂ (0, T ) × (0, 1) for some x0 ∈ (0, 1). Let (ρ, ξ) be a broad
solution of the system {

ρt − ρx = − 1
2a(ρ− ξ) in (0, T )× (0, 1),

ξt + ξx = 1
2a(ρ− ξ) in (0, T )× (0, 1).

(3.5)

3Using the symmetry between α and β, one can assume |α| ≥ |β| and by considering β/|α|, it is enough to prove these inequalities
for α = 1 and β ∈ (−1, 1). One finally reduces the analysis for β ∈ (0, 1) and even β close to one. The conclusion follows by performing
a Taylor expansion with respect to 1− β.
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Set

mp =

� 1

0

� T

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dtdx. (3.6)

Then there exists z ∈ (x0 − ε0/2, x0 + ε0/2) such that, with T1 = T − 4ε0,

� ε0/2

0

� T1

0

|ρ(t+ s, z)− ρ(t, z)|p dtds+
� ε0/2

0

� T1

0

|ξ(t+ s, z)− ξ(t, z)|p dtds

+

� T

0

|ρ(t, z)− ξ(t, z)|p dt+
� T

0

� 1

0

a|ρ− ξ|p(t, x) dx dt

≤

{
Cmp if p ≥ 2,

C(mp +m
2/p
p ) if 1 ≤ p < 2.

(3.7)

for some positive constant C depending only on ε0, λ, p, T̂0, and ∥a∥L∞ .

Proof. Set

T2 = T − 2ε0.

Then T > T2 > T1 > 0.
We have, for s ∈ (−ε0/2, ε0/2) and y ∈ (x0 − ε0/2, x0 + ε0/2),

ρ(t+2s, y)− ρ(t, y) =
(
ρ(t+ 2s, y)− ρ(t+ s, y + s)

)
+
(
ρ(t+ s, y + s)− ξ(t+ s, y + s)

)
+
(
ξ(t+ s, y + s)− ξ(t, y)

)
+
(
ξ(t, y)− ρ(t, y)

)
. (3.8)

By the characteristics method, we obtain

ξ(t+ s, y + s)− ξ(t, y) =
1

2

� s

0

a(t+ τ, y + τ)
(
ρ(t+ τ, y + τ)− ξ(t+ τ, y + τ)

)
dτ (3.9)

and

ρ(t+ 2s, y)− ρ(t+ s, y + s)

=
1

2

� 2s

s

a(t+ τ, y + 2s− τ)
(
ρ(t+ τ, y + 2s− τ)− ξ(t+ τ, y + 2s− τ)

)
dτ. (3.10)

Combining (3.8), (3.9), and (3.10), after integrating with respect to t from 0 to T1, we obtain, for 0 ≤ s ≤ ε0/2,

� T1

0

|ρ(t+ 2s, y)− ρ(t, y)|p dt ≤ 4p−1

(� T2

0

|ρ(t, y + s)− ξ(t, y + s)|p dt

+2

� T2

0

� 1

0

ap|ρ− ξ|p(t, x) dtdx+

� T

0

|ρ(t, y)− ξ(t, y)|p dt

)
.
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Integrating the above inequality with respect to s from 0 to ε0/2, we obtain

� ε0/2

0

� T1

0

|ρ(t+ 2s, y)− ρ(t, y)|p dtds

≤ 4p

(� x0+ε0

x0−ε0

� T

0

|ρ(t, x)− ξ(t, x)|p dtdx

+ε0

� T

0

|ρ(t, y)− ξ(t, y)|p dt+ ε0

� 1

0

� T

0

ap|ρ− ξ|p(t, x) dtdx

)
. (3.11)

Similarly, we have

� ε0/2

0

� T1

0

|ξ(t+ 2s, y)− ξ(t, y)|p dtds

≤ 4p

(� x0+ε0

x0−ε0

� T

0

|ρ(t, x)− ξ(t, x)|p dtdx

+ε0

� T

0

|ρ(t, y)− ξ(t, y)|p dt+ ε0

� 1

0

� T

0

ap|ρ− ξ|p(t, x) dtdx

)
. (3.12)

Take y = z ∈ (x0 − ε0/2, x0 + ε0/2) such that

� T

0

|ρ(t, z)− ξ(t, z)|p dt ≤ 1

ε0

� x0+ε0

x0−ε0

� T

0

|ρ− ξ|p(t, x) dx dt. (3.13)

By choosing y = z in (3.11) and (3.12), then by using (3.13) and the fact that (itself consequence of (1.5))

� x0+ε0

x0−ε0

� T

0

|ρ(t, x)− ξ(t, x)|p dtdx ≤ C(a, p)

� 1

0

� T

0

ap|ρ− ξ|p(t, x) dtdx,

for some positive constant C(a, p) only depending on a, p, one gets the conclusion.

The next lemma is also a main ingredient of our analysis for the Dirichlet and Neumann boundary conditions.

Lemma 3.3. Let 1 ≤ p < +∞ and L > l > 0, and let u ∈ Lp(0, L+ l). Then there exists a positive constant C
depending only on p, L, and l such that

� L

0

|u(x)−
 L

0

u(y) dy|p dx ≤ C

� l

0

� L

0

|u(x+ s)− u(x)|p dxds. (3.14)

Here and in what follows,
� b

a
means 1

b−a

� b

a
for b > a.

Proof. By scaling, one can assume that L = 1. Fix n ≥ 2 such that 2/n ≤ l ≤ 2/(n− 1).
One first notes that, for x ∈ [0, 1],
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 x+1/n

x

∣∣∣∣∣u(x)−
 x+1/n

x

u(y) dy

∣∣∣∣∣
p

dx
Jensen
≤

 x+1/n

x

 x+1/n

x

|u(x)− u(y)|p dxdy

≤ n2

� 2/n

0

� 1

0

|u(x+ s)− u(x)|p dxds (3.15)

and∣∣∣∣∣
 x+1/n

x

u(s) ds−
 x+2/n

x+1/n

u(t) dt

∣∣∣∣∣
p
Jensen
≤

 x+1/n

x

 x+2/n

x+1/n

|u(s)− u(t)|p dtds

≤ n2

� 2/n

0

� 1

0

|u(x+ s)− u(x)|p dx ds. (3.16)

For 0 ≤ k ≤ n− 1, set

ak =

 k/n+1/n

k/n

u(s) ds.

We then derive from (3.16) that, for 0 ≤ i < j ≤ n− 1,

|aj − ai|p ≤ (|ai+1 − ai|+ · · ·+ |aj − aj−1|)p

≤ np−1(|ai+1 − ai|p + · · ·+ |aj − aj−1|p)

≤ np+1

� 2/n

0

� 1

0

|u(x+ s)− u(x)|p dxds.

This implies, for 0 ≤ k ≤ n− 1,

∣∣∣∣ak −
� 1

0

u(t) dt

∣∣∣∣p ≤

∣∣∣∣∣ 1n
n−1∑
i=0

|ak − ai|

∣∣∣∣∣
p

≤ 1

n

n−1∑
i=0

|ak − ai|p ≤ np+1

� 2/n

0

� 1

0

|u(x+ s)− u(x)|p dx ds. (3.17)

We have

� 1

0

∣∣∣∣u(x)− � 1

0

u(y) dy

∣∣∣∣p dx =

n−1∑
k=0

� k/n+1/n

k/n

∣∣∣∣u(x)− � 1

0

u(y) dy

∣∣∣∣p dx

≤ 2p−1
n−1∑
k=0

� k/n+1/n

k/n

|u(x)− ak|p dx+ 2p−1
n−1∑
k=0

∣∣∣∣ak −
� 1

0

u(y) dy

∣∣∣∣p (3.18)

The conclusion with C = 2pnp+1 now follows from (3.15), (3.17), and (3.18) after noting that L = 1 and
2/n ≤ l.
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Remark 3.4. Related ideas used in the proof of Lemma 3.3 was implemented in the proof of Caffarelli-Kohn-
Nirenberg inequality for fractional Sobolev spaces [36].

4. Exponential decay in Lp-framework for the Dirichlet
boundary condition

In this section, we prove Theorem 1.1 and Theorem 1.2. We begin with the proof Theorem 1.2 in the first
section, and then use it to prove Theorem 1.1 in the second section. We finally extend these results for a which
might be negative in some regions using a standard perturbation argument in the third section.

4.1. Proof of Theorem 1.2

We will only consider smooth solutions (ρ, ξ)4. The general case will follow by regularizing arguments.
Moreover, replacing (ρ, ξ) by (ρ− c0, ξ − c0), where the constant c0 is defined in (1.12), we can assume that

� 1

0

(ρ0 + ξ0) dx = 0.

Multiplying the equation of ρ with ρ|ρ|p−2, the equation of ξ with ξ|ξ|p−2, and integrating the expressions with
respect to x, after using the boundary conditions, we obtain, for t > 0,

1

p

d

dt

� 1

0

(|ρ(t, x)|p + |ξ(t, x)|p) dx+
1

2

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dx = 0. (4.1)

This implies

1

p
∥(ρ, ξ)(t, ·)∥pLp(0,1) +

1

2

� t

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt =
1

p
∥(ρ0, ξ0)∥pLp(0,1). (4.2)

Integrating the equations of ρ and ξ, summing them up and using the boundary conditions, we obtain

d

dt

� 1

0

(
ρ(t, x) + ξ(t, x)

)
dx = 0 for t > 0.

It follows that

� 1

0

(
ρ(t, x) + ξ(t, x)

)
dx =

� 1

0

(
ρ(0, x) + ξ(0, x)

)
dx = 0 for t ≥ 0. (4.3)

By (4.2) and (4.3), to derive (1.11), it suffices to prove that there exists a constant c > 0 depending only on
∥a∥L∞(R+×(0,1)), ε0, γ, and p such that for any T > 2, there exists cT > 0 only depending on p, T, a so that

� T

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt ≥ cT ∥(ρ0, ξ0)∥pLp(0,1). (4.4)

By scaling, without loss of generality, one might assume that

∥(ρ0, ξ0)∥Lp(0,1) = 1 (4.5)

4We thus assume that a is smooth. Nevertheless, the constants in the estimates which will be derived in the proof depend only
on p, ∥a∥L∞ , λ, and ε0.
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Set

mp :=

� T

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt.

Applying Lemma 3.1, we have

� T

0

� 1

0

a|ρ− ξ|p(t, x) dxdt ≤ C(mp +m2/p
p ). (4.6)

By Lemma 3.2 there exists z ∈ (x0 − ε0/2, x0 + ε0/2) such that

� ε0/2

0

� T

0

|ρ(t+ s, z)− ρ(s, z)|p dtds+
� ε0/2

0

� T

0

|ξ(t+ s, z)− ξ(s, z)|p dtds

+

� T

0

|ρ(t, z)− ξ(t, z)|p dt ≤ C(mp +m2/p
p ). (4.7)

By Lemma 3.3, we have

� T

0

|ρ(t, z)−Aρ|p dt ≤ C

� ε0/2

0

� T

0

|ρ(t+ s, z)− ρ(s, z)|p dtds (4.8)

and

� T

0

|ξ(t, z)−Aξ|p dt ≤ C

� ε0/2

0

� T

0

|ξ(t+ s, z)− ξ(s, z)|p dtds. (4.9)

where we have set

Aρ :=

 T

0

ρ(s, z) ds, Aξ :=

 T

0

ξ(s, z) ds. (4.10)

Combining (4.7), (4.8), and (4.9) yields

� T

0

|ρ(t, z) − Aρ|p dt +

� T

0

|ξ(t, z) − Aξ|p dt +

� T

0

|ρ(t, z) − ξ(t, z)|p dt ≤ C(mp + m2/p
p ). (4.11)

We next prove the following estimates

� 1

0

|ρ(0, x)−Aξ|p dx ≤ C(mp +m2/p
p ) (4.12)

and

� 1

0

|ξ(0, x)−Aρ|p dx ≤ C(mp +m2/p
p ). (4.13)
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The arguments being similar, we only provide that of (4.12). For x ∈ (0, 1), one has, by using the boundary
condition at x = 0, i.e., ρ(·, 0) = ξ(·, 0),

ρ(0, x) =
(
ρ(0, x)− ρ(x, 0)

)
+ ρ(x, 0)

=
(
ρ(0, x)− ρ(x, 0)

)
+ ξ(x, 0)

=
(
ρ(0, x)− ρ(x, 0)

)
+
(
ξ(x, 0)− ξ(x+ z, z)

)
+ ξ(x+ z, z),

which yields, after substracting Aξ to both sides of the above equality,

� 1

0

|ρ(0, x)−Aξ|p dx ≤ 3p−1

(� 1

0

|ρ(0, x)− ρ(x, 0)|p dx+

� 1

0

|ξ(x, 0)− ξ(x+ z, z)|p dx

+

� 1

0

|ξ(x+ z, z)−Aξ|p dx

)
. (4.14)

We use the characteristics method, and (3.9) and (3.10) to upper bound the first two integrals in the right-hand

side of (4.14) by C(mp +m
2/p
p ) thanks to Lemma 3.1. Indeed, we have, as in (3.10),

ρ(0, x)− ρ(x, 0) = −1

2

� x

0

a(t, x− t)
(
ρ(t, x− t)− ξ(t, x− t)

)
dt.

Using Hölder’s inequality, one derives that, since a is bounded and non-negative,

� 1

0

|ρ(0, x)− ρ(x, 0)|p dx ≤ C

� 1

0

� x

0

a(t, x− t)|ρ(t, x− t)− ξ(t, x− t)|p dtdx

≤ C

� 1

0

� 1

0

a|ρ− ξ|p(t, x) dtdx.

By Lemma 3.1, one obtains the upper bound for the first integral. Similarly, one reaches the upper bound for
the second integral.

As for the third integral in the right-hand side of (4.14), we perform the change of variables t = x + z to
obtain

� 1

0

|ξ(x+ z, z)−Aξ|p dx =

� z+1

z

|ξ(t, z)−Aξ|p dt

≤
� T

0

|ξ(t, z)−Aξ|p dt,

which is upper bounded by C(mp +m
2/p
p ) according to (4.11) (The condition T > 2 is used here.). The proof

of (4.12) is complete.
We now resume the argument for (4.4). We start by noticing that, for every t ∈ (0, T )

|Aρ −Aξ| ≤ |Aρ − ρ(t, z)|+ |Aξ − ξ(t, z)|+ |ρ(t, z)− ξ(t, z)|.
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Taking the p-th power, integrating over t ∈ (0, T ) and using (4.11), one gets that

|Aρ −Aξ|p ≤ C(mp +m2/p
p ). (4.15)

Similarly, for every x ∈ (0, 1),

Aρ +Aξ =
(
Aρ − ξ(0, x)

)
+
(
Aξ − ρ(0, x)

)
+
(
ρ(0, x) + ξ(0, x)

)
.

Integrating over x ∈ (0, 1) and using (4.3), then taking the p-th power and using (4.12) and (4.13) yield

|Aρ +Aξ|p ≤ C(mp +m2/p
p ). (4.16)

Still, for x ∈ (0, 1), it holds

|ρ(0, x)|p + |ξ(0, x)|p ≤ C
(
|Aρ − ρ(0, x)|p + |Aξ − ξ(0, x)|p

)
+ C(|Aρ|p + |Aξ|p).

Integrating over x ∈ (0, 1) and using (4.5), one gets

1 ≤ C(|Aρ|p + |Aξ|p) + C(mp +m2/p
p ). (4.17)

Since it holds |a|p + |b|p ≤ |a + b|p + |a − b|p for every real numbers a, b, one deduces from (4.15), (4.16) and
(4.17) that

1 ≤ C(mp +m2/p
p )

and hence mp ≥ c3 for some positive constant depending only on ∥a∥L∞(R+×(0,1)), ε0, γ, and p (after fixing for
instance T = 3). The proof of the theorem is complete.

4.2. Proof of Theorem 1.1

Using Theorem 1.2, we obtain the conclusion of Theorem 1.1 for smooth solutions. The proof in the general
case follows from the smooth case by density arguments.

4.3. On the case a not being non-negative

In this section, we first consider the following perturbed system of (1.9):
ρt − ρx = − 1

2a(ρ− ξ)− b(ρ− ξ) in R+ × (0, 1),

ξt + ξx = 1
2a(ρ− ξ) + b(ρ− ξ) in R+ × (0, 1),

ρ(t, 0)− ξ(t, 0) = ρ(t, 1)− ξ(t, 1) = 0 in R+.

(4.18)

We establish the following result.

Theorem 4.1. Let 1 < p < +∞, ε0 > 0, λ > 0, and a, b ∈ L∞(R+ × (0, 1)
)
be such that a ≥ 0 and a ≥ λ > 0

in R+ × (x0 − ε0, x0 + ε0) ⊂ R+ × (0, 1) for some x0 ∈ (0, 1). There exists a positive constant α depending only
on p, ∥a∥L∞ , ε0, and λ such that if

∥b∥L∞ ≤ α, (4.19)
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then there exist constants C, γ > 0 depending only on p, ∥a∥L∞ , ε0, and λ such that, if
� 1

0
ρ0 + ξ0 dx = 0, then

the solution (ρ, ξ) of (4.18) satisfies

∥(ρ, ξ)(t, ·)∥Lp(0,1) ≤ Ce−γt∥(ρ0, ξ0)∥Lp(0,1), t ≥ 0. (4.20)

Proof. Multiplying the equation of ρ with ρ|ρ|p−2, the equation of ξ with ξ|ξ|p−2, and integrating the expressions
with respect to x, after using the boundary conditions, we obtain

1

p

d

dt

� 1

0

(|ρ(t, x)|p + |ξ(t, x)|p) dx+
1

2

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dx

+

� 1

0

b(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dx = 0.

This implies

1

p
∥(ρ, ξ)(t, ·)∥pLp(0,1) +

1

2

� t

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−1 − ξ|ξ|p−1)(t, x) dx dt

+

� t

0

� 1

0

b(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dx =
1

p
∥(ρ0, ξ0)∥pLp(0,1). (4.21)

Integrating the equation of ρ and ξ and using the boundary condition, we obtain

d

dt

� 1

0

(
ρ(t, x) + ξ(t, x)

)
dx = 0, for t > 0.

It follows that

� 1

0

(
ρ(t, x) + ξ(t, x)

)
dx =

� 1

0

(
ρ(0, x) + ξ(0, x)

)
dx = 0, for t > 0. (4.22)

By (4.21) and (4.22), to derive (4.20), it suffices to prove that there exists a constant c > 0 depending only on
∥a∥L∞(R+×(0,1)), ε0, γ, and p such that for T = 35, it holds

� T

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt ≥ c∥(ρ0, ξ0)∥pLp(0,1). (4.23)

Using the facts that a ≥ 0 and b is bounded, a simple application of Gronwall’s lemma to (4.21) yields the
existence of α > 0 depending only on ∥b∥L∞(R+×(0,1)) so that

∥(ρ, ξ)(t, ·)∥pLp(0,1) ≤ epαt∥(ρ, ξ)(0, ·)∥pLp(0,1) for t ∈ [0, T ]. (4.24)

5It holds for T > 2 with c = cT .
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Let (ρ1, ξ1) be the unique solution of the system

ρ1,t − ρ1,x = − 1
2a(ρ1 − ξ1)− b(ρ− ξ) in R+ × (0, 1),

ξ1,t + ξ1,x = 1
2a(ρ1 − ξ1) + b(ρ− ξ) in R+ × (0, 1),

ρ1(t, 0)− ξ1(t, 0) = ρ1(t, 1)− ξ1(t, 1) = 0 in R+,

ρ1(0, ·) = ξ1(0, ·) = 0 in (0, 1).

(4.25)

Thus −b(ρ− ξ) and b(ρ− ξ) can be considered as source terms for the system of (ρ1, ξ1). We then derive from
(4.24) that

∥(ρ1, ξ1)∥Lp(T,·) ≤ Cα∥(ρ, ξ)(0, ·)∥pLp(0,1). (4.26)

Set

ρ̃ = ρ− ρ1 and ξ̃ = ξ − ξ1.

Then 

ρ̃t − ρ̃x = − 1
2a(t, x)(ρ̃− ξ̃) in R+ × (0, 1),

ξ̃t + ξ̃x = 1
2a(t, x)(ρ̃− ξ̃) in R+ × (0, 1),

ρ̃(t, 0)− ξ̃(t, 0) = ρ̃(t, 1)− ξ̃(t, 1) = 0 in R+,

ρ̃(0, ·) = ρ0, ξ̃(0, ·) = ξ0 in (0, 1).

(4.27)

Applying Theorem 1.2, we have

∥(ρ̃, ξ̃)(T, ·)∥Lp ≤ c∥(ρ̃, ξ̃)(0, ·)∥Lp (4.28)

for some positive constant c depending only on ∥a∥L∞ , ε0, and λ. The conclusion now follows from (4.26) and
(4.27).

Regarding the wave equation, we have

Theorem 4.2. Let 1 < p < +∞, ε0 > 0, λ > 0, and a, b ∈ L∞(R+ × (0, 1)
)
be such that a ≥ 0 and a ≥ λ > 0

in R+ × (x0 − ε0, x0 + ε0) ⊂ R+ × (0, 1). There exists a positive constant α depending only on p, ∥a∥L∞ , ε0,
and λ such that if

∥b∥L∞ ≤ α, (4.29)

then there exist positive constants C and γ depending on p, ∥a∥
L∞
(
R+×(0,1)

), ε0, and λ such that for all u0 ∈

W 1,p
0 (0, 1) and u1 ∈ Lp(0, 1), the unique weak solution u ∈ C([0,+∞);W 1,p

0 (0, 1)) ∩ C1([0,+∞);Lp(0, 1)) of
∂ttu− ∂xxu+

(
a(t, x) + b(t, x)

)
∂tu = 0 in R+ × (0, 1),

u(t, 0) = u(t, 1) = 0 in R+,

u(0, ·) = u0, ∂tu(0, ·) = u1 in (0, 1),

(4.30)
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satisfies

∥∂tu(t, ·)∥pLp(0,1) + ∥∂xu(t, ·)∥pLp(0,1) ≤ Ce−γt
(
∥u1∥pLp(0,1) + ∥∂xu0∥pLp(0,1)

)
, t ≥ 0. (4.31)

Proof. The proof of Theorem 4.2 is similar to that of Theorem 1.1 however instead of using Theorem 1.2 one
apply Theorem 4.1. The details are left to the reader.

5. Exponential decay in Lp-framework for the
Neuman boundary condition

In this section, we study the decay of the solutions of the damped wave equation equipped the Neumann
boundary condition and the solutions of the corresponding hyperbolic systems. Here is the first main result of
this section concerning the wave equation.

Theorem 5.1. Let 1 < p < +∞, ε0 > 0, λ > 0, and let a ∈ L∞(R+ × (0, 1)
)
be such that a ≥ 0 and a ≥ λ > 0

in R+ × (x0 − ε0, x0 + ε0) ⊂ R+ × (0, 1) for some x0 ∈ (0, 1). There exist positive constants C and γ depending
only on p, ∥a∥

L∞
(
R+×(0,1)

), ε0, and λ such that for all u0 ∈ W 1,p(0, 1) and u1 ∈ Lp(0, 1), the unique weak

solution u ∈ C([0,+∞);W 1,p(0, 1)) ∩ C1([0,+∞);Lp(0, 1)) of (1.1) and (1.3) satisfies

∥∂tu(t, ·)∥Lp(0,1) + ∥∂xu(t, ·)∥Lp(0,1) ≤ Ce−γt
(
∥u1∥Lp(0,1) + ∥∂xu0∥Lp(0,1)

)
, t ≥ 0. (5.1)

As in the case where the Dirichlet condition is considered, we use the Riemann invariants to transform (1.1)
with Neumann boundary condition into a hyperbolic system. Set

ρ(t, x) = ux(t, x) + ut(t, x) and ξ(t, x) = ux(t, x)− ut(t, x), for (t, x) ∈ R+ × (0, 1). (5.2)

One can check that for smooth solutions u of (1.1), the pair of functions (ρ, ξ) defined in (1.8) satisfies the
system 

ρt − ρx = − 1
2a(ρ− ξ) in R+ × (0, 1),

ξt + ξx = 1
2a(ρ− ξ) in R+ × (0, 1),

ρ(t, 0) + ξ(t, 0) = ρ(t, 1) + ξ(t, 1) = 0 in R+.

(5.3)

Concerning (5.3), we prove the following result.

Theorem 5.2. Let 1 < p < +∞, ε0 > 0, λ > 0, and a ∈ L∞(R+ × (0, 1)
)
be such that a ≥ 0 and a ≥ λ > 0 in

R+ × (x0 − ε0, x0 + ε0) ⊂ R+ × (0, 1) for some x0 ∈ (0, 1). Then there exist positive constants C, γ depending
only on on p, ∥a∥

L∞
(
R+×(0,1)

), ε0, and λ such that the unique solution u of (5.3) with the initial condition

ρ(0, ·) = ρ0 and ξ(0, ·) = ξ0 satisfies

∥(ρ, ξ)(t, ·)∥Lp(0,1) ≤ Ce−γt∥(ρ0, ξ0)∥Lp(0,1). (5.4)

The rest of this section is organized as follows. The first subsection is devoted to the proof of Theorem 5.2
and the second subsection is devoted to the proof of Theorem 5.1.

5.1. Proof of Theorem 5.2

The argument is in the spirit of that of Theorem 1.2. As in there, we will only consider smooth solutions
(ρ, ξ). Multiplying the equation of ρ with ρ|ρ|p−2, the equation of ξ with ξ|ξ|p−2, and integrating the expressions
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with respect to x, after using the boundary conditions, we obtain, for t > 0,

1

p

d

dt

� 1

0

(|ρ(t, x)|p + |ξ(t, x)|p) dx+
1

2

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dx = 0. (5.5)

This implies

1

p
∥(ρ, ξ)(t, ·)∥pLp(0,1) +

1

2

� t

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−1 − ξ|ξ|p−1)(t, x) dxdt =
1

p
∥(ρ0, ξ0)∥pLp(0,1). (5.6)

By (5.6), to derive (5.4), it suffices to prove that there exists a constant c > 0 depending only on ∥a∥L∞(R+×(0,1)),
ε0, γ, and p such that for any T > 2, there exists cT > 0 only depending on p, T, a so that

� T

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt ≥ cT ∥(ρ0, ξ0)∥pLp(0,1). (5.7)

By scaling, without loss of generality, one might assume that

∥(ρ0, ξ0)∥Lp(0,1) = 1 (5.8)

Set

mp :=

� T

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt.

Applying Lemma 3.1, we have

� T

0

� 1

0

a|ρ− ξ|p(t, x) dxdt ≤ C(mp +m2/p
p ). (5.9)

By Lemma 3.2 there exists z ∈ (x0 − ε0/2, x0 + ε0/2) such that

� ε0/2

0

� T

0

|ρ(t+ s, z)− ρ(t, z)|p dtds+
� ε0/2

0

� T

0

|ξ(t+ s, z)− ξ(t, z)|p dtds

+

� T

0

|ρ(t, z)− ξ(t, z)|p dt ≤ C(mp +m2/p
p ). (5.10)

Applying Lemma 3.3, we obtain

� T

0

|ρ(t, z)−
 T

0

ρ(s, z) ds|p dt ≤ C

� ε0/2

0

� T

0

|ρ(t+ s, z)− ρ(t, z)|p dtds (5.11)

and

� T

0

|ξ(t, z)−
 T

0

ξ(s, z) ds|p dt ≤ C

� ε0/2

0

� T

0

|ξ(t+ s, z)− ξ(t, z)|p dtds. (5.12)
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Combining (5.10), (5.11), and (5.12) yields

� T

0

|ρ(t, z)−
 T

0

ρ(τ, z) dτ |p dt+
� T

0

|ξ(t, z)−
 T

0

ξ(τ, z) dτ |p dt

+

� T

0

|ρ(t, z)− ξ(t, z)|p dt ≤ C(mp +m2/p
p ). (5.13)

Using the characteristics method to estimate ρ(τ, 0) by ρ(τ − z, z) and ξ(τ, 0) by ξ(τ + z, z) after using the
boundary condition at 0 and choosing appropriately τ , we derive from (5.9) that (5.13) that∣∣∣∣∣

 T

0

ρ(t, z) dt+

 T

0

ξ(t, z)dt

∣∣∣∣∣
p

≤ C(mp +m2/p
p ). (5.14)

As done to obtain (4.12) and (4.13), we use the characteristic methods to estimate ρ(0, ·) via ξ(t, z) and ξ(0, ·)
via ρ(t, z) after taking into account the boundary conditions (at x = 0 for ρ(0, ·) and at x = 1 for ξ(0, ·)), we
derive from (5.9) and (5.13) that∣∣∣∣∣

 T

0

ρ(t, z) dt

∣∣∣∣∣
p

+

∣∣∣∣∣
 T

0

ξ(t, z)dt

∣∣∣∣∣
p

≥ 1− C(mp +m2/p
p ). (5.15)

Combining (5.14) and (5.15), we derive (after choosing T = 3) that there exists a postive constant c3 only
depending on ∥a∥L∞(R+×(0,1)), ε0, γ, and p such that mp ≥ c. The proof of the theorem is complete.

5.2. Proof of Theorem 5.1

The proof of Theorem 5.1 is in the same spirit of Theorem 1.1. However, instead of using Theorem 1.2, we
apply Theorem 5.2. In fact, as in the proof of Theorem 1.1, we have

� 1

0

|∂tu(t, x)− ∂xu(t, x)|p + |∂tu(t, x) + ∂xu(t, x)|p dx

≤ Ce−γt

� 1

0

|∂tu(0, x)− ∂xu(0, x)|p + |∂tu(0, x) + ∂xu(0, x)|p dx.

Assertion (5.1) follows with two different appropriate positive constants C and γ.

Remark 5.3. We can also consider the setting similar to the one in Section 4.3 and establish similar results.
This allows one to deal with a class of a for which a is not necessary to be non-negative. The analysis for this
is almost the same lines as in Section 4.3 and is not pursued here.

6. Exponential decay in Lp-framework for the
dynamic boundary condition

In this section, we study the decay of the solution of the damped wave equation equipped the dynamic
boundary condition and of the solutions of the corresponding hyperbolic systems. Here is the first main result
of this section concerning the wave equation.

Theorem 6.1. Let 1 < p < +∞, κ > 0, and a ∈ L∞(R+ × (0, 1)
)
non negative. Then there exist positive

constants C, γ depending only on p, κ, and ∥a∥
L∞
(
R+×(0,1)

) such that for all u0 ∈ W 1,p(0, 1) and u1 ∈ Lp(0, 1),
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there exists a unique weak solution u ∈ C([0,+∞);W 1,p(0, 1)) ∩ C1([0,+∞);Lp(0, 1)) such that ∂tu, ∂xu ∈
C([0, 1];Lp(0, T )) for all T > 0 of

∂ttu− ∂xxu+ a∂tu = 0 in R+ × (0, 1),

∂xu(t, 0)− κ∂tu(t, 0) = ∂xu(t, 1) + κ∂tu(t, 1) = 0 in R+,

u(0, ·) = u0, ∂tu(0, ·) = u1 in (0, 1),

(6.1)

satisfies

∥∂tu(t, ·)∥Lp(0,1) + ∥∂xu(t, ·)∥Lp(0,1) ≤ Ce−γt
(
∥u1∥Lp(0,1) + ∥∂xu0∥Lp(0,1)

)
, t ≥ 0. (6.2)

Remark 6.2. In Theorem 6.1, a weak considered solution of (6.1) means that ∂ttu(t, x) − ∂xxu(t, x) +
a(t, x)∂tu = 0 holds in the distributional sense, and the boundary and the initial conditions are understood
as usual thanks to the regularity imposing condition on the solutions.

As previously, we use the Riemann invariants to transform the wave equation into a hyperbolic system. Set

ρ(t, x) = ux(t, x) + ut(t, x) and ξ(t, x) = ux(t, x)− ut(t, x) for (t, x) ∈ R+ × (0, 1). (6.3)

One can check that for smooth solutions u of (1.1), the pair of functions (ρ, ξ) defined in (1.8) satisfies the
system 

ρt − ρx = − 1
2a(t, x)(ρ− ξ) in R+ × (0, 1),

ξt + ξx = 1
2a(t, x)(ρ− ξ) in R+ × (0, 1),

ξ(t, 0) = c0ρ(t, 0), ρ(t, 1) = c1ξ(t, 1) in R+,

(6.4)

where c0 = c1 = (κ− 1)/(κ+ 1).
Regarding System (6.4) with c0, c1 not necessarily equal, we prove the following result.

Theorem 6.3. Let 1 < p < +∞, c0, c1 ∈ (−1, 1), and a ∈ L∞(R+ × (0, 1)
)
non negative. Then there exist

positive constants C, γ depending only on c0, c1, and ∥a∥
L∞
(
R+×(0,1)

) such that the unique solution u of (6.4)

with the initial condition ρ(0, ·) = ρ0 and ξ(0, ·) = ξ0 satisfies

∥(ρ, ξ)(t, ·)∥Lp(0,1) ≤ Ce−γt∥(ρ0, ξ0)∥Lp(0,1), t ≥ 0. (6.5)

The rest of this section is organized as follows. The proof of Theorem 6.3 is given in the first section and the
proof of Theorem 6.1 is given in the second section.

6.1. Proof of Theorem 6.3

We will only consider smooth solutions (ρ, ξ). Multiplying the equation of ρ with ρ, the equation of ξ with ξ,
and integrating the expressions with respect to x, after using the boundary conditions, we obtain, for t > 0,

1

p

d

dt

� 1

0

(|ρ(t, x)|p + |ξ(t, x)|p) dx+
1

2

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dx

1

p

(
(1− |c1|p)|ξ(t, 1)|p + (1− |c0|p)|ρ(t, 0)|p

)
= 0. (6.6)
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This implies

1

p
∥(ρ, ξ)(t, ·)∥pLp(0,1) +

1

2

� T

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt

+
1

p

� T

0

(
(1− |c1|p)|ξ(t, 1)|p + (1− |c0|p)|ρ(t, 0)|p

)
dt =

1

2
∥(ρ0, ξ0)∥2L2(0,1). (6.7)

To derive (6.5) from (6.7), it suffices to prove that there exists a constant c > 0 depending only on
∥a∥L∞(R+×(0,1)), c0, c1, ε0, γ, and p such that for for T = 36, it holds

� T

0

� 1

0

a(ρ − ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt +

� T

0

(
|ξ(t, 1)|p + |ρ(t, 0)|p

)
dt ≥ c∥(ρ0, ξ0)∥pLp(0,1). (6.8)

After scaling, one might assume without loss of generality that

∥(ρ0, ξ0)∥Lp(0,1) = 1 (6.9)

Applying Lemma 3.1, we have

� T

0

� 1

0

a|ρ− ξ|p(t, x) dxdt ≤ C(mp +m2/p
p ), (6.10)

where

mp :=

� T

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dxdt.

Using the characteristics method (in particular Eqs. (3.9), (3.10)), we derive that

∥(ρ, ξ)(T, ·)∥pLp(0,1) ≤ C

� T

0

(
|ξ(t, 1)|p + |ρ(t, 0)|p

)
dt+ C

� T

0

� 1

0

ap|ρ− ξ|p(t, x) dxdt. (6.11)

As a consequence of (6.7), (6.9), (6.10), and (6.11), we have

� T

0

� 1

0

a(ρ− ξ)(ρ|ρ|p−2 − ξ|ξ|p−2)(t, x) dx dt+

� T

0

(
|ξ(t, 1)|p + |ρ(t, 0)|p

)
dt ≥ c.

The proof of the theorem is complete.

Remark 6.4. In the case a ≡ 0, one can show that the exponential stability for 1 ≤ p ≤ +∞ by noting that

∥
(
ρ(t+ 1, 0), ρ(t+ 1, 1)

)
∥ ≤ max{|c0|, |c1|}∥

(
ρ(t, 0), ρ(t, 1)

)
∥.

The conclusion then follows using the characteristics method.

6It holds for T > 2 with c = cT .
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6.2. Proof of Theorem 6.1

We first deal with the well-posedness of the system. The uniqueness follows as in the proof of Proposition 2.5
via the d’Alembert formula. The existence can be proved by approximation arguments. First deal with smooth
solutions (with smooth a) using Theorem 6.3 and then pass to the limit. The details are omitted.

The proof of (6.5) is in the same spirit of (1.7). However, instead of using Theorem 1.2, we apply Theorem 6.3.
The details are left to the reader.

Remark 6.5. One can prove the well-posedness of (1.1) and (1.4) directly in Lp-framework. Nevertheless, to
make the sense for the boundary condition, one needs to consider regular solutions and then a is required to be
more regular than just L∞. We here take advantage of the fact that such a system has a hyperbolic structure as
given in (6.4). This give us the way to give sense for the solution by imposing the fact ∂tu, ∂xu ∈ C([0, 1];Lp(0, T ))
for all T > 0.
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