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Le déploiement massif des réseaux WiFi, alimenté par les caractéristiques prometteuses des nouvelles
générations telles que le 802.11be et au-delà, répond de mieux en mieux aux besoins de connectivité et
de débit croissant des utilisateurs. Ces déploiements sont désormais confrontés à de nouveaux défis tels
que la densité des points d’accès (APs) dans une zone restreinte et la nature dynamique des accès à ces
APs. Par conséquent, le développement de techniques efficaces d’équilibrage de charge via une stratégie
d’association optimale des stations (STAs) aux APs, garantissant une équité entre les utilisateurs tout en
optimisant les performances du réseau, demeure un problème ouvert. Dans ce travail, nous présentons
DQL-MultiMDP, un algorithme d’équilibrage de charge basé sur le Deep Q-Learning (DQL) permettant
d’atteindre cet objectif en relèvant le défi de la complexité de l’environnement en alternant entre plusieurs
Processus de Décision Markoviens (MDPs) en fonction de la variation dynamique du nombre d’APs et de
STAs. Les résultats expérimentaux démontrent son efficacité en termes de qualité d’association résultante
et d’optimisation du débit global du réseau, en comparaison avec l’approche traditionnelle basée sur la
puissance du signal reçu.

Mots-clefs : WiFi, Load Balancing, Markov Decision Process, Deep Q-Learning

1 Introduction

The deployment of modern WiFi networks is characterized by its dense and dynamic nature; the
user Stations (STAs) experience diverse Quality of Service (QoS) requirements, ranging from con-
nected sensors to devices running intensive applications like Augmented/Virtual Reality (AR/VR),
gaming, and 8K videos. Some STAs are attached to the users and exhibit complex mobility. The
Access Points (APs) are close to each other, resulting in overlapping cells. They can be managed
by energy efficiency mechanisms that turn them on/off depending on traffic and demands, similar
to the STAs that connect and disconnect unpredictably. Therefore, the IEEE 802.11 standards aim
to improve existing Wireless Local Area Networks (WLANs) to accommodate these circumstances.
The IEEE 802.11be or WiFi 7, promises to deliver Extremely High Throughput (EHT) and reduce
latency [1]. It comes with several novel enhancements, such as wider bandwidths, Multi-link Op-
eration, Multi-AP Cooperation, and Seamless Roaming to ensure that STAs can seamlessly switch
between different APs, thus providing solid support for load balancing techniques.
Traditionally, each STA is associated with the AP with the highest received signal strength in-

dicator (RSSI), and this may result in overloading some APs, unfairness among users, and degra-
dation of the overall network performance [2]. The early load balancing algorithms, e.g. [3, 4],
often use simplistic metrics, such as RSSI measurements and the number of STAs connected to the



Mohamed Bellouch, Véronique Vèque, Lynda Zitoune et Iyad Lahsen-Cherif

ReLU

ReLU ReLU

ReLU

ReLU

ReLU

ReLU

ReLU

DQL-MultiMDP

ReLU

Fig. 1: Illustration of the used terminology

APs, which are not sufficient to establish the desired level of fairness while tackling the dynamic
and dense nature of modern networks. Proposed Deep Reinforcement Learning (DRL)-based load
balancing techniques, e.g. [5,6], successfully tackle the density and heterogenous requirements chal-
lenges. However, the design of these solutions and the experimental setup where their effectiveness
is validated are often built upon settings where the number of nodes remains constant without
considering their dynamic (on/off, mobility) behavior.
This paper presents DQL-MultiMDP, an algorithm for load balancing in dense and dynamic

WiFi networks. Leveraging Deep Q-Learning (DQL), it takes complex state representations with
advanced metrics to learn through autonomous decision-making an optimal STA-to-AP association
policy that ensures long-term fairness among users, balances the load on the APs, and optimizes
the overall network performance. Moreover, the approach alternates between the multiple Markov
Decision Processes (MDPs) depending on the dynamic variation of the number of APs and STAs,
thus providing a more fine-grained understanding of the environment’s dynamics.
We proceed by introducing our system model for a dense WiFi network in Section 2, where

the dynamics conform to the Markov property necessary in the RL formalism. In Section 3, we
provide a brief overview of DQL-MultiMDP, and in Section 4, we discuss the results obtained
to demonstrate its effectiveness. We conclude the paper in Section 5 with some insights and
motivations for future work.

2 System model and assumptions
Let t ∈ R be a time variable. From the view of a single controller, the network at t consists

of a finite set of N
(t)
STA active STAs ST A(t) = {µi}1≤i≤N

(t)
STA

, and a finite set of N
(t)
AP active

APs AP(t) = {αj}1≤j≤N
(t)
AP

. The association of the STAs at t is modeled by a binary matrix

C(t) = (c
(t)
i,j )1≤i≤N

(t)
STA,1≤j≤N

(t)
AP

, such that, if µi is associated to αj then c
(t)
i,j = 1, otherwise c

(t)
i,j = 0.

To model the on/off switching behavior, we assign to any device β (AP or STA) an independent

Markov chain process Sβ = S
(t0)
β , S

(t0+η)
β , S

(t0+2η)
β , . . ., where the state set is {’On’, ’Off’}, and the

index set is {t0+kη}k∈N, with t0 being an initial time and η > 0 a time step. The APs are fixed in
position, while the STAs move according to a Markov chain lattice random walk on R2 with a step
size δ > 0. Fig. 1 illustrates the used terminology with the considered radio channel characteristics

(listed for α1). We denote by SINR
(t)
µ,α the value of the Signal-to-Interference-and-Noise Ratio from

the STA µ ∈ ST A(t) to the AP α ∈ AP(t) at t. The achievable data rate of µ from α at t, denoted

by ρ
(t)
µ,α, can be obtained from the Shannon-Hartley formula: ρ

(t)
µ,α = Bα log2(1 + SINR

(t)
µ,α). We

exclusively focus on the downlink transmission from the APs to the STAs, and we denote the

required data rate by µ at t as d
(t)
µ .
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3 DQL-MultiMDP

A pair (NSTA, NAP ) is initially defined and called the controller’s capacity. If N
(t)
STA > NSTA or

N
(t)
AP > NAP , the controller employs a traditional association strategy; if N

(t)
AP = 1, it associates

all the active STAs to the single AP; if N
(t)
STA = 1, it associates the single STA to the AP with the

highest RSSI; otherwise, when 2 ≤ N
(t)
STA ≤ NSTA and 2 ≤ N

(t)
AP ≤ NAP , the association problem

will be seen as a MDP MDP
N

(t)
STA,N

(t)
AP

= (S
N

(t)
STA,N

(t)
AP

,A
N

(t)
STA,N

(t)
AP

,P
N

(t)
STA,N

(t)
AP

, rt, γ), where the

elements are the state space, the action space, the transition probabilities function, the reward
function, and a discount factor γ ∈ (0, 1), respectively. When a change in the number of devices
occurs after a certain τ > 0 (such as an AP being turned off or a new STA joining the network), and

generally results in N
(t+τ)
STA ̸= N

(t)
STA or N

(t+τ)
AP ̸= N

(t)
AP , the controller switches to MDP

N
(t+τ)
STA ,N

(t+τ)
AP

which models the new context. The observed state st at t is the tuple (St,Lt,Dt) where St is the
SINRs matrix, Lt is the APs load matrix, and Dt is the required data rates matrix, all given in

Eq. 1. st can practically be represented by a single vector of size N
(t)
STAN

(t)
AP +N

(t)
AP +N

(t)
STA.

St =
(
SINR(t)

µi,αj

)
1≤i≤N

(t)
STA

1≤j≤N
(t)
AP

,Lt =

N
(t)
STA∑
i=1

c
(t)
i,j


1≤j≤N

(t)
AP

, and Dt =
(
d(t)µi

)
1≤i≤N

(t)
STA

. (1)

The applied action at t is a binary matrix at = (a
(t)
i,j )1≤i≤N

(t)
STA,1≤j≤N

(t)
AP

that represents the

controller’s association of the STAs to the APs; if the controller associates the i-th STA to the

j-th AP, then a
(t)
i,j = 1, otherwise a

(t)
i,j = 0. Let 2 ≤ n ≤ NSTA and 2 ≤ m ≤ NAP ; as associating

a single STA to multiple APs requires further analysis of the Multi-AP Cooperation feature [1],
basic DQL-MultiMDP associates each STA to one and only one AP. Thus, at becomes a matrix
where the elements in each line are all zeros except one that is 1. Therefore, we have |An,m| = mn.
By letting [Lt]j denote the j-th element in Lt, the received reward at t is expressed as

rt =

N
(t)
STA∑
i=1

N
(t)
AP∑

j=1

c
(t)
i,j

ρ
(t)
µi,αj

d
(t)
µi [Lt]j

, (2)

so that maximizing the sum of γ-discounted future rewards implies finding the optimal association
strategy that maximizes the ratio between the Shannon capacities and the required data rates
while minimizing the load on the APs.
As illustrated in Fig. 1, the controller stores a Q-Network for all the possible (NSTA−1)(NAP−1)

MDPs. Each Q-Network, with parameters θn,m, consists of Fully Connected (FC) layers with
ReLu activation functions. It outputs (Q(st, a; θn,m))a∈An,m

the approximated Q-values of all the

available actions in An,m given the current state st taken as input.

4 Experimental results
We used the ns3-gym toolkit to interface between DQL-MultiMDP and an IEEE 802.11ax network
simulated on ns3 and whose topology is illustrated in Fig. 2. The simulation environment adheres
to the dynamics presented in Section 2. The APs have identical characteristics, with coverage
areas satisfying Rα1

= Rα2
= Rα3

> 3D. The station requirements randomly change over time.
All the devices are initially active except α2 and µ1. The controller then interacts with MDP8,2

and updates θ8,2. As shown in Figure 3, the episodes’ sum of rewards evolves until α2 is turned
on nearly after the 50th episode, so the environment transits to MDP8,3, resulting in a drop in
the plot. MDP8,2 is observed again around the 120-th episode, and the evolution starts where
it left off because θ8,2 was already trained. After the 160-th episode, the algorithm reaches the
optimal policy in all the visited MDPs, outperforming the single MDP approach that models the
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environment as only one MDP and uses only one Q-Network. Tab. 1 demonstrates the intelligent
association obtained by the learned policy, which is more flexible than the Max-RSSI association
strategy that associates each STA to the closest AP, causing a high load on α1. (µ6 is turned off).

Tab. 1: Association results

STA µ1 µ2 µ3 µ4 µ5 µ7 µ8 µ9

STA’s required rate (Mbps) 1 10 1 10 10 10 10 5
Max-RSSI association strategy α1 α1 α2 α1 α1 α1 α1 α3

DQL-MultiMDP α2 α2 α3 α1 α2 α1 α3 α3

Recent experiments and investigations revealed that the main factor behind imposing the con-
troller capacity is the action space’s growth. The controller capacity can be set for such worst-case
scenarios at (NSTA, NAP ) = (10, 4). However, DQL-MultiMDP can be adapted to control a net-
work with a large number of devices by partitioning it into clusters. When tested in a network of 50
STAs and 16 APs divided into 5 clusters, Fig. 4 shows how the Max-RSSI strategy is outperformed
after reaching the optimal policy in all the visited MDPs in about 400 s on average.

5 Conclusion
This paper presented DQL-MultiMDP, a DQL-based load-balancing algorithm that leverages a
MDP decomposition approach to learn the optimal STA-to-AP association strategy in dense and
dynamic WiFi networks. Experimental results validate the algorithm’s effectiveness in both ensur-
ing fairness among users and optimizing the network’s performance; encouraging further improve-
ments to meet WiFi’s new features, such as Muli-link Aggregation and Multi-AP Cooperation.
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