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Feedback stabilization of discrete-time switched systems under
Büchi-constrained signals

M. Della Rossa, T. Alves Lima, and A. Girard (IEEE Fellow)

Abstract— This manuscript studies the feedback stabilization
problem for a class of discrete-time switched systems. The
goal is the design, via semidefinite optimization techniques,
of feedback control rules depending only on the current state
variable and on the past values of the underlying switching
sequence. The resulting control policy achieves uniform expo-
nential stabilization over a pre-constructed class of switching
signals. The overall construction generalizes known approaches
for stabilization over arbitrary switching sequences, but it is able
to stabilize systems for which none of the defining subsystems
is stabilizable. This extension is obtained employing graph-
theoretic tools, introducing the Büchi automata formalism in
order to specify the considered classes of admissible sequences,
seen here in the general setting of ω-regular languages. The
proposed construction is finally illustrated with the help of a
numerical example.

I. INTRODUCTION

Switched systems form a class of hybrid dynamical sys-
tems for which the solutions are driven by a finite set
of subsystems and by a switching function σ selecting
which subsystem is active at any given moment. More
formally, considering matrices A1, . . . , AN ∈ Rn×n and
B1, . . . , BN ∈ Rn×m, we study the discrete-time switched
control system defined by

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), (1)

where σ : N → {1, . . . , N} is a switching signal selecting
among the N modes and u : N → Rm is a control input.

Problems related to stability and stabilizability of switched
systems have been an active field of research due to their
important applications in modern engineering, see [1]–[3]
and references therein. Among several possible notions of
stabilizability of switched linear systems, the interest of the
current manuscript lies in the problem of finding stabilizing
feedback maps for (1), valid uniformly over a prescribed
class of switching signals.

In this setting a natural problem is the feedback stabi-
lization under arbitrary switching signals, i.e. without any
constraint on the external, unmodifiable, and unpredictable
switching sequence. In this framework, it has been proved
that a linear feedback gain approach, while leading to
numerically-appealing conditions, is conservative, see [4]–
[6]. To have more flexible conditions in studying stabiliz-
ability of (1), approaches based on piecewise linear feedback
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maps (and related piecewise-defined Lyapunov functions)
have been proposed. We mention the maxima and minima
of quadratic functions approach in [7], [8] and polyhedral
Lyapunov functions construction in [3], [6]. Another possible
route to provide more general feedback stabilization schemes
is provided in [9]–[12] in which the controller explicitly
depends on the observation and memorization of past/future
values of the switching signal. Recently, the same feed-
back stabilization problem was studied in [13] using graph-
theoretic tools.

Considering arbitrary switching rules can, however, be
conservative. First of all, requiring that all the solutions are
driven to the equilibrium, by the same feedback map and
for all the possible switching sequences, is a demanding
(and often unfeasible) task. Moreover, in several real-life
situations, the considered systems present some sort of
constraints in the admissible switching events.

For this reason, it is rather common, both for stability and
stabilizability purposes, to consider subclasses of switching
signals. In this context, the framework of language and
automata theory naturally arises, providing graph-theoretic
tools to encode constraints on the switching signals. This
idea is the core of the stability analysis provided for instance
in [14]–[16] in which finite-state automata are used to define
the class of admissible sequences. On the other hand, there
are remarkable subclasses of switching signals that cannot
be defined simply considering finite-state automata. This
is the case, for instance, when one requires a persistence
of activation/switching of certain modes. To model such
“infinite” constraints, one has to consider the notion of ω-
languages, and, as state machine counterpart, the notion of
Büchi automata (see [17] for the formal definition). For the
application of such ideas in the case of stability analysis, we
refer to [18]–[20] and references therein.

In this work, we are interested in the feedback stabilization
of (1) under a class of constrained switching signals σ that
can be represented by ω-regular languages and formalized
by Büchi automata. Many notions regarding the stability of
switched systems with ω-regular switching sequences are
borrowed from the recent work in [19], [20]. We introduce a
class of Büchi automata, inspired by the seminal construction
of De Bruijn, (see [21]), modeling the signals activating an
infinite number of times some prescribed subsequences. This
notion allows for relaxing the need for stabilizability of each
pair (Ai, Bi), i ∈ {1, . . . , N}. Based on a multiple quadratic
Lyapunov functions construction, we are able to provide a
composite feedback control policy, depending only on the
current state, and on a finite number of past values of the



switching sequence. Thus, the closed loop can be interpreted
as a memory-based hybrid system evolving on an addi-
tional symbolic state-space, as in the formalism of [22]. By
bounding from below the “frequency of occurrence” of the
prescribed subsequences, the closed-loop behavior exhibits
uniform exponential stability. We illustrate our proposed
stabilization scheme with the help of a numerical example.

The structure of this manuscript is as follows: In Section II
we recall some preliminaries from graph theory and dynam-
ical (switched) systems framework. In Section III we present
our main stabilization scheme, illustrated in Section IV by
means of a numerical example. A final Section V provides
some concluding remarks.

Notation: We denote by N the set of natural numbers
including {0}, by Z+ the set of natural numbers excluding
{0}. Given n,m ∈ Z+, C0(Rn,Rm) is the set of continuous
functions from Rn to Rm. We denote by Sn×n the set of the
n × n symmetric matrices, and by Sn×n

+ the set of n × n
positive definite matrices.

II. PRELIMINARIES

This section introduces the studied setting and recalls the
necessary notation, definitions and tools.

A. ω-Languages and Büchi automata

From now on, we consider a finite set of symbols Σ,
referred to as the alphabet; by n(Σ) we denote the cardinality
of Σ. Given M ∈ N, we denote by ΣM the set of sequences
of length M in Σ, and we denote its elements by ı̂ =
(i0, . . . , iM−1) ∈ ΣM . With Σ⋆ we denote the Kleene
closure of Σ, defined by

Σ⋆ =
⋃

M∈N
ΣM ,

i.e., the set of all sequences of finite length of symbols of Σ.
With Σω we denote the ω-closure of Σ, i.e. the set of all the
infinite sequences in Σ. More precisely, Σω := {σ : N → Σ}.
Given any σ ∈ Σω and any a ≤ b ∈ N we denote by
[σ][a,b] ∈ Σb−a+1 the restriction of σ to the interval [a, b],
i.e. [σ][a,b] = (σ(a), σ(a+ 1), . . . , σ(b)) ∈ Σb−a+1.
We then introduce some preliminaries concerning Büchi
automata, i.e., a class of abstract machines used to de-
fine remarkable subsets of Σω (a.k.a. ω-regular languages).
Intuitively, non-deterministic Büchi automata (NBA) are a
special class of automata accepting infinite sequences of
inputs that repeat infinitely a set of states called accepting
states. Formally, the data of a NBA is given by a tuple
G = (S,Σ, E, SI , SF ), where S is a finite set of states, Σ
is a finite alphabet, E ⊆ S × S × Σ is a finite set of edges
defining the transitions of the form (s, s′, j), with s ∈ S
being a source state, s′ ∈ S a target state, and j ∈ Σ being
the symbol that activates the transition s

j−−→ s′. The set
SI ⊆ S is the set of initial states and SF ⊆ S is the set of
accepting states. A Büchi automata is a deterministic Büchi
automata (DBA) if, for every s ∈ S and each j ∈ Σ, there
is at most one s′ ∈ S such that (s, s′, j) ∈ E.

Definition 1: An accepting run in G for σ ∈ Σω is an
infinite sequence of states s0s1 · · · ∈ Sω such that

1) s0 ∈ SI ,
2) (sk, sk+1, σ(k)) ∈ E for all k ∈ N,
3) there exist a strictly increasing sequence (kn)n∈N such

that skn
= s for all n ∈ N, for some accepting state

s ∈ SF .

If s̄ ∈ Sω is an accepting run in G for σ ∈ Σω , we write
s̄ ∈ AccG(σ). Moreover, if there exists an accepting run in
G for σ ∈ Σω , we write σ ∈ Lω(G) and we say that σ is
recognized by G, or, equivalently, that σ is an element of the
ω-language generated by G.
Roughly speaking, a σ ∈ Σω is recognized by G only if
there exists an accepting run s̄ ∈ Sω in G passing an infinite
number of times through an accepting state s ∈ SF . Given
a NBA G, a σ ∈ Lω(G) and an accepting run in G for
σ, denoted by s̄ ∈ AccG(σ), we denote the sequence of
accepting instants by τ s̄ : N → N, defined recursively by
setting τ s̄(0) = 0 and

τ s̄(k + 1) = min{h > τ s̄(k) | s̄(h) ∈ SF }, ∀k ∈ N. (2)

Roughly speaking, τ s̄ is the sequence of instants for which
the run s̄ is visiting an accepting state in G.

Given σ ∈ Lω(G), let us suppose that AccG(σ) is a finite
set. The return index of σ in G, is a function κσ,G : N → N
defined by

κσ,G(k) = min
s̄∈AccG(σ)

max{h ∈ N | τ s̄(h) ≤ k}. (3)

Intuitively for any k ∈ N, any accepting run in G for σ has
passed at least κσ,G(k)-times through an accepting node in
SF , up to time k ∈ N.

B. Switched Systems: Definition and Stabilization Notions

Consider a finite alphabet Σ and a function f : Rn×Σ⋆ →
Rn. We consider the system

x(k + 1) = f(x(k), [σ][0,k]), ∀ k ∈ N, (4)

where σ ∈ Σω is seen here as a switching signal. Given
σ ∈ Σω , x ∈ Rn and k ∈ N, we denote by Φσ(k, x) the
solution to (4) with respect to σ, starting at x and evaluated
at time k ∈ N.

In (4) the evolution of the state depends not only on the
current value of the switching signal (i.e., σ(k)) but possibly
also on the past values σ(0), . . . , σ(k − 1). It is important
to note that, since it does not depend on the future values of
σ, it is causal, in the classic sense of systems theory. The
definition of systems depending on the whole history of the
switching signal as in (4) is motivated by the control problem
we want to tackle. In particular, we will propose the design
of feedback control maps depending on the past values of
the switching signal; first we recall the notion of stability for
systems as in (4).

Definition 2: Given f : Rn×Σ⋆ → Rn and a subset L ⊆
Σω , system (4) is said to be globally uniformly exponentially
stable on L (L-GUES) if there exist C ≥ 1 and λ ∈ [0, 1)



such that

|Φσ(k, x)| ≤ Cλk|x|, ∀σ ∈ L, ∀x ∈ Rn, ∀ k ∈ N. (5)

Given A = {Ai}i∈Σ ⊂ Rn×n and B = {Bi}i∈Σ ⊂ Rn×m,
we consider the associated switched system

x(k + 1) = Aσ(k)x(k) +Bσ(k)u(k), (6)

where σ ∈ Σω is seen here as a switching signal, and
u : N → Rm is an input signal. Our aim is to provide
stabilizing feedback laws for (6), considering signals lying
in a prescribed subset of Σω . We now formalize this goal.

Problem 1 (Prefix-Dependent Feedback Design):
Consider A = {Ai}i∈Σ ⊂ Rn×n, B = {Bi}i∈Σ ⊂ Rn×m

and a subset of switching signals L ⊂ Σω . Our goal is to
design a prefix-dependent stabilizing feedback on L, i.e.,
find a map Ψ : Σ⋆ × Rn → Rm such that the system

x(k + 1) = Aσ(k)x(k) +Bσ(k)Ψ([σ][0,k], x(k)) (7)

is L-GUES, in the sense of Definition 2.
Remark 1: We note that in Problem 1 it is required to

design a feedback law that depends, at each instant of time,
only on the current state-space variable (x(k)), and, possibly,
on the current and past values of the switching sequence. A
controller Ψ : Σ⋆ ×Rn → Rm as in Problem 1 is said to be
of uniform bounded memory, if there exists a M ∈ Z+ and
a Ψ̂ : ∪M

k=0Σ
k × Rn → Rm such that

Ψ(̂ı, x) = Ψ̂(⌊ı̂⌋M , x), ∀ ı̂ ∈ Σ⋆, ∀ x ∈ Rn,

where, for any ı̂ = (i0, . . . , iK−1) ∈ Σ⋆,

⌊ı̂⌋M =

{
ı̂, if ı̂ ∈ ΣK , K ≤ M,

(iK−M , . . . , iK−1), if ı̂ ∈ ΣK , K ≥ M,

i.e., the map Ψ depends only on the past M values of ı̂. The
idea of feedback controllers depending on the past values of
the switching signals (a.k.a. “the memory”) is not new: it was
the central contribution of, for example, [9], [11], [12]. This
dependence on the past values is necessary to alleviate the
limitations of classical linear feedback controllers (see [3],
[5]) as better highlighted in what follows.

III. PREFIX-DEPENDENT FEEDBACK STABILIZATION

A. De Bruijn-based structure

In this subsection, we define a remarkable class of Büchi
automata, arising by imposing the infinite recurrence of a
string of modes. This construction is inspired by the seminal
work of De Bruijn, see [21]. We first introduce the following
notation: given ı̂ = (i0, i1, . . . , iM−1) ∈ ΣM , we write ı̂+ =
(i1, . . . , iM−1) ∈ ΣM−1.

Definition 3 (De Bruijn-based Büchi automata): Given
an alphabet Σ and a M ∈ N, consider a subset of
marked sequences of length M , denoted by ΣM

F ⊆ ΣM .
We define the corresponding ΣM

F -Büchi automaton by
GΣM

F
= (S,Σ, SI , SF , E) as follows:

• S = ΣM ,
• SI = S = ΣM ,
• SF = ΣM

F ,
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Fig. 1. De Bruijn-based Büchi-automaton on the alphabet Σ = {1, 2},
obtained by considering Σ2

F = {(1, 2)}.

• (s1, s2, j) ∈ E if and only if s1 = ı̂ and s2 = (̂ı+, j).
Example 1: In Figure 1 we depicted the graph GΣ2

F
, for

Σ = {1, 2} and Σ2
F = {(1, 2)}. Since the only accepting

state is marked by the sequence (1, 2), this automaton is a
finite machine representation of the class of signals with an
infinite number of occurrences of the sequence (1, 2).
In what follows we collect some properties regarding the De
Bruijn-based Büchi automata.

Properties 1: Given an alphabet Σ, M ∈ N, and a set
ΣM

F ⊆ ΣM , the following statements hold:
1) If ΣM

F = ΣM then Lω(GΣM
F
) = Σω;

2) For any σ ∈ Σω there exists a (not necessarily accepting)
run for σ in G starting from any node ȷ̂ ∈ ΣM , i.e.,
there exists a sequence of nodes with all the properties
of Definition 1, except Item 3.

3) For any σ ∈ Lω(GΣM
F
) there exist |ΣM | accepting runs in

GΣM
, each one starting at a different initial node ı̂ ∈ S;

4) For any σ ∈ Lω(GΣM
F
), the accepting runs for σ coincide

in [M,+∞). More precisely, given any s̄ : N → S =
ΣM , s̄ ∈ AccG

ΣM
F

(σ), it satisfies

s̄(k) = [σ][k−M,k−1] ∈ ΣM , ∀ k ∈ [M,+∞).

5) We have the following characterization:

Lω(GΣM
F
) :=

{
σ ∈ Σω

∣∣∣ ∃ ı̂ ∈ ΣM
F , ∀K ∈ N, ∃ k ≥ K

s.t. [σ]k−M,k−1 = ı̂

}
.

6) For every σ ∈ Lω(GΣM
F
), denoting κ

σ,G
ΣM
F (k) =: A, we

have that

A ≥
∣∣∣ {r ∈ N | r ≥ M, r ≤ k, [σ][r−M,r−1] ∈ ΣM

F

} ∣∣∣
Proof: First of all, we note that the automaton GΣM

F

is deterministic and total, i.e. for every node s ∈ S and
any symbol j ∈ Σ there exists a (unique, by determinism)
node s′ ∈ S such that (s, s′, j) ∈ E. In other words, the
transition map σ : S × Σ ⇝ S defined by s′ ∈ σ(s, i)
if and only if (s, s′, j) ∈ E is a total function, (single-
valued by determinism). With this property, it is easy to
prove Items 1. and 2. Let us now prove Items 3. and 4.
jointly. Consider an arbitrary σ ∈ Lω(GΣM

F
) and a generic

node ı̂ and let us build an accepting run s̄ : N → S, starting
at ı̂, i.e., s̄(0) = ı̂ = (i0, . . . , iM ). By definition of GΣM

F
we

have that, necessarily, s̄(1) = (i1, i2, . . . , σ(0)); similarly,
we have s̄(2) = (i2, . . . , σ(0), σ(1)). Iterating up to M the
reasoning, we have that s̄(M) = (σ(0), . . . , σ(M − 1)).
Afterwards, by determinism and definition of GΣM

F
, the run

s̄ necessarily satisfies s̄(k) = [σ][kM ,k−1], ∀ k ≥ M ,
independently on the initial node ı̂. Since the construction
was made for an arbitrary ı̂ ∈ ΣM , we have proven Items



3. and 4. Items 5. and 6. then straightforwardly follow from
the previous statements.

B. Main Stabilization Result

We use here the aforementioned automata structure to
introduce feedback stabilization schemes for system (6).

Theorem 1: Let us consider an alphabet Σ and A =
{Ai}i∈Σ ⊂ Rn×n, B = {Bi}i∈Σ ⊂ Rn×m. Consider an
horizon M ∈ N and a subset of marked subsequences ΣM

F ⊆
ΣM . Consider the corresponding ΣM

F -Büchi automaton GΣM
F

.
If there exist ρ ∈ [0, 1), γ ≥ 0, Pȷ̂ ∈ Sn×n

+ for all ȷ̂ ∈ ΣM

and Kȷ̂,i ∈ Rn×m for all ȷ̂ ∈ ΣM and all i ∈ Σ such that

(Ai +BiKȷ̂,i)
⊤P(ȷ̂+,i)(Ai +BiKȷ̂,i) ⪯ γ2Pȷ̂,

∀ ȷ̂ ∈ ΣM ∀i ∈ Σ,
(8a)

(Ai +BiKȷ̂,i)
⊤P(ȷ̂+,i)(Ai +BiKȷ̂,i) ⪯ γ2ρ2Pȷ̂,

∀ȷ̂ ∈ ΣM , ∀i ∈ Σ such that (ȷ̂+, i) ∈ ΣM
F ,

(8b)

then, defining1 Ψ([σ]k, x) = K[σ][k−M,k]
x, we have that there

exists C ≥ 1 such that the solutions to (7) satisfy

|Φσ(k, x)| ≤ Cγk|x|, ∀σ ∈ Σω, ∀x ∈ Rn, ∀k ∈ N. (9a)

|Φσ(k, x)| ≤ Cγkρκ(k)|x|,
∀σ ∈ Lω(GΣM

F
),

∀x ∈ Rn, ∀ k ≥ M,
(9b)

where we denote, for simplicity, κ(k) := κ
σ,G

ΣM
F (k) intro-

duced in (3).
Proof: Let us consider any x ∈ Rn and any σ ∈ Σω .

Let us fix an arbitrary j⋆ ∈ Σ. By Item 2. in Properties 1,
we have that there is a (not necessarily accepting) run for
σ, starting from the node ȷ̂⋆ = (j⋆, . . . , j⋆) ∈ ΣM . Let
us introduce the function V : ΣM × Rn → R defined
by V (̂ı, x) =

√
x⊤Pı̂ x. We first show that the function

k 7→ V ([σ][k−M,k−1],Φσ(k, x)) satisfies

V ([σ][k−M,k−1],Φσ(k, x)) ≤ γkV ([σ][−M,−1], x), (10)

for all k ∈ N. Let suppose that σ(0) = i ∈ Σ, we have that

V ([σ][−M+1,0],Φσ(1, x)) = V ((ȷ̂+⋆ , i), (Ai +BiKȷ̂⋆,i)x)

=
√

x⊤(Ai +BiKȷ̂⋆,i)
⊤P(ȷ̂+⋆ ,i)(Ai +BiKȷ̂⋆,i)x)

≤ γ
√

x⊤Pȷ̂⋆x,

where, in the last inequality, we used (8a). Iterating the
reasoning, we have that

V ([σ][k−M,k−1],Φσ(k, x)) ≤ γk
√
x⊤Pȷ̂⋆x

= γkV ([σ][−M,−1], x), ∀ k ∈ N.
(11)

Since Pı̂ ≻ 0 for all ı̂ ∈ ΣM , we have that there exist
a1, a2 > 0 such that

a1|x| ≤ V (̂ı, x) ≤ a2|x|, ∀ı̂ ∈ ΣM , ∀x ∈ Rn. (12)

Inequalities (11) and (12) directly imply (9a) with C = a2

a1
.

1Once fixed an arbitrary symbol j⋆ ∈ Σ, we suppose by convention that
σ(k) = j⋆, for any k ∈ [−M,−1] and any σ ∈ Lω(GΣM

F
).

Consider now any σ ∈ Lω(GΣM
F
). Suppose that, for some

k ∈ N, k ≥ M we have that [σ][k−M,k−1] = ȷ̂ ∈ ΣM , i.e.
that σ was equal to the sequence ȷ̂ in the previous M instants
of time. Suppose that σ(k) = i ∈ Σ and that (ȷ̂+, i) ∈ ΣM

F ,
i.e. (ȷ̂+, i) is an accepting state in GΣM

F
. Proceeding as in the

previous case, we have that

V ([σ][k+1−M,k],Φσ(k + 1, x))

= V
(
(ȷ̂+, i), (Ai +BiKȷ̂,i)Φσ(k, x)

)
≤ γρV (ȷ̂,Φσ(k, x)) = γρV ([σ][k−M,k−1],Φσ(k, x)),

where we used (8b), since ı̂ is in ΣM
F . Summarizing, we have

proven that, for any k ≥ M , if [σ][k−M−1,k] ∈ ΣM
F then the

function k 7→ V ([σ][k−M,k−1],Φσ(k, x)) is decreasing by a
factor γρ at time-step k.

Moreover, we also note that, since we supposed that k ≥
M , any accepting run for σ in GΣM

F
must pass through the

node ȷ̂ ∈ ΣM
F at time k and through the node (ȷ̂+, i) at time

k+1 (recall Item 4. in Properties 1). Recalling the definition
of κ

σ,G
ΣM
F in (3), and using the already proven (9a), this

implies that, for all k ∈ N, we have

V ([σ][k+1−M,k],Φσ(k + 1, x)) ≤ γkρκ(k)V ([σ][−M,−1], x),

Now recalling (12), by arbitrariness of σ and x, we obtain

|Φσ(k, x)| ≤
a2
a1

γkρκ(k)|x|,

for all σ ∈ Lω(GΣM
F
), for all x ∈ Rn, and for all k ∈ N,

concluding the proof.
In the following statement we report how the conditions

of Theorem 1 can be re-stated in the form of linear matrix
inequalities (LMIs) depending on additional parameters ρ ∈
[0, 1) and γ > 0.

Corollary 1: For given ρ ∈ [0, 1) and γ > 0, there
exist matrices Pȷ̂ ∈ Sn×n

+ and Kȷ̂,i ∈ Rn×m satisfying
conditions (8a) and (8b) in Theorem 1 if and only if there
exist P ȷ̂ ∈ Sn×n

+ for all ȷ̂ ∈ ΣM and K ȷ̂,i ∈ Rn×m for all
ȷ̂ ∈ ΣM and all i ∈ Σ such that the linear matrix inequalities[

P (ȷ̂+,i) (AiP ȷ̂ +BiK ȷ̂,i)

⋆ γ2P ȷ̂

]
⪰ 0,∀ ȷ̂ ∈ ΣM ∀i ∈ Σ,

(13a)[
P (ȷ̂+,i) (AiP ȷ̂ +BiK ȷ̂,i)

⋆ γ2ρ2P ȷ̂

]
⪰ 0

∀ȷ̂ ∈ ΣM , ∀i ∈ Σ such that (ȷ̂+, i) ∈ ΣM
F

(13b)

are feasible. Furthermore, Pȷ̂ and Kȷ̂ can be recovered from
the solution to (13a) and (13b) by Pȷ̂ = P

−1

ȷ̂ and Kȷ̂,i =

K ȷ̂,iP
−1

ȷ̂ .
Proof: The proof is trivial and follows from a Schur

complement argument, given the fact that matrices Pȷ̂ are
positive definite and thus invertible.

Remark 2: We note that the feedback law Ψ : Σ⋆×Rn →
Rm introduced in Theorem 1, only depends on the past
M + 1-values of the signal σ, and thus only uses finite and
uniformly bounded information on the past of the signals,
recall Remark 1.

Summarizing, if the hypotheses of Theorem 1 are satisfied
(via Corollary 1), there is a prefix-dependent law which



ensures the bound (9a) for arbitrary switching sequences.
If γ ≥ 1 this is not insightful in terms of the stabilization
problem, since it only provides an upper bound on the
possible increase of the norm of solutions. Inequality (9b)
instead provides a stricter bound, which holds only for
sequences σ ∈ L(GΣM

F
), which relates the norm of the

solutions to the return index. In order to achieve convergence
to 0 we have to require a specific relation between the
parameters γ, ρ and κ

σ,G
ΣM
F , and this is provided in what

follows.

Corollary 2: Under the hypotheses of Theorem 1, given
γ and ρ as in (9a)-(9b), consider any ε > 0, any K ∈ N,
and the set Lω(GΣM

F
, ε,K) ⊂ Lω(GΣM

F
) defined by

Lω(GΣM
F
, ε,K) :=

{
σ
∣∣∣ κ(k)≥(

ε− log(γ)

log(ρ)

)
k, ∀ k ≥ K

}
,

where we denote κ(k) := κ
σ,G

ΣM
F (k), recall (3). Then, the

prefix-dependent feedback map Ψ : Σ⋆×Rn → RM defined
in Theorem 1 solves Problem 1 for Lω(GΣM

F
, ε,K), i.e., sys-

tem (7) is Lω(GΣM
F
, ε,K)-globally uniformly exponentially

stable.

Proof: Let us consider any σ ∈ Lω(GΣM
F
, ε,K), and

thus
κ(k) ≥ − log(γ)

log(ρ)
k + εk, ∀ k ≥ K.

Supposing without loss of generality that K ≥ M using (9b)
and since ρ < 1 we have

|Φσ(k, x)| ≤ Cγkρκ(k)|x| ≤ Cγkρ
− log(γ)
log(ρ)

k+εk|x|

= Cρ
log(γ)
log(ρ)

kρ
− log(γ)
log(ρ)

kρεk|x|
= Cρεk|x|, ∀k ≥ K.

Since the growth of solutions to (7) is uniformly bounded up
to time K ∈ N, we can conclude that there exists a C̃ ≥ 1
such that |Φσ(k, x)| ≤ C̃(ρε)k|x|, ∀σ ∈ Lω(GΣM

F
, ε,K),

∀x ∈ Rn and ∀ k ∈ N, concluding the proof.

The reasoning stemming from Corollaries 1 and 2, along
with the potential trade-offs between the values of γ and ρ
and their impact on the set κ(k) (for which GUES holds),
is not obvious and merits shedding light.

Upon closely inspecting inequalities (13a) and (13b), one
realizes that increased values of γ > 0 tend to reduce the
required value of ρ ∈ (0, 1] ensuring satisfaction of (13b).
Since ε is a free parameter in Corollary 2, choosing a larger
ε minimizes the “true” decay rate given by ρε. However,
it should be noted that larger values of γ and ε adversely
affect the size of the set Lω(GΣM

F
, ε,K) of signals σ for

which GUES holds with the designed control law. Therefore,
several strategies could be developed in terms of searching
values for γ and ρ satisfying (13a) and (13b), and choosing
ε, either prioritizing the convergence speed or the size of the
set Lω(GΣM

F
, ε,K). A numerical strategy that bridges these

aspects with available control sequences will be discussed in
Section IV.

C. Controllable sequences

The use of the class of automata introduced in previous
subsections is motivated by the following discussion. Usu-
ally, the problem of stabilizing a switched system under
arbitrary switching sequences can be unfeasible. For in-
stance, a necessary condition for stabilization under arbitrary
switching is the stabilizability of all subsystems (Ai, Bi),
since the constant signals are admissible. On the other hand,
the switching among different subsystems can be beneficial
in terms of reachability/stabilizability. With this motivation,
inspired by [23], [24], we will briefly discuss the notions of
controllable sequences. Given an initial state x(0), an input
map u : N → Rm and a σ ∈ Σω , the solution to (6) at time
k, is denoted in what follows by Φσ(k, x, u)

Definition 4: The switched system (6) is controllable, if
there exist a time instant K ∈ N and a switching sequence
σ[0,K−1] ∈ ΣK such that, for all x ∈ Rn, there exists an
input u : {0, . . . ,K − 1} → Rm such that Φσ(K,x, u) = 0.
We refer to the finite sequence of modes σ(0) . . . σ(K − 1)
as a controllable sequence.
This definition of controllability is inspired by [23]. For other
notions of controllability, see [25] and references therein.
We now introduce a matrix test for determining controllable
sequences. Consider A = {Ai}i∈Σ and B = {Bi}i∈Σ

and suppose that all the matrices in A are non-singular.
The controllability matrix corresponding to a sequence ı̂ =
(i0, i1, . . . , iM−1) ∈ ΣM is defined as

C (̂ı) =
[
AiM−1

. . . Ai1Bi0 . . . AiM−1
BiM−2

BiM−1

]
.

We recall the following result, which follows from [23,
Theorems 3 & 4, Corollary 1].

Theorem 2: For a system (6) with Ai invertible for all
i ∈ Σ, the following statements are equivalent:

1) A sequence of modes ı̂ ∈ ΣM is a controllable se-
quence.

2) Rank[C (̂ı)] = n.
We thus have an algorithmic procedure to determine if a

given sequence in ΣM is controllable or not. In terms of
Problem 1, controllable sequences arise as natural choices
for the marked states ı̂ ∈ ΣM

F for the numerical scheme
proposed in Theorem 1 (Corollary 1 for its LMI version)
and Corollary 2. In the following section we will illustrate
this idea with the help of a numerical example.

IV. NUMERICAL EXAMPLE

We consider here an academic example, for which none
of the subsystems is stabilizable, while all the “mixed”
sequences of length 2 are controllable.

More precisely, let us consider a planar switched sys-
tem (6) with 3 modes, defined by matrices A1 = A2 =
A3 = I2, (i.e. the identity matrix of dimension 2) and
B1 =

[
1 0

]⊤
, B2 =

[
0 1

]⊤
, B3 =

[
1 1

]⊤
. None

of the pairs (Ai, Bi), i ∈ Σ = {1, 2, 3}, is stabilizable in
the classical LTI sense, and therefore the system cannot be
stabilized under arbitrary switching signals σ : N → Σ.
On the other hand, multiple controllable sequences, in the
sense of Definition 4, exist. In particular, from the matrix



Fig. 2. Numerical example: Norms of the state and switching signals.

test defined in Theorem 2, any sequence ı̂ = (i0, i1) ∈ Σ2

with i0 ̸= i1 is a controllable sequence. We refer to the set
of such sequences as Σ2

C , meaning the set of all controllable
sequences of length two. We study the feasibility of the
LMI conditions in Corollary 1 under different scenarios
concerning marked states ı̂ ∈ Σ2

F ⊆ Σ2
C . The structure of

matrices (Ai, Bi) implies that the minimum feasible γ in (8a)
is given by 1. Thus, we fix γ = 1 in all numerical tests and
explore the influence of the set Σ2

F on the achievable lower-
bound for ρ. Recall that, from Corollary 2, smaller ρ imply
that GUES is assured for a larger set of switching signals
σ ∈ Lω(GΣM

F
, ε,K), while also implying an improved bound

on the converge rate.
At first, we consider Σ2

F = Σ2
C . In this case, the smallest

ρ for which the LMIs are feasible is 0.5. Consider another
test set with Σ2

F = {(1, 3), (2, 3), (3, 2)}. In this case,
ρ = 0.013 is the upper bound for which the LMIs are
feasible. This same pattern is observed when using other sets
of three sequences. When considering only one controllable
sequence, for example, Σ2

F = {(1, 2)}, we can obtain the
lower bound of ρ = 0.01.

To illustrate the effect of the designed control law, consider
the simulation in Fig 2. We simulated the closed-loop system
for an initial condition of x(0) =

[
2 1

]⊤
in two cases. In

both cases, we consider the controller design with Σ2
F =

Σ2
C and ρ = 0.5. In the first case, we consider a periodic

switching signal (called here σ1) that repeats the controllable
sequence ı̂ = (1, 2) infinitely many times and is such that
σ1 ∈ Lω(GΣ2

F
, ε,K), for K = 9 and ε = 0.001. One can

observe that every time the switching signal hits the sequence
ı̂ = (1, 2), the state’s norm decreases. In the same figure, we
also plotted the norm of the state for a switching signal that
repeats mode 3 infinitely. One can see that the corresponding
trajectories are bounded, but the system does not converge
to the origin since σ2 never activates a marked sequence.

V. CONCLUSIONS

In this manuscript we provided a feedback design scheme
for discrete-time switched systems. The overall control pol-
icy, valid uniformly over specific class of switching se-
quences, depends only on the current state and on a finite
number of past values of the considered switching sequence.

As open route of future research, we aim to generalize this
approach for more general classes of ω-regular language
(and thus, for more general automata-structures), and to
characterize the conservatism of the proposed approach.
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