N

HAL

open science

How Hard is Asynchronous Weight Reassignment?

Hasan Heydari, Guthemberg Silvestre, Alysson Bessani

» To cite this version:

Hasan Heydari, Guthemberg Silvestre, Alysson Bessani. How Hard is Asynchronous Weight Reas-
signment?. AlgoTel 2024 — 26émes Rencontres Francophones sur les Aspects Algorithmiques des
Télécommunications, May 2024, Saint-Briac-sur-Mer, France. hal-04568108v1

HAL Id: hal-04568108
https://hal.science/hal-04568108v1
Submitted on 3 May 2024 (v1), last revised 14 May 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.

https://hal.science/hal-04568108v1
https://hal.archives-ouvertes.fr

A quel point est-elle difficile la réaffectation
asynchrone de poids ?

Hasan Heydari!, Guthemberg Silvestre? and Alysson Bessani!

lLASIGE, Faculdade de Ciéncias, Universidade de Lisboa, Portugal
2Fédération ENAC ISAE-SUPAERO ONERA, Université de Toulouse, France

Résumé-Les systemes de quorum sont des abstractions fondamentales utilisées pour concevoir des protocoles dis-
tribués tolérants aux pannes et disponibles. Bien que le systeme de quorum majoritaire soit couramment utilisé en raison
de sa simplicité et de sa tolérance optimale aux pannes, il ne parvient pas a saisir la nature dynamique et hétérogene
des systemes réels. Cette limitation devient évidente dans les services géo-distribués, ou les nceuds présentent des per-
formances hétérogeénes, ou dans les services basés sur une blockchain ainsi que les systemes de paiement décentralisés,
ol les enjeux ou la réputation des nceuds varient au fil du temps. La présentation d’une variante pondérée et dynamique
de ce systeme de quorum répond efficacement a ces enjeux mais introduit un nouveau probleme fondamental : a quel
point est-il difficile de réattribuer les poids ? Nous répondons a cette question apres avoir formalisé le probleme de
réaffectation de poids dans ce travail. Plus précisément, nous prouvons que la réattribution des poids est aussi diffi-
cile que la résolution d’un consensus, c’est-a-dire que cela ne peut pas étre implémenté dans des systemes distribués
asynchrones sujets aux pannes.

Mots-clefs : quorum system, weighted replication, consensus, reconfiguration, blockchain

1 Introduction

Quorum systems are fundamental abstractions employed to design fault-tolerant and available distributed
protocols. A quorum system is a collection of sets called gquorums such that each quorum is a subset of
processes, and every two quorums infersect. Although many types of quorum systems exist, such as grids
[NW98] and trees [AEA90], most practical protocols (e.g., [HKJR10, 0014, LT01]) utilize the regular
majority quorum system (MQS) due to its simplicity and optimal fault tolerance.

In MQS, every quorum consists of a strict majority of processes. Although MQS is simple and op-
timally fault-tolerant, it fails to account for practical systems’ dynamic and heterogeneous nature. For
example, it does not consider the diverse performance of nodes in protocols executed in wide-area net-
works or the changing stakes or reputations of nodes in blockchain and decentralized payment systems
like RepuCoin [YKDEV19]. Presenting a dynamic weighted variant of this quorum system effectively ad-
dresses these challenges but introduces a new fundamental problem : given a weighted majority quorum
system [SB15, HSA21, BPRSNB22], in which each process is assigned a weight (a.k.a. vote or voting
power), how hard is it to reassign weights ?

We answer this question after formalizing the weight reassignment problem in this work. Specifically,
we prove that reassigning weights is as hard as solving consensus, i.e., it cannot be implemented in asyn-
chronous failure-prone distributed systems. We do this by demonstrating that consensus can be reduced to
the weight reassignment problem, i.e., a solution to the weight reassignment problem can be used to solve
consensus.

2 Weight Reassignment Problem

This section presents the system model and defines the weight reassessment problem. We consider an asyn-
chronous message-passing system composed of a finite set IT of n processes. Each process knows the set of
processes. At most f processes can crash. A process is called correct if not crashed. Each pair of processes

Hasan Heydari, Guthemberg Silvestre and Alysson Bessani

is connected by a reliable communication link. No process invokes a new operation before obtaining a res-
ponse from a previous one. The weighted majority quorum system (WMQS) refers to a set of quorums, each
composed of processes whose total weight is greater than half of the total weight of all processes.

Property 1 (Availability of WMQS). A WMQS is available if the sum of the f greatest weights is less than
half of the total weight of all processes.

The weight reassignment problem aims to capture the safety and liveness properties that must be satisfied
as processes’ weights change over time. To formalize this problem, we first define the change data structure,
which contains the essential information related to the outcome of a weight reassignment operation. Each
process i has a local counter denoted by Ic;. We define change as I1 x N x IT x R, where the quadruple
(i,lc;, j,A) indicates that the weight of process j is changed by A as an outcome of a reassignment request
made by process i with local counter /c;. For any change (x,*,j,A), by convention, “the weight of the
change” refers to A, and we say that “the change is created for j”. We introduce a weight reassignment
problem with the following operations :

— reassign(j,A), where j is a process, and A is a real number different from zero, and
— read_changes(j), where j is a process.

Each process can invoke reassign(j,A) to request changing the weight of process j by A. When an
invocation of reassign is completed (see Definition 1), a change ¢ corresponding to the invocation’s out-
come is created, and a message (COMPLETE, ¢) is returned to the process that invoked the operation. Any
process can invoke read_changes to learn about the set of changes created for a process by which the
weight of the process can be calculated. Each process must increment its local counter after each invocation
of the reassign operation.

Definition 1 (Completed reassign). Assume that a process i invokes reassign(j,A) when its local coun-
ter is Ic;. We say that the invocation is completed if there is a time after which the response of every invoca-
tion read_changes(j) contains a change (i,lc;, j,*).

We define % as the set containing every change c created for process i such that the reassign operation
led to the creation of ¢ is completed at time ¢. It is straightforward to show that €;; C %;, for any process i
and t <1’, and we say that €, is more up-to-date than ;; if 6;, C ;. Further, for each process i, we
assume there is a change defining the initial weight of i. Specifically, given w as the initial weight of i, we
assume that reassign(i,w) is completed at time ¢+ = 0. We denote the weight of a process i at any time ¢
by W;;, where W;; = Y« xin)es;, A. We also denote the weight of a set of processes A C IT by Wy ,, where

Wa s £ ¥ica Wi,. With these definitions, we are ready to define the weight reassignment problem.

Definition 2 (Weight Reassignment Problem). Any algorithm that solves the weight reassignment problem
satisfies the following properties :

— Integrity. V¢ > 0, VF C ITsuch that |[F| = f, Wr, < %

— Validity-1. When the reassign(i,A) operation is completed, a change (x,*,i,A) is created if Integrity
is not violated ; otherwise, a change (x, *,i,0) is created.

— Validity-II. If read_changes(i) is invoked at time 7, a set containing %;, is returned as the response.

— Liveness. If a correct process i invokes reassign (resp. read_changes), the invocation will eventually
be completed, and i will receive a message (COMPLETE, %) (resp. a set of changes).

It is straightforward to see why the Liveness property is a part of the problem’s definition. In the follo-
wing, we discuss why the other properties are required.

— Integrity is a consequence of Property 1, which determines the relationship between the processes’
weights and f, guaranteeing the system’s availability over time.

— The second property states that a change must be created as the outcome of each reassign invocation.
It also determines how the change must be created. Note that Integrity might be violated if each invo-
cation of reassign(i,A) is completed by creating a change (x,*,i,A). Hence, to avoid the violation
of Integrity, an invocation reassign(i,A) might be aborted, i.e., a change (x,x,i,0) is created as the
invocation’s outcome.

How Hard is Asynchronous Weight Reassignment?

— The third property determines what responses to a read_changes invocation are valid. Given any pro-
cess that invokes read_changes(i) at any time ¢ > 0, it is clear that a valid response must be as up-to-
date as . Note that it is impossible to guarantee that exactly %, is returned as the response due to
asynchrony.

3 Impossibility Result

This section demonstrates that the weight reassignment problem cannot be implemented in asynchronous
failure-prone systems. We present an insight into such an impossibility result (please refer to the extended
version of this work [HSB23] for the full proof). Consider a system in which all correct processes invoke
the reassign operation concurrently such that only one of the invocations can be completed by creating a
change with non-zero weight. That is, creating two or more changes, each with non-zero weight, violates
Integrity, meaning that it can make f processes have more than half of the total voting power in the system.
Assume that invocations reassign(1,A),...,reassign(n,A,) create such a situation. One can take the
following steps to solve consensus among processes :

1. each process i writes its proposal v; to a single-writer multi-reader (SWMR) register R[i] and invokes
reassign(i,A;), where 1 <i<n, and

2. if a change with non-zero weight is created for j, the decided value is the one stored in R[j].

Since the weight of only one of the created changes is non-zero, processes can decide the same value.
Consequently, consensus can be reduced to the weight reassignment problem, which means that the weight
reassignment problem cannot be implemented in asynchronous failure-prone systems [Her91].

Based on this insight, we design an algorithm presented in Algorithm 1, by which processes solve consen-
sus using the weight reassignment problem, i.e., it reduces consensus to the weight reassignment problem.
The algorithm is executed by each process i and provides a function — propose(v;) — by which i proposes
a value v;. We divide the processes into two disjoint sets, F and IT\ F, such that F = {1,2,..., f}, and we
assume that the initial weight of each process i € F (resp. i € IT\ F) equals % (resp. Z&tlf)). Note that
Integrity is satisfied with these initial weights. Further, there is a shared array of SWMR registers R of size n
to store processes’ proposals.

Each process i executes the propose function. After storing its proposal in R]i], i invokes reassign(i,0.5)
(resp. reassign(i,—0.5)) if i € F (resp. i € IT\ F). It is straightforward to see that two or more invo-
cations of reassign cannot be completed by creating changes with non-zero weights. For instance, if
reassign(1,0.5) and reassign(f+ 1,—0.5) are completed by creating changes (1,2,1,0.5) and (f +
1,2, f+1,-0.5) at time ¢ > 0, then we have :

n—1 n
Wp, = 0.5=~
Fr=fX 2f + >
W WetWme X H0S+H-f) Xt 05
2 2 o 2 X

which means that Integrity is violated.

In a loop, for each process j € I, i repeatedly invokes read_changes() to see the invocation of which
process is completed by creating a change with non-zero weight. Because of Liveness, the loop will even-
tually terminate. Assume that the invocation of process j is completed by creating a change (j,2, j,A),
where A # 0. Consequently, i returns R[j] as the decided value, and consensus among processes will be
solved.

Theorem 1 ([HSB23]). Consensus can be reduced to the weight reassignment problem, i.e., the weight
reassignment problem cannot be implemented in asynchronous failure-prone systems.

4 Conclusion

This work studied the problem of integrating weighted majority quorums with weight reassignment proto-
cols for any asynchronous system with a static set of processes and static fault threshold while guaranteeing

Hasan Heydari, Guthemberg Silvestre and Alysson Bessani

Algorithm 1 Reducing consensus to the weight reassignment problem — process i.

> R is a shared array of SWMR registers with size n
pif 1 <i< f,Wip= % ; otherwise, W; o = 2("n+_f> . decided_value + 1

6

> i executes the propose function 7: repeat
8
9

for j€{1,2,...n} do

function propose(v;) % ¢ read changes(j)

1. R[i] + v; : o

2 ifie{1,2,...,} then 10: 1f<],2.,J,A>Gcfsucht.hatA7éOthen
3 reassign(i,0.5) 11: decided_value < R|[j]

4: else 12: until decided value # L

5: reassign(i,—0.5) 13: return decided_value

availability. We showed that such a problem could not be solved in asynchronous failure-prone distribu-
ted systems. To circumvent the impossibility result presented in this work, one could refer to its extended
version [HSB23], where we presented a restricted version of the weight reassignment problem called pair-
wise weight reassignment, in which weights can only be reassigned in a pairwise manner. We showed that
pairwise weight reassignment could not be implemented in asynchronous failure-prone systems. We also
presented a restricted version of the pairwise weight reassignment called restricted pairwise weight reas-
signment that can be implemented in asynchronous failure-prone systems. We also discussed the relation
between pairwise weight reassignment and the asset transfer problem. As a case study, we presented a
dynamic-weighted atomic storage based on the implementation of the restricted pairwise weight reassign-
ment.

Références

[AEA90] Divyakant Agrawal and Amr El Abbadi. The tree quorum protocol : An efficient approach
for managing replicated data. In International Conference on Very Large Data Bases, 1990.

[BPRSNB22] Christian Berger, Hans P. Reiser, Joao Sousa, and Alysson Neves Bessani. AWARE : Adap-
tive wide-area replication for fast and resilient Byzantine consensus. IEEE Transactions on
Dependable and Secure Computing, 19(3), 2022.

[Her91] Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Lan-
guages and Systems, 13(1), 1991.

[HKIJR10] Patrick Hunt, Mahadev Konar, Flavio Paiva Junqueira, and Benjamin Reed. ZooKeeper :
Wait-free coordination for internet-scale systems. In USENIX annual technical conference,
2010.

[HSA21] Hasan Heydari, Guthemberg Silvestre, and Luciana Arantes. Efficient consensus-free weight
reassignment for atomic storage. In International Symposium on Network Computing and
Applications, 2021.

[HSB23] Hasan Heydari, Guthemberg Silvestre, and Alysson Bessani. How hard is asynchronous
weight reassignment ? In International Conference on Distributed Computing Systems, 2023.

[LT01] Leslie Lamport et al. Paxos made simple. ACM Sigact News, 32, 2001.

[NWIg] Moni Naor and Avishai Wool. The load, capacity, and availability of quorum systems. STAM
Journal on Computing, 27(2), 1998.

[0014] Diego Ongaro and John Ousterhout. In search of an understandable consensus algorithm. In
USENIX Annual Technical Conference, 2014.

[SB15] Joao Sousa and Alysson Bessani. Separating the wheat from the chaff : An empirical design

for geo-replicated state machines. In Symposium on Reliable Distributed Systems, 2015.

[YKDEV19] Jiangshan Yu, David Kozhaya, Jeremie Decouchant, and Paulo Esteves-Verissimo. Repu-
coin : Your reputation is your power. IEEE Transactions on Computers, 68(8), 2019.

