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A variational framework for the reconstruction of time-averaged mean flows using a sparse 
set of observations with large magnitudes of noise (referred to as outliers), is presented. The 
observations constitute a set of point-wise measurements of the mean flow with outliers at 
certain measurement locations and are incorporated into a numerical simulation governed by 
the two-dimensional, incompressible Reynolds-averaged Navier-Stokes (RANS) equations with an 
unknown momentum forcing. This forcing, which corresponds to the divergence of the Reynolds 
stress tensor, is calculated from a direct-adjoint optimization procedure to reduce the deviation 
between the measured and estimated mean velocities. 𝓁2, 𝓁1, Huber, and hybrid loss functions are 
used to represent the discrepancy in the mean velocity field between the measurements and the 
predictions. A variety of algorithms are considered to solve the optimization problem with these 
loss functions and a performance comparison in terms of the quality and physical features of the 
recovered mean flow is presented. The Huber loss function performed best as it remained robust 
to strong outliers in the measurements with its 𝓁1 contribution and also ensured the uniqueness 
of the optimal solution with its 𝓁2 contribution. Huber loss functions restrict the effect of outliers 
at the local measurement locations, thereby not affecting the quality of the high-dimensional 
reconstructed mean flow field. The hybrid loss function, a modified form of the continuous Huber 
loss function, also recovered the mean flow with high accuracy. We demonstrate the performance 
of the data assimilation framework for the case of two-dimensional laminar flow around a circular 
cylinder at 𝑅𝑒 = 100. We then extend the analysis to the case of two-dimensional laminar flow 
over a backward-facing step at 𝑅𝑒 = 500, to further assess the efficacy and robustness of the data 
assimilation framework.

1. Introduction

Computations and experiments constitute the two principal means of investigating the mechanisms and transport processes 
governing complex fluid flows. Both techniques have undergone remarkable progress over the past decades and currently produce 
data of impressive detail and accuracy. While many studies focus on one of the two approaches, a combined perspective that 
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leverages the advantages of both methods often yields a more complete and robust picture of the observed flow behavior. Merging 
information from experiments and computations is traditionally achieved by data assimilation – a technique that injects experimental 
measurements into numerical simulations to eliminate uncertainty and increase predictability. In this process, computational model 
predictions are matched to experimental observations, and corrections within the variance of the measurements are directly applied 
to the prescribed model. This procedure can be used, among other applications, to extend the predictability of flow features beyond 
the reach of sensors. One of the most challenging tasks in data assimilation is the handling of unavoidable errors (in particular, 
outliers many standard deviations away from the mean) in the measurements and the restricting of their influence on the remaining 
data set. The development of an effective computational framework to accomplish this objective is the goal of this article.

Data assimilation is an established technique of estimating a complete flow state from limited observations under the constraint 
of a model equation. It has a long and distinguished history, with much of the initial progress driven by the recovery of weather 
and climate patterns from local and sparse measurements using a circulation model (see, e.g., Le Dimet and Talagrand, 1986 [1]). 
These identified global patterns are then advanced in time to provide forecasts, and similar attempts have been made to determine 
dominant ocean currents from a localized buoy network or regional satellite data.

The data used in data-assimilation computations are varied in quality and call for different techniques to incorporate them into the 
underlying model to maximum effect and benefit. Experimental data is commonly time-accurate, but spatially sparse and localized; it 
is also high in model fidelity since it is the experimental truth, but often noisy, depending on the sensor’s capabilities. Computational 
data, on the other hand, is spatially global and commonly noise-free but suffers from a far lower model fidelity. For example, flows in 
the turbulent regime often misrepresent quantities of interest due to the shortcomings of the used turbulence or subgrid-scale closure 
model. A promising direction of pursuit in data assimilation is thus a hybridized approach that combines complementary strengths, 
with a mutual compensation of known inaccuracies.

Data assimilation techniques can be roughly divided into sequential and variational. The sequential approach is based on the 
Kalman Filter and alternates forecast and analysis steps (see Kalman, 1960 [2]). While successful for systems with lower degrees 
of freedom, it becomes intractable when the state is high-dimensional. Even using ensemble averages of the statistics, a technique 
referred to as the Ensemble Kalman Filter (for details, see Evensen, 1994 [3] and Evensen, 2009 [4]) can only partially alleviate 
the limitations of the initial approach for large-scale dynamical systems, due to the inherent cost of generating and propagating the 
ensembles.

Variational data assimilation has its roots in optimal control theory (see, for example, Zhou et al., 1995 [5], Gunzburger [6], Kim 
and Bewley, 2007 [7]) where the objective is to minimize a loss functional subject to satisfying governing equations. In the context 
of variational data assimilation applied to fluid mechanics, this involves minimizing the discrepancy between the experimental 
observations and numerical simulations, while considering the governing equations as constraints. Put differently, the aim is to use 
a sparse data set of measurements and recover flow fields by optimally fitting an underlying model to the measurements. Under the 
label of 3D-Var/4D-Var problems, variational data assimilation has routinely and successfully been applied to weather forecasting, 
see, e.g., Talagrand and Courtier, 1987 [8]. Apart from meteorological applications, it has been used to determine boundary and 
initial conditions from PIV measurements (Gronskis et al., 2013 [9]), to reconstruct mean velocity fields from sparse measurements 
(Foures et al., 2014 [10], Symon et al., 2017 [11]), or higher-order dynamics from localized input (see Mons et al., 2016 [12]), 
where it surpassed sequential methods. Further examples include the data-based recovery of scalar transport (see Cerizza et al., 2016 
[13], Wang et al., 2019 [14]) and the blending of variational and ensemble-based techniques in a series of efforts by Mons et al., 
2019 [15], Mons et al., 2021 [16], and Buchta et al., 2022 [17].

Key challenges in variational data assimilation stem from the nature of experimental data. Measurements from experiments in 
fluid dynamics are commonly underresolved in space (and often also in time) and contain only partial information about the full state 
of the flow. In mathematical terms, the sparse data constitute a low-dimensional representation of an actual high-dimensional flow 
field. In particular, the recovery of mean flows from sparse measurements – a common requirement for the design of engineering 
fluid systems – is an example of this highly restricted representation. In addition to this representation, experimental data are often 
contaminated by statistical outliers, i.e., data points that, due to measurement or sensor errors, depart by multiple standard deviations 
from the mean value. Moreover, noise, again from faulty or low-quality sensors, presents a challenge for the recovery of meaningful 
and physically relevant results. The reader can refer Wang and Zaki, 2021 [18] and Zaki and Wang, 2021 [19], to get an insight into 
the difficulties associated with variational data assimilation of turbulent flows.

A computational framework for the robust recovery of mean-flow fields has to account for these obstacles. More specifically, we do 
not wish to follow the common procedure in dealing with outliers, sparsity, and noise by using pre-processing steps, such as filtering 
or outlier detection. Rather, we attempt to incorporate a judicious selection step, distinguishing between valuable information 
and compromised data, directly into the variational formulation. In this way, we aim to include all data points but limit their 
negative effect on an accurate recovery when their contribution exceeds a statistical threshold given by a particular loss functional. 
Consequently, we use advanced methodology from mixed loss function optimization, concepts from robust statistics, and techniques 
from inverse problems to design a computational platform for variational data assimilation in the presence of sparse, noisy, and 
outlier-contaminated data.

Our approach goes beyond the traditional approach of treating the error deviation in the variational formulation in a quadratic or 
𝓁2 form, yielding a least-square problem from a mathematical point of view. Data sets with high kurtosis are particularly misrepre-

sented by this choice. Instead, an 𝓁1-based loss functional in the variational formulation, i.e., an absolute-value-based error measure 
is far more suited to capture large standard deviations from the mean and thus yield more robust mean-flow recoveries. This type 
of variational problem, however, suffers from convergence problems in the optimization step owing to the singularity for vanishing 
2

errors and the lack of a proper definition of gradients at these points. In this present study, various hybrid 𝓁2∕𝓁1 loss functionals are 
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proposed, based on earlier work (see Huber, 1972 [20]; Huber, 1973 [21]; Bube and Langan, 1997 [22]; Tavolato and Isaksen, 2015 
[23]; Zadorozhnyi et al., 2016 [24] for details) which allows us to account for the above-mentioned inaccuracies in the processed 
data and significantly robustify the traditional variational data assimilation approach. The application of the Huber loss function to 
simple data assimilation models using data with outliers has been investigated by Rao et al., 2017 [25]. In this paper, we demonstrate 
the application of the mixed loss function framework to complex flows. The use of this mixed loss function framework leads to com-

plex optimization problems and sophisticated algorithms have to be employed to solve the resulting PDE-constrained minimization 
problem. We will showcase the approach in low-Reynolds number configurations, such as two-dimensional flow around a cylinder 
at 𝑅𝑒 = 100 and two-dimensional flow over a backward-facing step at 𝑅𝑒 = 500. Yet, extension to higher-number Reynolds numbers, 
which require a turbulence model [26], or to compressible flows does not pose any problem in principle.

The present paper is thus organized as follows. The general data assimilation problem is formulated in §2, which is followed 
by the introduction of different loss functions in §3. The numerical methods for optimization are reported in §4 while the error 
quantification is reported in §5. Results for flow around a circular cylinder and flow over a backward-facing step, together with 
discussions of the obtained results, are presented in §6. Conclusions are presented in §7.

2. Problem statement

2.1. Reynolds-Averaged Navier-Stokes (RANS) framework

Any unsteady flow [𝐮, 𝑝] in a configuration statistically steady can be decomposed into a time-averaged steady mean flow 
[
𝐮, 𝑝

]
and fluctuating perturbations 

[
𝐮′, 𝑝′

]
, using the Reynolds decomposition. We represent 𝐮 = [𝑢, 𝑣,𝑤], 𝐮 =

[
𝑢, 𝑣,𝑤

]
, and 𝐮′ =

[
𝑢′, 𝑣′,𝑤′]

respectively. Time-averaging of the three-dimensional incompressible Navier-Stokes equations results in the Reynolds-Averaged 
Navier-Stokes (RANS) equations:

𝐮 ⋅∇𝐮+∇𝑝− 1
𝑅𝑒

∇2𝐮− 𝐟 = 0 (1a)

∇ ⋅ 𝐮 = 0, (1b)

which are valid in a two-dimensional domain.

The true (experimental or computational) mean flow is assumed to satisfy the two-dimensional incompressible RANS equations, 
considered the reduced-order model for data assimilation. In the above equation (1a), f =

[
𝑓𝑢, 𝑓𝑣, 𝑓𝑤

]
represents the unknown 

volumetric momentum forcing term which can be modeled using a turbulence closure model or can be obtained using a data-driven 
approach. This forcing term accounts for the divergence of the Reynolds stresses, as seen from the Reynolds averaging of the Navier-

Stokes equations. It is given as

𝐟 = −∇ ⋅ 𝝉 (2)

where 𝜏 is the Reynolds-stress tensor.

The boundary conditions for the RANS equations are discussed later in section 6 for each flow case.

2.2. Data assimilation problem

Into the data assimilation framework, we embed methodology for effectively handling outliers in the measurements. Outliers are 
measurements that deviate from the mean value by abnormal multiples of the standard deviation. The precise definition of ‘abnormal’ 
is subjective and is left for the experimentalist to quantify. In the present work, we focus on variational data assimilation only and 
the purpose of data assimilation algorithms is thus to obtain an optimal estimate of the design control vector such that the error 
between the measured and reconstructed states, represented by an objective functional , becomes minimal. The forcing term 𝐟 is 
considered as the design control vector, and the RANS equations are used as constraints for the inverse problem. Different types of 
loss functions to represent the deviation error between the measurements and the model predictions will be presented and discussed 
in the subsequent sections. The goal of the inverse problem can therefore be stated as follows

min
𝐟

 (3a)

subject to : 𝐮 ⋅∇𝐮+∇𝑝− 1
𝑅𝑒

∇2𝐮− 𝐟 = 0 (3b)

∇ ⋅ 𝐮 = 0 (3c)

Observations are measurements of the real mean flow field, available at discrete sensor locations and often contaminated by noise. 
In general, measurements ̃𝐮 of the true mean velocity field 𝐮 are expressed as

 (
𝐮
)
= �̃�+ 𝐫 (4)

where [
�̃�
] [{

�̃�𝑖
}𝑛
𝑖=1{ } ] [ [

�̃�1 �̃�2 … �̃�𝑛
]T ]
3

�̃� =
𝑣

=
𝑣𝑖

𝑛

𝑖=1
= [

𝑣1 𝑣2 … 𝑣𝑛
]T , and (5a)
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𝐫 =
{
𝑟𝑖
}2𝑛
𝑖=1 =

[
�̃�1 �̃�2 … �̃�𝑛 �̃�𝑛+1 … �̃�2𝑛

]T
(5b)

with 𝑖 representing each discrete sensor location and 𝑛 denoting the total number of measurement sensors. We perform two-

dimensional mean flow reconstruction, and therefore, we set up the data assimilation problem for two components of mean velocity 
in equations (3). 𝐫 represents the vector of observation errors in �̃� and 𝑣 respectively.  ∶ 𝑉

(
Ω)→ℝ2𝑛 is the representation of a 

general operator that projects the high-dimensional 𝑉
(
Ω) space of functions for the mean velocity field onto a discrete real space, 

compatible with the locations of the measurement sensors.

When measurements from experiments or simulations are limited, and the reconstructed field is higher-dimensional, the inverse 
problem may not yield smooth solutions. Furthermore, the presence of strong levels of noise in the measurements can render the 
inverse problems rather ill-posed. For an inverse problem to revert to well-posedness, a regularization function  (𝐟) must be added 
to the objective functional. The inverse problem stated in equation (3) is a classic example of a constrained optimization problem 
which can be simplified into an unconstrained optimization problem with the introduction of Lagrangian multipliers that eliminate 
the implicit dependence of the state variable on the control vector and therefore, henceforth  will be referred to as an objective 
function in the Lagrangian as shown in equation (6). The goal is to determine the critical points of this Lagrangian functional

([𝐮, 𝑝] , [𝐮†, 𝑝†] , 𝐟) =(
𝐮
)
+ (𝐟) − ∫

Ω
𝑝
† {∇ ⋅ 𝐮

}
𝑑Ω− ∫

Ω

(
𝐮†
)T{

𝐮 ⋅∇𝐮+∇𝑝− 1
𝑅𝑒

∇2𝐮− 𝐟
}

𝑑Ω (6)

where the spatial integration is defined on the high-dimensional flow domain.

Lagrange multipliers or adjoint variables 
(
𝐮†, 𝑝†

)
are introduced in equation (6) to enforce adherence to the governing equations. 

The regularization function defined on the high-dimensional assimilated space is a function of the design control vector (𝐟) and is of 
the following form

 (𝐟) = 𝛽

2 ∫
Ω

|∇𝐟 |2 𝑑Ω (7)

The regularization parameter also referred to as the balancing parameter (𝛽 > 0), is taken as sufficiently small to produce a proper 
weighting between the deviation error and the balancing error (arising from the regularization function).

The first-order necessary conditions for the optimal solution of a non-linear optimization problem are obtained by solving the Karush–

Kuhn–Tucker (KKT) system of the above equations (Kuhn and Tucker, 1951 [27]). Setting the first variation of the augmented cost 
functional to zero results in the set of KKT equations that are then solved iteratively. The adjoint equations (obtained from the 
partial differential of the Lagrangian with respect to the direct variables) are presented in equations (8a). The partial differential 
of the Lagrangian with respect to the design control vector 𝐟 is presented in equation (8b) which provides the necessary gradient 
information for the optimization algorithm.

𝜕
𝜕𝐮

= 0⇒ −𝐮 ⋅∇𝐮† + 𝐮† ⋅
(
∇𝐮

)T −∇𝑝† − 1
𝑅𝑒

∇2𝑢† = 𝜕
𝜕𝐮

, and
𝜕
𝜕𝑝

= 0⇒∇ ⋅ 𝐮† = 0 (8a)

∇𝐟 = 𝐮† + 𝛽∇T∇𝐟 (8b)

The boundary conditions for the direct and adjoint equations are discussed in detail for each flow case in Section 6.

3. Objective function

This section provides details on the different types of loss functions used to quantify the point-wise deviation error between the 
model predicted and the observed mean velocities. Before introducing the different loss functions, we provide a quick introduction 
to the Bayesian framework of deterministic data assimilation.

3.1. Deterministic formulation for a Bayesian perspective on variational data assimilation

A Bayesian approach to data assimilation (Wikle and Berliner, 2007 [28]) employs Bayes’ theorem to obtain an optimal estimate 
from observations ̃𝐮 resulting in an associated assimilated state 𝐮. Following this approach, we can define a continuous form of the 
assimilated state that can be viewed as a random variable drawn from a probability distribution, defined by its probability density 
function (PDF) and conditioned on observations according to

ℙ
(
𝐮 || �̃�) =ℙ

(
�̃� || 𝐮) ℙ

(
𝐮
)

ℙ
(
�̃�
) ∝ ℙ

(
�̃� || 𝐮) ℙ

(
𝐮
)

(9)

From RANS equation (1), we see that the assimilated state 𝐮 is an implicit function of the control variable 𝐟 , denoted as 𝐮 (𝐟). We 
can write equation (9) as

( | ) ℙ
(
�̃� || 𝐮 (𝐟)) ℙ (𝐟) ( | )
4

ℙ 𝐮 (𝐟) | �̃� =
ℙ
(
�̃�
) ∝ ℙ �̃� | 𝐮 (𝐟) ℙ (𝐟) (10)
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where ℙ (𝐟) represents the prior PDF (i.e., knowledge of the control state before new observations), ℙ 
(
�̃� || 𝐮 (𝐟)) denotes the likeli-

hood of observations (i.e., the PDF of observations, conditioned on the assimilated state), ℙ 
(
𝐮 (𝐟) || �̃�) stands for the posterior PDF 

(i.e., the updated PDF of the assimilated state, after the analysis), and ℙ 
(
�̃�
)

represents the marginal PDF of the observations, a 
normalizing constant which ensures that the total probability sums to one.

Equation (10) states that the prior probability is updated after observing the likelihood of the measurement and assigning an update 
to the posterior probability. The Bayesian viewpoint consists of processing the measurement data to maximize the probability of an 
assimilated state that is most likely to corroborate the measured data. This implies that the Bayesian approach determines argmax
of ℙ 

(
𝐮 (𝐟) || �̃�) in equation (10), i.e., we seek a 𝐟 which yields 𝐮 that is most probable, given the measurement data �̃�. This step 

is referred to as a maximum likelihood estimation (MLE), and it is achieved by maximizing a likelihood function such that, under 
the assumed probability distribution, the observed (measured) data emerge as most probable. The maximum likelihood hypothesis 
is given by the following form

𝐟opt = argmax
𝐟

ℙ
(
�̃� || 𝐮 (𝐟)) ℙ (𝐟) (11)

Considering equation (11), the most likely assimilated state 𝐟opt is the one for which the conditional probability of the measurement 
data (given the assimilated state) reaches a maximum. The Bayesian perspective thus allows the modeling of the observation error 
based on the nature of a probability distribution. Since the observation error (noise) can be taken as a random variable, we can 
consider different loss functions for modeling the noise based on the associated probability distribution.

We can use the log-likelihood transformation of the maximum likelihood estimate in equation (11) as

𝐟opt = argmax
𝐟

lnℙ
(
�̃� || 𝐮 (𝐟))+ lnℙ (𝐟) (12)

where maximization of ℙ is equivalent to maximization of ln (ℙ) as ln (ℙ) constitutes a monotonic function of ℙ.

The maximization problem in equation (12) can also be written as a minimization problem of the corresponding negative value of 
the log-likelihood estimate as

𝐟opt = argmin
𝐟

−lnℙ
(
�̃� || 𝐮 (𝐟)) − lnℙ (𝐟) , (13)

where the two terms respectively correspond to the  and  parts of the objective function in (6).

We denote the general expression for ℙ 
(
�̃� || 𝐮 (𝐟)) as 𝔽 (𝐫) for the observation error in the measurements. The general expression for 

the observation loss function is therefore based on the PDF of the observation error distribution (Lorenc, 1986 [29]) denoted as

𝐟opt = argmin
𝐟

−ln𝔽 (𝐫) − lnℙ (𝐟) (14)

Based on the above definition, the measurement error part of the loss function for different error distributions is discussed in what 
follows. While defining the error distribution, we consider independent measurements to neglect the covariance between them and 
only consider the auto-covariance of different measurements.

3.2. Quadratic loss function

For a more general quadratic loss, the observation error is given by a density function as

1
𝜎𝑖

√
2𝜋

exp

(
−1
2

||𝑟𝑖||2
𝜎𝑖

2

)
(15)

where 𝜎𝑖 is the standard deviation of the observation error at any particular measurement location. In our analysis, we consider 
the scaled form of the random observation error at each measurement point such that the value of 𝜎𝑖 is normalized to 1. When 
we assume that the observation error’s likelihood at each measurement location follows a Gaussian distribution, the objective is 
represented in terms of a 𝓁2 loss function, see Table 1. However, we will present a test case with Gaussian error in section 6.1.4

wherein the observation error has a standard deviation of 𝜎𝑖 at a particular measurement location.

A 𝓁2 loss function performs well when the minimization function has deviation errors within three standard deviations from the 
mean. The quadratic loss function is used to minimize the mean square error between the model output and the observation, and it 
is convex with respect to the direct variable 𝐮. However, in our case, the control variable is 𝐟 which differs from the direct variable 
used in the objective function. Hence, no definitive statement on the convexity of the inverse problem in equation (6) can be made.

3.3. Absolute loss function

When there are large deviation errors, we assume that the observation’s likelihood at each measurement location follows a Laplace 
distribution, and the objective is represented in terms of a 𝓁1 loss function, see Table 1. The partial differential with respect to the 
direct variable is represented by a sign function denoted by sgn ( ) and is a piece-wise function.
5

A Laplace distribution follows a double exponential distribution with fatter tails than a Gaussian distribution, which allows efficient 
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Table 1

Error density function, objective and partial differential to the direct variable, for different loss functions.

Loss Error density function Objective Partial differential

function 𝔽
(
𝑟𝑖
)  𝜕

𝜕𝑢

Quadratic
1√
2𝜋

exp
(
− 1
2
||𝑟𝑖||2) 2𝑛∑

𝑖=1

1
2
||𝑟𝑖||2 T𝐫

Absolute
1
2
exp

(
− ||𝑟𝑖||) 2𝑛∑

𝑖=1

||𝑟𝑖||
T [sgn (𝐫)] with

sgn (𝐫) =
⎧⎪⎨⎪⎩
−1, 𝑟𝑖 < 0
0, 𝑟𝑖 = 0
1, 𝑟𝑖 > 0

Huber

⎧⎪⎪⎨⎪⎪⎩

1√
2𝜋

exp
(
− 1

2
||𝑟𝑖||2) , ||𝑟𝑖|| ≤ 𝜖𝑖

1√
2𝜋

exp

((
𝜖𝑖
)2
2

− 𝜖𝑖
||𝑟𝑖||

)
, ||𝑟𝑖|| > 𝜖𝑖

2𝑛∑
𝑖=1

⎧⎪⎪⎨⎪⎪⎩
1
2
||𝑟𝑖||2 , ||𝑟𝑖|| ≤ 𝜖𝑖

𝜖𝑖
||𝑟𝑖||− (

𝜖𝑖
)2
2

, ||𝑟𝑖|| > 𝜖𝑖

T �̃� with

�̃� =
{

𝑟𝑖,
||𝑟𝑖|| ≤ 𝜖𝑖

𝜖𝑖 sgn
(
𝑟𝑖
)
, ||𝑟𝑖|| > 𝜖𝑖

Hybrid
1

2𝜖𝑖 exp
⎛⎜⎜⎜⎝−
⎧⎪⎨⎪⎩
[
1 +

||𝑟𝑖||2
𝜖2𝑖

]1∕2
− 1

⎫⎪⎬⎪⎭
⎞⎟⎟⎟⎠

2𝑛∑
𝑖=1

⎡⎢⎢⎣
(
1 +

||𝑟𝑖||2
𝜖2𝑖

)1∕2

− 1
⎤⎥⎥⎦ T

[ |𝐫|
𝝐2

(
1 + |𝐫|2

𝝐2

)−1∕2]

handling of observation points that are many standard deviations from the mean. The absolute loss function is used to minimize the 
mean absolute error between the model output and the observation. The absolute loss function is more robust to outliers as it weighs 
the deviation error on a linear scale as compared to square values for the quadratic loss function. However, the 𝓁1 loss function will 
not be as effective in handling outliers, as large errors from outliers are weighed the same as lower errors. Moreover, the absolute 
loss function suffers from a singularity at the point of vanishing deviation error and hence is not differentiable at that point. Due to 
the complexity of non-smoothness, it poses challenges to conventional optimization methods. There have been various approaches to 
solving this kind of non-smooth optimization problems such as linear programming (Barrodale and Roberts, 1980 [30]) or iterative 
smoothing (Scales et al., 1988 [31]), but they require a considerable amount of mathematical tampering to eliminate the singularity. 
This issue prompted the development of hybrid 𝓁2∕𝓁1 loss functions which are characterized by a robust treatment of large deviation 
errors while following a Gaussian distribution for small deviation errors.

3.4. Huber loss function

The observation error’s likelihood at each measurement location may follow a piece-wise mixed Gaussian and Laplace distribution. 
In this case, the parameter 𝜖𝑖 denotes the epsilon parameter at each measurement sensor which dictates the switch from a 𝓁1 to a 𝓁2
loss function.

The Huber loss function was first proposed by Huber, 1964 [32] as one of the hybrid 𝓁1∕𝓁2 estimators for contaminated normal 
distributions. It enables the treatment of observations with large deviations (outliers) at the expense of minimal risk of corrupting the 
analysis locally, as shown by Huber, 1972 [20] and Tavolato & Isaksen, 2009 [33]. The asymptotic properties, robustness, stability, 
and convexity of the piece-wise Huber loss function are discussed in detail in Huber, 1972 [20] and Huber, 1973 [21]. The Huber 
loss function follows a Laplace distribution in the limit of large deviation errors (see Table 1), blended into a Gaussian distribution in 
the vicinity of vanishing deviation errors. The Huber loss function has two advantages: first, it maintains a quadratic function near 
the mean and evaluates the solution with minimal variance around the mean with its 𝓁2 part, and, second, it mitigates the weights 
assigned to the outliers for large error values with its 𝓁1 part. The value where the Huber function switches from 𝓁1 to 𝓁2 is given by 
the epsilon parameter which needs to be estimated a priori. We will present a numerical methodology to estimate the value of this 
epsilon parameter in Appendix D.

While the Huber function is continuous as well as differentiable at the 𝓁1 − 𝓁2 interface, however, it is only first-order differentiable 
and hence cannot be subjected to a numerical algorithm that requires second-moment information (Fountoulakis and Gondzio, 2016 
[34]). The Huber loss function, like the absolute function, is not strictly convex to the direct variable 𝐮 (Bube and Nemeth, 2007 
[35]).

3.5. Hybrid loss function

If we assume that the observation error’s likelihood at each measurement location follows a continuous mixed Gaussian and 
Laplace distribution, the objective is represented in terms of a continuous and differentiable function. In Table 1, the value of  for 
the hybrid loss density function is given as

 =

∞

exp
(
−𝑡𝑖

) 𝑡𝑖 + 1√ 𝑑𝑡𝑖 ≈ 1.636,with 𝑡𝑖 =

[
1 +

||𝑟𝑖||2
2

]1∕2
− 1 (16)
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∫
0 𝑡2

𝑖
+ 2𝑡𝑖

𝜖
𝑖
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Fig. 1. (a) Objective, (b) gradient, and (c) weight for different loss functions used to represent the point-wise deviation error between the measurements and the 
predictions. The weights in (c) are obtained by normalizing the objective of each loss function with respect to the objective of the 𝓁2 loss function. The inset in (b) 
shows the zoomed-in view of the gradients in the vicinity of the epsilon/cut-off parameter.

Table 2

Relative weight for Huber and hybrid loss functions as shown in Fig. 1c. The 
weight function is obtained by normalizing the objective of each loss function 
with respect to the objective of the 𝓁2 loss function.

Loss function 𝓁2 Huber Hybrid

Weight function,  (
𝑟𝑖
)

1

1; ||𝑟𝑖|| ≤ 𝜖𝑖

2
𝜖𝑖||𝑟𝑖|| ; ||𝑟𝑖|| > 𝜖𝑖

1
𝜖2𝑖

; ||𝑟𝑖||≪ 𝜖𝑖

2
𝜖𝑖
||𝑟𝑖|| ; ||𝑟𝑖||≫ 𝜖𝑖

The hybrid loss function is called the pseudo-Huber loss function (Bube and Langan, 1997 [22]). It is a smooth approximation of the 
Huber loss function and approximates the Huber function in different asymptotic limits of the deviation error. In Table 1, 𝝐 =

{
𝜖𝑖
}2𝑛
𝑖=1

represents the vector of cut-off parameters where 𝜖𝑖 denotes the 𝓁1∕𝓁2 switch at a particular measurement location. We will present 
a numerical methodology to estimate the value of this cut-off parameter in Appendix D.

The hybrid loss function in Table 1 reduces to 𝓁2 and 𝓁1 functions in different asymptotic limits as follows.

 =
2𝑛∑
𝑖=1

⎧⎪⎪⎨⎪⎪⎩
1
2

||𝑟𝑖||2
𝜖2
𝑖

,
||𝑟𝑖||
𝜖𝑖

≪ 1

||𝑟𝑖||
𝜖𝑖

,
||𝑟𝑖||
𝜖𝑖

≫ 1

(17)

The problem of the non-existence of higher-order derivatives for the Huber loss function has been circumvented in the hybrid loss 
function as it can furnish derivatives of any order. Fig. 1a shows the different loss functions used to approximate the deviation error 
between the measurements and the model predictions. For the cases of Huber and hybrid loss functions, there is an epsilon/cut-off 
regime within which the function behaves in an 𝓁2 manner and 𝓁1 everywhere else. The associated gradient for the different loss 
functions is presented in Fig. 1b where we notice a discontinuity for the 𝓁1 loss function at the minimal point. The discontinuity 
in the 𝓁1 loss function has been removed with the use of the Huber or hybrid loss function where the gradient near the point of 
epsilon/cut-off (±𝜖) is far smoother. Finally, the weights of the different loss functions for each measurement point are displayed by 
normalizing the objective of each loss function with respect to the objective of the 𝓁2 loss function, see Fig. 1c. The weights vary 
between zero and one; they quantify how an impact of a strong deviation in the measurement is de-emphasized (or even discarded) 
in the data assimilation process. A mathematical representation of the objective and the associated weights for each loss function 
are represented in Table 2. The quadratic loss function assigns equal weights (= 1) to every point in the measurement data set 
irrespective of outliers. Fig. 1c shows that the Huber and hybrid loss functions assign reduced weights to the model-predicted values 
with large departures from the mean observation value, in contrast to the full weights assigned by the 𝓁2 loss function throughout 
the range of the deviation error. The Huber loss function gives full weights to the predicted values near the minimum and gradually 
decreasing weights away from the minimum, as shown in Table 2. The weighting distribution for the hybrid loss function remains 
the same – except near the minimum where it narrows to very few predicted values around the mean – with full weights (see Table 2

for details).

4. Numerical methods for optimization

This section presents a class of algorithms employed for numerical optimization. The inverse problem involving 𝓁2, 𝓁1, Huber, 
and hybrid loss functional are solved using a variational formulation with a gradient-based iterative scheme, very similar to a 3D-Var 
problem as shown by Lewis et al., 2006 [36]. The iterative optimization scheme has to be supplemented with an initial guess, and 
7

for all cases of optimization, the initial guess is taken as 𝐟 = 0⃗, unless stated otherwise.
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4.1. Quasi-Newton Method (L-BFGS) for 𝓁2 differentiable loss functions

Quasi-Newton methods are a good alternative to the Newton methods and have been used widely for solving non-linear uncon-

strained optimization problems. Limited-memory BFGS (L-BFGS) has been one of the most popular quasi-Newton methods. It has 
been shown by Franceschini et al., 2020 [26] that the Euclidean inner product defined for L-BFGS (Nocedal and Wright, 2006 [37]) 
is inconsistent with the inner product defined for the inverse problem, and therefore a symmetric positive weighting matrix based on 
the metric of the finite-element spatial discretization is considered. A Cholesky decomposition of this mass matrix M is performed as 
M = L L T, and the Cholesky factor L is used to precondition the design vector as well as the gradient of the L-BFGS optimization 
problem. For the L-BFGS optimization algorithm, a weighted form of the design vector 

(
�̃� = L 𝐟

)
and the gradient, 

(
G̃ = L TG

)
are 

considered. This weighting technique has been proven to be more efficient, see Franceschini et al., 2020 [26] for more details.

The L-BFGS method has been shown to work rather well for the non-linear least-squares problems (Murea, 2005 [38]), and the 
efficiency of this method has been extended to the case of an IRLS formulation by Bube and Langan, 1997 [22]. The utility of the 
L-BFGS method for a Huber loss function has been demonstrated by Guitton and Symes, 2003 [39] and for a hybrid loss function by 
Bube and Nemeth, 2007 [35].

4.2. Iteratively Reweighted Least-Squares (IRLS) for 𝓁1 loss functions

An efficient way to remove the singularity problem in 𝓁1 loss function is to cast the original problem into a form of weighted 
least-squares problem which can then be solved efficiently as an Iteratively Reweighted Least-Squares (IRLS) problem, see Bube and 
Langan, 1997 [22]. The equivalent objective function for the IRLS form of a 𝓁1 minimization problem and the partial differential 
with respect to the direct variable can be written as

 =
2𝑛∑
𝑖=1

1
2
𝑟𝑖𝑊𝑖,𝑖𝑟𝑖, and

𝜕
𝜕𝐮

=T [𝐖𝐫] (18)

where 𝐖(2𝑛×2𝑛) is a diagonal matrix of weights with 𝑊𝑖,𝑖 =
1||𝑟𝑖|| .

The steps for solving the IRLS problem in equation (18) in an iterative manner are as follows:

1. Set 𝑘 ∶= 0 and initialize the weighting matrix as 𝐖{𝑘=0} = 𝕀(2𝑛×2𝑛) where 𝕀 represents an identity matrix.

2. Solve the IRLS problem in equation (18) for the (𝑘)𝑡ℎ iteration with 𝐖{𝑘} using the quasi-Newton L-BFGS algorithm.

3. Compute the residual at the 𝑘𝑡ℎ iteration as 𝐫{𝑘} = (
𝐮{𝑘}

)
− �̃�.

4. Compute the modified weighting matrix 𝐖{𝑘+1} using 𝐫{𝑘} with weights as 𝑊 {𝑘+1}
𝑖,𝑖

= 1|||𝑟{𝑘}𝑖
||| .

5. Set 𝑘 ∶= 𝑘 + 1 and go to step 2.

The above formulation can lead to singularities when the absolute error deviation is zero. To avoid this, a stabilizing parameter is 
considered to keep the elements of the weighting matrix finite. We have

𝑊
{𝑘+1}
𝑖,𝑖

= 1

max
{
𝜂𝑖,
|||𝑟{𝑘}𝑖

|||} or 𝑊
{𝑘+1}
𝑖,𝑖

= 1{
𝜂2
𝑖
+ |||𝑟{𝑘}𝑖

|||2
}1∕2 (19)

where 𝜂𝑖 > 0 is a small positive value, and 𝜼 =
{
𝜂𝑖
}2𝑛
𝑖=1 is the vector of positive values.

4.3. Alternating Direction Method of Multipliers (ADMM) for 𝓁2, 𝓁1 and Huber loss functions

The Alternating Direction Method of Multipliers (ADMM) (Nocedal and Wright, 2006 [37], and Boyd and Vandenberghe, 2004 
[40]) is an effective approach that sequentially performs the minimization, thereby allowing a better treatment of large-scale com-

plex non-linear constrained optimization problems (Dhingra et al., 2014 [41]). The advantage of this method is the breakdown of 
the multi-variable minimization problem into separable unconstrained primal variable problems with the specification of the dual 
variables which establishes the connection between the different primal variables (see Boyd et al., 2010 [42], and Parikh and Boyd, 
2013 [43] for further details).

The optimization problem using 𝓁2, 𝓁1 and Huber loss functions can be solved using ADMM by introducing a transformed variable 
vector 𝐳 =

{
𝑧𝑖
}2𝑛
𝑖=1 accounting for point-wise deviation and formulating it as a primal-dual problem given as

min
𝐟

 (𝐳) (20a)

subject to : 𝐳 = (
𝐮
)
− �̃� (20b)

𝐮 ⋅∇𝐮+∇𝑝− 1
𝑅𝑒

∇2𝐮− 𝐟 = 0 (20c)
8

∇ ⋅ 𝐮 = 0 (20d)
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The Lagrangian form for equations (20a) - (20d) can be written as,

([𝐮, 𝑝] , [𝐮†, 𝑝†] , [𝐳,𝝀] , 𝐟) = (𝐳) + (𝐟) − 𝝀T
[ (

𝐮
)
− �̃�− 𝐳

]
− ∫
Ω

(
𝐮†
)T{

𝐮 ⋅∇𝐮+∇𝑝− 1
𝑅𝑒

∇2𝐮− 𝐟
}

𝑑Ω

− ∫
Ω

𝑝
† {∇ ⋅ 𝐮

}
𝑑Ω+ 𝜇

2
[ (

𝐮
)
− �̃�− 𝐳

]T [ (
𝐮
)
− �̃�− 𝐳

] (21)

Upon simplification, the above equation (21) can be re-written as,

([𝐮, 𝑝] , [𝐮†, 𝑝†] , [𝐳,𝝀] , 𝐟) = (𝐳) + (𝐟) − ∫
Ω

(
𝐮†
)T{

𝐮 ⋅∇𝐮+∇𝑝− 1
𝑅𝑒

∇2𝐮− 𝐟
}

𝑑Ω− ∫
Ω

𝑝
† {∇ ⋅ 𝐮

}
𝑑Ω

+ 𝜇

2

[
 (

𝐮
)
− �̃�− 𝐳 − 𝝀

𝜇

]T [
 (

𝐮
)
− �̃�− 𝐳 − 𝝀

𝜇

]
− 1

2𝜇
𝝀T𝝀

(22)

where 𝝀 =
{
𝜆𝑖
}2𝑛
𝑖=1 represents the Lagrange multiplier, 𝜇 > 0 is a scalar penalty parameter, and the last term in equation (21)

represents a facilitating term that helps to make the dual function differentiable under mild conditions for the optimization problem. 
The convergence of ADMM is assured under mild conditions on  and  and for all values of 𝜇 (see Boyd et al., 2010 [42] for 
further details).

The ADMM algorithm involves inner and outer iterations. While the inner iterations find an optimal iterate that minimizes the 
objective function for a specific value of 𝜇, the outer iterations modify 𝜇 and update the Lagrange multiplier 𝝀 based on specific 
conditions. The Lagrangian in the above equation (22) can be solved using ADMM, and the basic structure of the ADMM iterative 
optimization is presented in equations (23a) - (23c).

𝐟{𝑘+1} = argmin
𝐟

([𝐮, 𝑝] , [𝐮†, 𝑝†] , [𝐳{𝑘},𝝀{𝑘}] , 𝐟) (23a)

𝐳{𝑘+1} = argmin
𝐳

([𝐮, 𝑝] , [𝐮†, 𝑝†] , [𝐳,𝝀{𝑘}] , 𝐟{𝑘+1}) (23b)

𝝀{𝑘+1} = 𝝀{𝑘} − 𝜇{𝑘} ( (
𝐮
(
𝐟{𝑘+1}

))
− �̃�− 𝐳{𝑘+1}

)
(23c)

The iterative optimization problem in equation (23a) is solved using the quasi-Newton L-BFGS algorithm. The steps of ADMM 
iterations are mentioned in Algorithm 1. The convergence of ADMM is guaranteed by the primal and dual conditions as stated in 
equations (24) and (25), see Appendix C for the details on the derivation.

Primal condition ∶ (
𝐮
(
𝐟{𝑘+1}

))
− �̃�− 𝐳{𝑘+1} (24)

Dual condition ∶ 𝐮†−
(
𝐟{𝑘+1}

)
(25)

The primal and dual conditions are not enforced explicitly in the ADMM iterative algorithm. The primal-dual condition residuals will 
approach zero when the ADMM algorithm has achieved the convergence i.e. found the optima of the equations (23a) - (23c).

4.4. Solvability of the inverse problem

In the case where the available measurements are of the same dimension as the reconstructed mean flow field, the inverse prob-

lem can be solved with ease. However, when measurements are limited, and the reconstructed mean flow field is higher-dimensional 
than the available measurements, the inverse problem may not yield smooth solutions as a function of the control variable. In addi-

tion, the loss function used to minimize the observation error may not be convex as a function of the control variable 𝐟 , and hence, 
the inverse problem can yield mean flows that can be a local minimum solution. For the inverse problem to facilitate a smooth 
solution, we include the information from the prior PDF (see section 3.1) in the form of a regularization function. Hence we manage 
to regularize the smoothness of the solution of the inverse problem but we do not manage to make it convex.

Furthermore, the presence of outliers in the measurements can render the inverse problem rather ill-posed. Even though the La-

grangian formulation ensures that the RANS equations along with the boundary conditions are obeyed throughout the flow domain 
and the observation error at each measurement location is minimized, it cannot be guaranteed that the assimilated mean flow is 
unique. We did not perform a parametric study to analyze the effect of different initial conditions on the convergence to a unique 
mean flow state, and neither did we study the effect of stochastic gradients in the minimization algorithm (see [44] for further 
details). However, we considered an initial guess for the inverse problem to be the base flow which is very far from the true mean 
flow, and we managed to revert the inverse problem to well-posedness.

In terms of the existence of the solution of the inverse problem, we will show that with the introduction of an appropriate loss 
9

function, we could recover mean flow with sufficient accuracy in the presence of measurements with outliers, in section 6.



Journal of Computational Physics 508 (2024) 113008S. Ghosh, V. Mons, D. Sipp et al.

Fig. 2. Part view of the mesh for two-dimensional flow around a circular cylinder at 𝑅𝑒 = 100. The measurement locations are denoted by ∙. (For interpretation of 
the colors in the figure(s), the reader is referred to the web version of this article.)

5. Error quantification

For the introduction of outliers at any true measurement 𝑎𝑖, we simply chose the actual measurement 𝑎𝑖 to be:

𝑎𝑖 =
(
1 + 𝛿𝑖

)
𝑎𝑖 (26)

where 𝛿𝑖 is the fractional uncertainty level, whose value will be arbitrarily chosen.

Here 𝑎𝑖 and 𝑎𝑖 represent the horizontal or vertical component of the mean velocity measurement at a particular sensor location 
with and without outliers, respectively. 𝜹=

{
𝛿𝑖
}𝑚
𝑖=1 is the vector of fractional uncertainties where 𝑚 represents the number of sensor 

locations with outliers. In addition, we also present the absolute uncertainty which is defined as, Δ𝑖 = ||𝑎𝑖 − 𝑎𝑖
|| with the vector of 

absolute uncertainties denoted as 𝚫 =
{
Δ𝑖

}𝑚
𝑖=1 respectively.

To assess the performance of the data assimilation procedure, we define a parameter 
(𝓁2𝑟 ) and call it the normalized global 

assimilated error. We define 𝓁2𝑟 as

𝓁2𝑟 = 𝓁2
𝓁20

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

∫
Ω

||𝐮− �̂�||2 𝑑Ω

∫
Ω

|||𝐮{0} − �̂�|||2 𝑑Ω

⎤⎥⎥⎥⎥⎥⎥⎥⎦

1∕2

(27)

where, 𝓁2 denotes the norm of the global assimilated mean flow error, and 𝓁20 denotes the norm of the global base flow error. 
𝐮{0} denotes the base flow with 𝐮

(
𝐟{0}

)
and �̂� denotes the true mean flow field. The control volume considered for integration in 

the above equation is defined on a part of the flow domain 
(
Ω ⊂Ω) that encompasses all the measurement sensors as well as the 

essential mean flow features, and this is defined explicitly for each flow case in section 6.

Similarly, we define another parameter 𝑟 for each loss function and call it the normalized local measurement error, and define it 
as 𝑟 =


0

, where  = 
(
𝐮
)

denotes the objective evaluated with the assimilated mean flow, and 0 = 
(
𝐮{0}

)
denotes the 

objective evaluated with base flow respectively.

Finally, we define a parameter 𝓁2
𝑟 shown in equation (28), similarly to that of 𝑟 except that the numerator and the denominator 

are evaluated considering the 𝓁2 norm equivalent of a particular loss function representing the mean velocity error.

𝓁2
𝑟 =

√√√√𝓁2

𝓁2
0

(28)

The parameter 𝓁2
𝑟 will be compared with 𝓁2𝑟 to check for the quality of the assimilated mean flow.

6. Applications

We present two different numerical experiment flow cases to illustrate the performance and features of our data assimilation 
framework. We first consider the reconstruction of mean flow around a circular cylinder at 𝑅𝑒 = 100, which is followed by the assim-

ilation of mean flow over a backward-facing step at 𝑅𝑒 = 500. All computations are performed on the FreeFem++ package (Hecht, 
2012 [45]), based on the finite-element method for spatial discretization. Taylor-Hood finite elements are used, more specifically 
quadratic 

(2) elements for the velocity and linear 
(1) elements for the pressure. The sparse mean flow measurements, as inputs 

for the data assimilation, are obtained from these two-dimensional direct numerical simulations on FreeFem++.
10

The direct and adjoint equations are solved in weak form, obtained by multiplying the Navier-Stokes equations by a test function 
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Fig. 3. Flow around a circular cylinder at 𝑅𝑒 = 100: Stream-wise component of (a) the base flow, (b) the time-averaged mean flow, (c) the deviation between the base 
flow and the time-averaged mean flow, and (d) the solenoidal part of the forcing from DNS. The solid and the dashed lines denote the re-circulation region for the 
base flow and the true mean flow, respectively.

and employing integration by parts. The direct equations are solved using a Newton-Raphson method which requires the linearized 
RANS equations. The adjoint equations in the discrete form are solved in a computationally efficient way by using the linearized 
RANS equations from the direct method. The transpose of the Jacobian matrix (also required for the direct solution) is used to obtain 
the discrete solution of the adjoint equations (8a) and (8b). The consistency of the discrete adjoint within a finite-element formalism 
has been well established by Hartmann, 2006 [46]. The optimization problem is solved within FreeFem++ using the NLopt nonlin-

ear optimization package; for details on NLopt, the reader can refer to Johnson [47]. Throughout this study, the outliers are only 
introduced along the horizontal component of the mean velocity measurements, unless specified otherwise.

6.1. Flow around a circular cylinder

We consider two-dimensional flow around a circular cylinder at 𝑅𝑒 = 100. A view of the mesh surrounding the cylinder surface 
is shown in Fig. 2. The RANS equations (1) are non-dimensionalized by the diameter of the cylinder 𝐷 and the inlet free-stream 
velocity 𝑢∞. The Reynolds number is hence defined as 𝑅𝑒 = 𝑢∞𝐷∕𝜈, with 𝜈 as the kinematic viscosity of the fluid. The computations 
are carried out on a square mesh with coordinates 𝑥 ∈ [−30,30] × 𝑦 ∈ [−30,30], producing 104 degrees of freedom. The initial guess 
of 𝐟 = 0⃗ satisfies the divergence-free condition, as well as the zero Reynolds stress conditions on the solid walls of the cylinder.

The base flow for the circular cylinder at 𝑅𝑒 = 100 is calculated using the initial guess of the control vector, and the stream-wise 
component of the base flow is represented in Fig. 3a respectively. The mean flow field is obtained by time averaging the instantaneous 
fields from the direct numerical simulation of flow around a circular cylinder at 𝑅𝑒 = 100. The stream-wise component of the mean 
flow is displayed in Fig. 3b. Finally, the initial difference of the stream-wise component between the base flow and the mean flow 
is plotted in Fig. 3c. The difference in the length of the re-circulation region as predicted from the base and the mean flows around 
the circular cylinder, is significant. The length of the re-circulation region 𝐥𝑟 denotes the extent downstream of the cylinder where 
the mean velocity vector is in the opposite direction of the incident mean flow, and hence 𝐥𝑟 is calculated at the transition point (
𝑢 = 0

)
. This shows that the inverse problem is characterized by a significant amount of control on the base flow to predict the mean 

flow accurately. We present the solenoidal part of the true forcing in Fig. 3d as the formulation of the data assimilation problem in 
equations (3) facilitates the recovery of only this part of the forcing, see Foures et al., 2014 [10] for further details.

The boundary conditions for the direct system are given as, Inlet: 𝑢= 1, 𝑣 = 0; Cylinder surface: 𝑢= 0, 𝑣 = 0; Top & bottom symmetry: 
𝜕𝑢∕𝜕𝑦 = 0, 𝑣 = 0; Outlet: 𝑅𝑒−1

(
𝜕𝑢∕𝜕𝑥

)
− 𝑝 = 0, 𝜕𝑣∕𝜕𝑥 = 0, and the boundary conditions for the adjoint (obtained via integration by 

parts) system are given as, Inlet: 𝑢† = 0, 𝑣† = 0; Cylinder surface: 𝑢† = 0, 𝑣† = 0; Top & bottom symmetry: 𝜕𝑢†∕𝜕𝑦 = 0, 𝑣† = 0; Outlet: 
𝑅𝑒−1

(
𝜕𝑢†∕𝜕𝑥

)
+ 𝑝

† = −𝑢 𝑢†, 𝑅𝑒−1
(
𝜕𝑣†∕𝜕𝑥

)
= −𝑢 𝑣† respectively. The spatial domain for evaluating the global error of the assimilated 

mean flow around the circular cylinder is considered as a rectangular section Ω ∶ 𝑥 ∈ [−1,5] × 𝑦 ∈ [−3,3] in equation (27). The 
sensor locations are considered in the most sensitive flow regions: close to the point of separation, and inside the re-circulation region 
of the mean flow around the circular cylinder. After a parametric study, we consider a set of 14 sparse measurements (unless stated 
otherwise), as shown in Fig. 2, and introduce outliers artificially at some of the sensitive regions of the flow, as discussed earlier 
in section 5. The number and locations of the sensors can be freely chosen; nonetheless, a detailed mathematical analysis has been 
presented by Mons and Marquet, 2021 [48] to analyze the effect of different sensor placement strategies on the data assimilation 
technique.

6.1.1. Data assimilation without noise

First, we perform data assimilation in the absence of outliers. A 𝓁2 loss function is used to represent the deviation error between 
11

the model-predicted and true measured mean velocities. The stream-wise component of the assimilated mean flow is reconstructed 
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Fig. 4. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using a 𝓁2 loss function to represent the error in measurements, solved with L-BFGS: 
Stream-wise component of (a) the assimilated mean flow, (b) the deviation between the assimilated and the true mean flows, and (c) the assimilated forcing. (d) 
denotes the objective function as mentioned in Table 1. The solid and the dashed lines denote the re-circulation region for the assimilated and the true mean flows.

Table 3

Performance of 𝓁2 and hybrid loss functions, for data assimilation of 
mean flow around a circular cylinder at 𝑅𝑒 = 100.

Loss function 𝚫 𝜹 (%) 
𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝑙𝑟

DNS — — — — 1.9125

𝓁2: L-BFGS — — 0.3242 0.0538 1.9891

Hybrid: L-BFGS — — 0.2932 0.0882 2.0329

with good accuracy using the L-BFGS method, see Fig. 4a. The discrepancy between the assimilated and true mean velocities is 
rather low in the region around the circular cylinder where measurements are available, as shown in Fig. 4b. The 𝓁2 deviation 
error approaches order 10−3, as shown in Fig. 4d, and the length of the re-circulation region is within a 4% uncertainty limit of the 
true length; see Table 3 for details. The normalized global error 𝓁2𝑟 (refer to equation (27)) between the true and assimilated mean 
velocities over the control volume Ω is sufficiently small. The stream-wise component of the assimilated forcing becomes significant 
downstream of the cylinder near the re-circulation region, see Fig. 4c. Even though the assimilated forcing does not completely 
represent the solenoidal part of the true forcing, however, a significant portion of it is recovered (see Fig. 3d for comparison).

6.1.2. Performance of 𝓁2 and 𝓁1 loss function

We next consider the same measurement locations, but with outliers at sensor locations 1 and 7, amounting to a percent uncer-

tainty of [100%,100%] as estimated from equation (26). First, the inverse problem is solved using the multi-step ADMM algorithm, 
and the results are presented in Fig. 5. One of the major inferences is the loss of symmetry of the re-circulation region due to the 
presence of an outlier inside it, as can be seen from Fig. 5a. The deviation between the assimilated and the true mean flows in Fig. 5b 
clearly shows that the assimilated mean velocity field in the lower half of the control volume still preserves the symmetry to a certain 
extent while the distortion is mainly in the upper half of the control volume. The loss of symmetry is further aggravated due to 
the presence of the outlier at location 1 which shifts the point of mean flow separation further downstream of the cylinder surface. 
However, the mean flow separation point close to sensor location 2 remains less affected and matches more closely with the true one, 
see Fig. 5b. The magnitude of the primal and dual conditions for the ADMM algorithm attain constant values, as seen from Fig. 5c, 
which shows the convergence of the algorithm as the objective function also converges to a fixed value (of order 10−5), see Fig. 5d. 
As discussed earlier, the 𝓁2 loss function gives equal weight to all points in the measurement data set, and hence the presence of an 
outlier at any sensor location is not restricted locally.

The same data assimilation, in Fig. 5, is performed using the quasi-Newton method L-BFGS algorithm; the assimilated mean flow is 
very similar to the results obtained with ADMM, as shown in Fig. 6. The objective function value settles down to a value of order 
10−5 for both cases of ADMM and L-BFGS algorithm, which demonstrates the independence of the numerical algorithm employed for 
solving the inverse problem. In addition, the assimilated forcing is highly distorted (see Fig. 6c). These results reveal that the failure 
of the 𝓁2 loss function to recover the mean flow with sufficient accuracy in the presence of outliers, is an artifact of the loss function 
rather than the optimization algorithm. The length of the re-circulation region remains the same, up to the 1𝑠𝑡 decimal place with 
12

both ADMM and L-BFGS formulations, which is around 14% (ADMM) and 11% (L-BFGS) larger than the true length; see Table 4. 
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Fig. 5. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using a 𝓁2 loss function to represent the error in measurements, solved with ADMM: 
Stream-wise component of (a) the assimilated mean flow and (b) the error between the assimilated and the true mean flows. (c) denotes the magnitude of the primal 
and dual conditions of the optimization as stated in equations (C.14) and (C.15), and (d) denotes the objective function as mentioned in Table 1. The measurements 
with outliers along the horizontal velocity component (𝑢) at sensor locations [1,7] amounting to percent uncertainty [100,100], are denoted by ∙ respectively. For 
details on the re-circulation region, see the caption of Fig. 4.

Fig. 6. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using a 𝓁2 loss function to represent the error in measurements, solved with L-BFGS: 
Stream-wise component of (a) the assimilated mean flow, (b) the error between the assimilated and the true mean flows, and (c) the assimilated forcing. (d) denotes 
the objective function as mentioned in Table 1. For details on the terminology of sensor locations, and the re-circulation region, see the caption of Fig. 5, and the 
percent uncertainty, see Table 5.

To compare the performance of other loss functions, data assimilation is performed for the same case as mentioned above but using 
a 𝓁1 loss function for the deviation error between the model-predicted and measured mean velocities. The assimilated mean flow 
obtained using the ADMM algorithm exhibits a similar level of accuracy to that of the 𝓁2 loss function, as shown in Fig. 7. A striking 
observation for the 𝓁1 loss function is that it furnishes different optimal solutions when initialized with different values of the penalty 
parameter (𝜇) in the ADMM algorithm. This behavior may point to the fact that the optimization algorithm is trapped in different 
local minima. Two different cases are presented in Table 4: with the same configuration of the sensors, percent uncertainty level, 
and convergence conditions, but initialized with different values of 𝜇, and they give rise to two different mean flows. The relative 
uncertainty for predicting the length of the re-circulation region changes from around 16% to 21% for the two different minima of 
the 𝓁1 loss function, see Table 4 for the values corresponding to case 1 and case 2 of the 𝓁1 loss function.

6.1.3. Performance of IRLS

We present an IRLS form of the loss function, which facilitates the use of a mixed 𝓁1∕𝓁2 function. The IRLS method solves ( )

13

a modified form of a 𝓁1 function as a weighted least-squares in an iterative framework. The IRLS parameter 𝜂𝑖 → 0 avoids a 
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Table 4

Performance of different loss functions in the presence of outliers along the horizontal velocity component (𝑢)
at different sensor locations, for the data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100. 
The percent uncertainty in measurements at each sensor location with an outlier is calculated using equa-

tion (26) and denoted as �̃� = [100,100,100,100,100,100,100], and the absolute uncertainty is given as �̃� =
[0.8057,0.8067,0.4405,0.0259,0.1422,0.4179,0.6637] respectively. For the case of ∗ [1,7](𝑢), the outliers are introduced 
at the sensor locations [1,7] along with Gaussian errors at other sensor locations.

Outlier locations Loss function 𝚫 𝜹 (%) 
𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝑙𝑟

— DNS — — — — 1.9125

[1,7]
(
𝑢
)

𝓁2: ADMM [0.8057,0.1422] [100,100] 0.5655 4.1932e-05 2.1818

[1,7]
(
𝑢
)

𝓁2: L-BFGS [0.8057,0.1422] [100,100] 1.2045 6.1347e-05 2.1220

[1,7]
(
𝑢
)

𝓁1: ADMM (Case 1) [0.8057,0.1422] [100,100] 1.3513 0.0047 2.2292

[1,7]
(
𝑢
)

𝓁1: ADMM (Case 2) [0.8057,0.1422] [100,100] 1.6927 0.0021 2.3168

[1,7]
(
𝑢
)

IRLS
(
𝜂𝑖 = 10−2

)
[0.8057,0.1422] [100,100] 1.1676 0.0725 2.1652

[1,7]
(
𝑢
)

IRLS
(
𝜂𝑖 = 10−6

)
[0.8057,0.1422] [100,100] 0.1572 0.3789 2.1394

[1,7]
(
𝑢
)

Huber: ADMM [0.8057,0.1422] [100,100] 0.2063 0.4576 2.0716

[1,7]
(
𝑢
)

Huber: L-BFGS [0.8057,0.1422] [100,100] 0.2102 0.4654 2.0360

[1,7]
(
𝑢
)

Hybrid: L-BFGS [0.8057,0.1422] [100,100] 0.2101 0.4657 2.0360

∗ [1,7]
(
𝑢
)

Hybrid: L-BFGS [0.8057,0.1422] [100,100] 0.2062 0.4767 1.9710

[1,2,3,4,7,10,13]
(
𝑢
)

Huber: L-BFGS �̃� �̃� 0.1735 0.5548 2.0237

[1,2,3,4,7,10,13]
(
𝑢
)

Hybrid: L-BFGS �̃� �̃� 0.1777 0.5557 2.0238

Fig. 7. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using a 𝓁1 loss function to represent the error in measurements, solved with ADMM: 
Stream-wise component of (a) the assimilated mean flow, (b) the error between the assimilated and the true mean flows, and (c) the assimilated forcing. (d) denotes 
the magnitude of the primal and the dual conditions of the optimization, and (e) denotes the objective function as mentioned in Table 1. For details on the terminology 
of sensor locations, and the re-circulation region, see the caption of Fig. 5, and the percent uncertainty, see Table 5.

singularity at the points of vanishing deviation error. Fig. 8a illustrates the effect of different limiting values of 
(
𝜂𝑖
)

on the accuracy 
of the assimilated mean flow, solved with an L-BFGS solver for the same case of data assimilation with outliers at locations 1 and 7 
respectively. For larger values of 𝜂𝑖, the assimilated mean flow field shown in Fig. 8a suffers from the same issues as observed for a 
𝓁2 or 𝓁1 loss function. Lowering the value of 𝜂𝑖 not only improves the quality of the assimilated mean flow but also helps to restore 
the symmetry of the re-circulation region when 𝜂𝑖 changes from order 10−2 to 10−4 (not shown here). Finally, with 𝜂𝑖 = 10−6 which 
accounts for the addition of a constant value of 10−12 to the entries of the weight matrix, as denoted in equation (19), the assimilated 
14

mean flow closely matches the true mean flow, as shown in Fig. 8b. The symmetry of the re-circulation region is restored for the 
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Fig. 8. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using an IRLS form of the 𝓁1 loss function to represent the error in measurements, 
solved with L-BFGS: Stream-wise component of the assimilated mean flow for (a) 𝜂𝑖 = 10−2 , and (b) 𝜂𝑖 = 10−6 . For details on the terminology of sensor locations, and 
the re-circulation region, see the caption of Fig. 5, and the percent uncertainty, see Table 5.

Fig. 9. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using the Huber loss function to represent the error in measurements, solved with 
L-BFGS: Stream-wise component of (a) the assimilated mean flow, (b) the error between the assimilated and the true mean flows, and (c) the assimilated forcing. For 
details on the terminology of sensor locations, and the re-circulation region, see the caption of Fig. 5, and the percent uncertainty, see Table 5.

case of 𝜂𝑖 = 10−6, except for a slight distortion at the upper half of the control volume Ω which is evident from the mean flow in 
Fig. 8b. However, the improvement in the relative uncertainty in the re-circulation length changes slightly from around 13% to 12%. 
For even lower values of 𝜂𝑖, the assimilated mean flow did not change significantly and thus has not been presented here.

6.1.4. Performance of Huber and hybrid loss functions

With the introduction of the Huber loss function for the same case of data assimilation with outliers at sensor locations 1 and 7, 
the symmetry of the re-circulation region is completely recovered using the L-BFGS method, see Fig. 9a. We observe that the effect 
of the outliers at the point of separation and within the re-circulation region is restricted locally – without influencing the accuracy 
of the global mean flow around the circular cylinder. The length of the re-circulation region with a Huber loss function is within a 
relative uncertainty of 6%, which is half of the relative uncertainty for the best case of the IRLS function 

(
𝜂𝑖 = 10−6

)
. The accuracy 

of the reconstructed mean flow based on a Huber loss function can be attributed to the similarity of the deviation field, shown in 
Fig. 9b, to the case of data assimilation without outliers using a 𝓁2 loss function, in Fig. 4b. Similar behavior is seen in the stream-

wise component of the assimilated forcing, see Figs. 9c and 4c. We solved the above case of the Huber loss function with an ADMM 
formulation, to check for the consistency of the reconstructed mean flow, see Table 4. We thus establish that the Huber loss function 
succeeds in reconstructing the mean flow, with good accuracy and without affecting the quality of the mean flow restoration around 
the locations of the outliers. We also recover the mean flow using the hybrid loss function, to a similar level of accuracy as that of 
the Huber loss function and therefore has not been presented here. In addition, we consider a case of data assimilation with outliers 
at sensor locations 1 and 7 and Gaussian noise at the other 12 measurement locations. At a particular measurement location, the 
Gaussian noise magnitude is selected randomly from a normal distribution with a mean of zero and a standard deviation 

(
𝜎𝑖 = 0.1

)
respectively. With a hybrid loss representation of the deviation error between the measured and the assimilated mean velocities, the 
mean flow is reconstructed accurately and the length of the re-circulation region is recovered with sufficient accuracy (see Table 4) 
as compared to the case of data assimilation with no Gaussian noise. Comparing the two cases of data assimilation with outliers at 
sensor locations 1 and 7 in the presence and absence of Gaussian noise at other measurement locations, we see that the hybrid loss 
function can recover the mean flow with a similar level of accuracy. Furthermore, we see the relative uncertainty in recovering the 
length of the re-circulation region has reduced by 3% as compared to the case without Gaussian noise. However, we cannot guarantee 
a reduction in uncertainty in the recovery of the re-circulation region in the cases of data assimilation for different Gaussian noise 
intensities generated using a different seed, as compared to the cases of data assimilation without Gaussian noise.

As a test of robustness, a configuration comprising a measurement data set with outliers at seven locations is considered for the 
15

reconstruction of mean flow around a circular cylinder at 𝑅𝑒 = 100. The quantitative values of the local and global error associated 
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Fig. 10. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using the (a,c) 𝓁2 and (b,d) hybrid loss functions to represent the error in measurements, 
solved with L-BFGS: Stream-wise component of the assimilated mean flow. The measurement with outliers along (a)-(b) the vertical component (𝑣), and (c)-(d) the 
horizontal and vertical components (𝑢, 𝑣) of the mean velocity at sensor location [1], is denoted by ∙ respectively. For details on the re-circulation region, see the 
caption of Fig. 5 and the percent uncertainty, see Table 5.

Table 5

Performance of the 𝓁2 and hybrid loss functions in the presence of outliers along different components of the mean velocity at 
different sensor locations, for the data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100.

Outlier locations 𝚫 𝜹 (%) 𝓵𝟐 loss function Hybrid loss function


𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝒍𝒓 
𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝒍𝒓

[1]
(
𝑢
)

[0.8178] [101.5] 1.1247 0.0078 2.0228 0.2289 0.4696 1.9829

[1]
(
𝑣
)

[0.8185] [563] 1.7030 0.0674 2.0831 0.2007 0.4807 1.9802

[1]
(
𝑢, 𝑣

)
[0.8178,0.8185] [101.5,563] 2.1402 0.9006 4.6627 0.1892 0.5988 1.9889

[2]
(
𝑢
)

[0.8178] [101.5] 1.1253 0.0075 1.9823 0.2290 0.4722 1.9833

[2]
(
𝑣
)

[0.8184] [562] 1.7454 0.0649 2.0396 0.2465 0.4814 1.9790

[2]
(
𝑢, 𝑣

)
[0.8178,0.8184] [101.5,562] 1.9012 0.9099 2.7653 0.2160 0.6114 1.9806

[4]
(
𝑢
)

[0.8185] [3160] 0.6044 0.0046 1.9105 0.2864 0.4831 2.0313

[4]
(
𝑣
)

[0.8180] [18400] 0.4063 0.0005 2.1379 0.2093 0.4772 1.9793

[4]
(
𝑢, 𝑣

)
[0.8185,0.8180] [3160,18400] 0.7406 0.0038 1.9189 0.2253 0.6175 2.0790

[US]
(
𝑢
)

[0.8209] [461.5] 1.2535 0.0064 2.0656 0.3041 0.4769 2.0137

[US]
(
𝑣
)

[0.8206] [117500] 0.5556 0.0006 2.0122 0.2084 0.4769 1.9800

[US]
(
𝑢, 𝑣

)
[0.8209,0.8206] [461.5,117500] 0.9626 0.0086 2.0078 0.2907 0.5963 2.0584

with the assimilated mean flow are presented in Table 4. We did not see a significant difference in the quality of the assimilated 
mean flow while using the Huber or hybrid loss function to represent the deviation error.

Furthermore, we consider a configuration comprising a measurement data set with an outlier at the point of detachment located on 
the upper side of the circular cylinder. Initially, the outlier is introduced along the vertical component of the mean velocity for which 
the stream-wise component of the assimilated mean flow is well reconstructed with a hybrid loss function (see Fig. 10b) as compared 
to the one with a 𝓁2 loss function (see Fig. 10a). Moreover, we considered another case where the outliers are introduced along 
the horizontal as well as the vertical components of the mean velocity at the point of detachment located on the upper side of the 
circular cylinder, and again, the mean flow is well recovered with a hybrid loss function (see Fig. 10d) as compared to the one with 
a 𝓁2 loss function (see Fig. 10c). We considered outliers along the horizontal component, vertical component, and the horizontal and 
vertical components of the mean velocity, for each of the sensors at the point of detachment located on the upper and lower sides of 
the circular cylinder as well as inside the re-circulation region, for which the local and global errors of reconstruction are presented 
in Table 5. We can see that for every case presented in Table 5, the global error reduces significantly when considering the hybrid 
loss function over the 𝓁2 loss function.

Lastly, we consider a case of data assimilation where the outliers are introduced along the horizontal component, vertical component, 
and the horizontal and vertical components of the mean velocity, at the stagnation point upstream (denoted by US) of the circular 
cylinder. When the outlier is entirely along the vertical mean velocity component at the sensor location US, the reconstructed mean 
flow loses its symmetry with the 𝓁2 loss function (see Fig. 11a) while the hybrid loss function remains robust to the outliers (see 
Fig. 11b). Similarly, we can see that the hybrid loss function (see Fig. 11d) preserves the symmetry of the mean flow around the 
circular cylinder as compared to the 𝓁2 loss function (see Fig. 11c) when the outliers are introduced along the horizontal and vertical 
components of the mean velocity at the sensor location US. From Table 5, we can confirm that the hybrid loss function always 
16

supersedes 𝓁2 loss function in reconstructing the mean flow with a desirable accuracy.
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Fig. 11. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using the (a,c) 𝓁2 and (b,d) hybrid loss functions to represent the error in measurements, 
solved with L-BFGS: Stream-wise component of the assimilated mean flow. The measurement with outliers along (a)-(b) the vertical component (𝑣), and (c)-(d) the 
horizontal and vertical components (𝑢, 𝑣) of the mean velocity at sensor location [US], is denoted by ∙ respectively. For details on the re-circulation region, see the 
caption of Fig. 5 and the percent uncertainty, see Table 5.

Fig. 12. Sensitivity of the assimilated mean flow around a circular cylinder at 𝑅𝑒 = 100 with respect to the cut-off parameter of the hybrid loss function, for a set 
of measurements without (top) and with (bottom) outliers. (a,c) shows the stream-wise component of the true mean flow. The inset in (a,c) shows the variation of 
the re-circulation region with the variation of the cut-off parameter. The black line indicates the cut-off parameter (𝝐𝑝) estimated using our proposed numerical 
framework in Appendix D. (b,d) shows the variation of local measurement and global assimilation errors for each value of the cut-off parameter (shown along the 
horizontal axis), obtained by normalizing the values of 𝓁2

𝑟 and 𝓁2
𝑟 for each 𝝐 with respect to the values of 𝓁2

𝑟 and 𝓁2
𝑟 for 𝝐𝑝 . For the terminology of sensor 

locations, see the caption of Fig. 5, and for the percent uncertainty, see Table 4.

6.1.5. Sensitivity of epsilon/cut-off parameter

The epsilon/cut-off parameter in the Huber and hybrid loss functions is critical for the minimization problem to reach optimal 
conditions. This section presents the effect of the cut-off parameter on the quality of the assimilated mean flow. Firstly, we consider 
measurements without any outliers and perform a parametric study to assess the effect of cut-off parameter variations on the 
assimilated mean flow. We consider a range of values of 𝝐 ranging from 10−6 to 10−1. From Fig. 12a, the length of the re-circulation 
region is far longer than the true length, for rather low values of 𝝐. As 𝝐 increases to the order of 10−1, the uncertainty in the 
prediction of the re-circulation region reduces. We denote 𝝐𝑝 as the value of the cut-off parameter determined by the mathematical 
framework discussed in Appendix D. In this case, the re-circulation region with 𝝐𝑝 matches more closely the true re-circulation 
region, among all values of the cut-off parameter considered. The results are displayed in Fig. 12b, where the values of the global 
and local error for different values of 𝝐 are normalized with respect to the values of 𝓁2𝑟 and 𝓁2

𝑟 for 𝝐𝑝. The local measurement 
error 𝓁2

𝑟 increases for 𝝐 = 10−1 and then diminishes quickly with a decreasing 𝝐 while the value of the global assimilated error 𝓁2𝑟
initially increases and then reduces, but ultimately does not fall below the global error for 𝝐𝑝. This kind of objective function, where 
17

the local measurement error reduces rapidly without a decrease in the corresponding global error, is referred to as a bad objective 
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Fig. 13. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100 using a hybrid loss function to represent the error in measurements, solved with 
L-BFGS: Stream-wise components of (a) the assimilated mean flow, and (b) the error between the assimilated and the true mean flows. For details on the re-circulation 
region, see the caption of Fig. 5.

Table 6

Performance of the 𝓁2 and hybrid loss functions in the presence of outliers along the horizontal component of the mean 
velocity (𝑢) at different sensor locations, for the data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 100.

Outlier locations 𝚫 𝜹 (%) 𝓵𝟐 loss function Hybrid loss function


𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝒍𝒓 
𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝒍𝒓

[3]
(
𝑢
)

[0.8194] [186] 0.7326 0.0061 1.7391 0.2294 0.4509 1.9927

[5]
(
𝑢
)

[0.8179] [185.4] 2.3404 0.0190 2.0441 0.2149 0.4487 1.9910

[6]
(
𝑢
)

[0.8182] [144.8] 2.0962 0.0014 2.5185 0.2782 0.4075 2.0407

[7]
(
𝑢
)

[0.8176] [575] 0.6019 0.0011 2.2544 0.2710 0.4865 2.0442

[8]
(
𝑢
)

[0.8179] [140.3] 2.8883 0.0086 2.4445 0.2725 0.4098 2.0337

[9]
(
𝑢
)

[0.8179] [127.1] 1.4927 0.0008 2.0865 0.3207 0.3500 2.0354

[10]
(
𝑢
)

[0.8192] [196] 1.9446 0.0005 1.9661 0.2569 0.4349 2.0010

[11]
(
𝑢
)

[0.8185] [129.6] 1.4559 0.0007 2.0676 0.3113 0.3472 2.0294

[12]
(
𝑢
)

[0.8182] [109.9] 2.2647 0.0004 1.9179 0.2967 0.3358 1.9929

[13]
(
𝑢
)

[0.8164] [123] 2.3041 0.0005 2.0126 0.2949 0.3794 1.9837

[14]
(
𝑢
)

[0.8182] [110.15] 1.9169 0.0007 1.9290 0.3097 0.3344 1.9911

[1,2]
(
𝑢
)

[0.5785,0.5792] [71.8,71.8] 1.6444 0.0084 1.9052 0.2464 0.4699 1.9936

[1,3]
(
𝑢
)

[0.7171,0.3921] [89,89] 1.2162 0.0033 1.8289 0.1896 0.4300 1.9683

[1,4]
(
𝑢
)

[0.8178,0.0263] [101.5,101.5] 1.1218 0.0074 2.0119 0.2357 0.4708 1.9801

[1,5]
(
𝑢
)

[0.7171,0.3929] [89,89] 1.1441 0.0065 1.8207 0.1985 0.4562 1.9732

[2,3]
(
𝑢
)

[0.7179,0.3921] [89,89] 1.1278 0.0060 1.7927 0.2079 0.4582 1.9756

[2,4]
(
𝑢
)

[0.8188,0.0263] [101.5,101.5] 1.0449 0.0073 1.9773 0.2197 0.4728 1.9853

[2,5]
(
𝑢
)

[0.7179,0.3929] [89,89] 1.2190 0.0033 1.8050 0.1762 0.4292 1.9689

[3,4]
(
𝑢
)

[0.8173,0.0480] [185.5,185.5] 0.6415 0.0057 1.7465 0.2416 0.4492 1.9850

[4,5]
(
𝑢
)

[0.0479,0.8166] [185,185] 0.5252 0.0062 1.7698 0.2294 0.4471 1.9859

[4,10]
(
𝑢
)

[0.0506,0.8163] [195.3,195.3] 2.0246 0.0006 1.9700 0.2624 0.4346 1.9996

function (see Symon et al., 2017 [11] for further details). We repeat the same analysis to study the effect of the cut-off parameter 
on the quality of the assimilated mean flow, but with measurements accompanied by outliers at locations 1 and 7 for a percent 
uncertainty level of [100%,100%]. We observe a similar kind of behavior in the reconstruction of the re-circulation region, but now 
the re-circulation region breaks its symmetry for specific values of 𝝐, see Fig. 12c. The re-circulation region with cut-off parameter 𝝐𝑝
not only is near the true value but also preserves symmetry, in contrast to all other values of 𝝐 considered in our study. We normalize 
the values of 𝓁2

𝑟 and 𝓁2𝑟 across the entire range of 𝝐 considered, with respect to the values of 𝓁2
𝑟 and 𝓁2𝑟 for 𝝐𝑝. The global 

error is again the lowest for 𝝐𝑝, see Fig. 12d. This analysis is in line with the principle that, with the overestimation of the cut-off 
parameter, the loss function performs a quadratic fit over a large deviation from the mean value. With the underestimation of the 
cut-off parameter, on the other hand, the loss function performs an absolute fit over a large deviation from the mean value. In both 
cases of over- and under-estimation of the cut-off parameter, the loss function performs either a 𝓁2 or 𝓁1 fit over a large deviation 
from the mean value, which distorts the symmetry of the re-circulation region as observed in the earlier cases of data assimilation. 
Furthermore, we perform a comparison of the 𝓁2 and hybrid loss functions for a measurement data set in the absence of outliers. 
The accuracy of the global assimilated mean flow is shown in Fig. 13a. The performance of the hybrid loss function to recover the 
global mean flow is markedly better than an equivalent 𝓁2 counterpart, as can be deduced from a comparison of the deviation fields 
in Fig. 13b, and Fig. 4b. The relative uncertainty in the length of the re-circulation region goes from 6% for a hybrid function to 4% 
for a 𝓁2 function, see Table 3.

Finally, we provide a comparison between the 𝓁2 and hybrid loss functions in the presence of one and two outliers at different sensor 
locations, in Table 6. For all cases, the quantitative values for 𝓁2

𝑟 , 𝓁2𝑟 , and the length of the re-circulation region 𝐥𝑟, are provided 
in Table 6 to support that hybrid loss function remains robust to outliers irrespective of their magnitude and location.

6.2. Flow over a backward-facing step

We consider the two-dimensional flow over a backward-facing step at 𝑅𝑒 = 500. A close view of the mesh is shown in Fig. 14. 
18

This is an example of an amplifier flow, a type of flow that is extremely sensitive to any kind of disturbance (noise or perturbation) 
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Fig. 14. Part view of the mesh for two-dimensional flow over a backward-facing step at 𝑅𝑒 = 500. The measurement locations are denoted by ∙.

Fig. 15. Flow over a backward-facing step at 𝑅𝑒 = 500: Stream-wise component of (a) the base flow, (b) the time-averaged mean flow, and (c) the error for 
approximation of the mean flow by the base flow. The solid and the dashed lines denote the re-circulation region for the base flow and the true mean flow.

upstream of the step, as shown by Hervé et al., 2012 [49], and Sipp and Schmid, 2016 [50]. The RANS equations (1) are non-

dimensionalized with the height of the step ℎ and the inlet center-line velocity 𝑢max. The Reynolds number is defined as 𝑅𝑒 =
𝑢maxℎ∕𝜈, with 𝜈 as the kinematic viscosity of the fluid. The computations are carried out on a rectangular mesh with coordinates 
𝑥 ∈ [−5,35]× 𝑦 ∈ [−1,1] with 104 degrees of freedom. The base flow for the backward-facing step at 𝑅𝑒 = 500 is calculated using the 
initial guess of the control vector 𝐟 = 0⃗, and the stream-wise component of the base flow is presented in Fig. 15a respectively. The 
mean flow field is obtained by time averaging the instantaneous fields from the direct numerical simulation of flow over a backward-

facing step at 𝑅𝑒 = 500, and the stream-wise component of the mean flow is displayed in Fig. 15b. Finally, the initial deviation of 
the stream-wise component between the base flow and the mean flow is plotted in Fig. 15c. Similar to the circular cylinder case, the 
difference in the re-circulation region 

(
𝑢 = 0

)
, as predicted from the base flow and the mean flow over the backward-facing step, is 

rather high. This demonstrates that the inverse problem has to produce a significant amount of control on the base flow to predict 
the mean flow accurately.

The boundary conditions for the direct system are given as, Inlet: 𝑢 = 4 ⋅ 𝑦 ⋅ (1 − 𝑦), 𝑣 = 0; Top and bottom walls: 𝑢 = 0, 𝑣 = 0; Outlet: 
𝑅𝑒−1

(
𝜕𝑢∕𝜕𝑥

)
− 𝑝 = 0, 𝜕𝑣∕𝜕𝑥 = 0, and the boundary conditions for the adjoint (obtained via integration by parts) system are given as, 

Inlet: 𝑢† = 0, 𝑣† = 0; Top and bottom walls: 𝑢† = 0, 𝑣† = 0; Outlet: 𝑅𝑒−1
(
𝜕𝑢†∕𝜕𝑥

)
+ 𝑝

† = −𝑢 𝑢†, 𝑅𝑒−1
(
𝜕𝑣†∕𝜕𝑥

)
= −𝑢 𝑣† respectively.

The spatial domain for evaluating the global error of the assimilated mean flow over a backward-facing step is considered as a 
rectangular section Ω ∶ 𝑥 ∈ [−1,15] × 𝑦 ∈ [−1,1] in equation (27). We now consider a measurement set with 15 sensor locations 
in the presence of outliers at sensor locations 2, 6, and 8, amounting to a percent uncertainty of [300%,300%,300%] as estimated 
from equation (26). The inverse problem is solved using the quasi-Newton L-BFGS algorithm for a 𝓁2 representation of the deviation 
error. The results are presented in Fig. 16. One of the main observations is the over-predicted length of the re-circulation region on 
the top wall as well as the bottom wall in front of the step, as can be seen from Fig. 16a. The poor performance of the 𝓁2 loss function 
can be attributed to the large magnitudes of the deviation error between the assimilated and the true mean flows in Fig. 16b. As this 
is an amplifier flow, any noise at the sensor locations is amplified owing to the equal weights applied by the 𝓁2 loss function to all 
measurements, which results in poor accuracy of the reconstructed mean flow. The objective function value attains a constant value 
of order 10−3 after about 100 iterations (not shown here). The length of the assimilated re-circulation region exceeds the true length 
by about 31%, see Table 7.

With the introduction of a Huber representation of the deviation error for the same case, we see that the recovered mean flow is 
in good agreement with the true mean flow, see Fig. 17a. The relative uncertainty in the length of the re-circulation region on the 
bottom wall reduces to 6% with the Huber loss function as compared to the 𝓁2 loss function, however, the global reconstruction error 
19

remains very high at 60% for the Huber loss function, see Table 7 for more details. The deviation in the mean flow is again mainly 
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Fig. 16. Data assimilation of mean flow over a backward-facing step at 𝑅𝑒 = 500 using a 𝓁2 loss function to represent the error in measurements, solved with L-BFGS: 
Stream-wise component of (a) the assimilated mean flow and (b) the error between the assimilated and the true mean flows. The measurements with outliers (denoted 
by ∙) along the horizontal mean velocity component (𝑢) at sensor locations [2,6,8] amount to percent uncertainty [300,300,300]. For details on the re-circulation 
region, see the caption of Fig. 15.

Table 7

Performance of 𝓁2 , Huber, and hybrid loss functions in the presence of outliers along different components of the mean velocity at multi-

ple sensor locations for data assimilation of mean flow over a backward-facing step at 𝑅𝑒 = 500. The percent uncertainty is given as ̃𝜹=
[147.8,147.8,147.8,147.8,147.8,147.8,147.8] and the absolute uncertainty is given as ̃𝚫 = [1.4717,0.3491,0.0667,1.1528,0.9333,0.1289]
respectively.

Outlier locations 𝚫 𝜹 (%) DNS 𝓵𝟐 loss function


𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝒍𝒓 
𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝒍𝒓

[2,6,8]
(
𝑢
)

[0.7086,0.2617,1.9848] [300,300,300] — — 4.8000 1.5105 0.0335 6.2800

Outlier locations 𝚫 𝜹 (%) Huber loss function Hybrid loss function


𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝒍𝒓 
𝓵𝟐
𝒓


𝓵𝟐
𝒓

𝒍𝒓

[2,6,8]
(
𝑢
)

[0.7086,0.2617,1.9848] [300,300,300] 0.5918 0.8696 4.5200 0.1009 0.7882 4.9200

[1,2,3,4,5,6]
(
𝑢
)

�̃� �̃� 0.0933 0.8559 4.7373 0.2627 0.8574 5.1600

[US]
(
𝑢
)

[2.1872] [460] 0.4269 0.8774 4.9200 0.2790 0.8587 5.0800

[US]
(
𝑣
)

[1.5108] [9900] 0.0967 0.7869 4.5600 0.0966 0.7870 4.5600

[US]
(
𝑢, 𝑣

)
[2.1872,1.5108] [460,9900] 0.3759 0.8665 4.8400 0.3237 0.9210 5.6800

Fig. 17. Data assimilation of mean flow over a backward-facing step at 𝑅𝑒 = 500 using a Huber loss function to represent the error in measurements, solved with 
L-BFGS: Stream-wise component of (a) the assimilated mean flow and (b) the error between the assimilated and the true mean flows. For details on the terminology 
of sensor locations, and the re-circulation region, see the caption of Fig. 16, and the percent uncertainty, see Table 7.

concentrated in the region around the outlier locations, and the noise from the outliers affects the quality of the reconstructed mean 
flow downstream of the step, as shown in the Fig. 17b.

We also consider the hybrid representation for the same case, and see that the length of the re-circulation region on the bottom wall 
closely matches the true mean flow, as shown in Fig. 18a. While the length of the re-circulation region on the top wall is under-

predicted, however, the relative uncertainty in the length of the re-circulation region on the bottom wall falls sharply to 2.5%. With 
the hybrid loss function representation of the deviation error, the global reconstruction error reduces drastically to around 10% (see 
Table 7 for details), and this can be seen from Fig. 18b.

Next, we consider a case of data assimilation, where we introduce outliers at six sensor locations in the region downstream of the 
step keeping the percent uncertainty level at 147.8% for each outlier location. While using the Huber loss function representation 
of the deviation error, the length of the re-circulation region on the bottom wall is under-predicted with a relative uncertainty of 
1.3%. However, with the hybrid loss function representation of the deviation error, the length of the re-circulation region on the 
bottom wall is over-predicted and the relative uncertainty increases to 7.5%, see Table 7 for further details. Furthermore, the global 
20

reconstruction error increases from 9% for the Huber loss function to around 26% for the hybrid loss function case, see Table 7. 
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Fig. 18. Data assimilation of mean flow over a backward-facing step at 𝑅𝑒 = 500 using a hybrid loss function to represent the error in measurements, solved with 
L-BFGS: Stream-wise component of (a) the assimilated mean flow, and (b) the error between the assimilated and the true mean flows. For details on the terminology 
of sensor locations, and the re-circulation region, see the caption of Fig. 16, and the percent uncertainty, see Table 7.

Fig. 19. Data assimilation of mean flow over a backward-facing step at 𝑅𝑒 = 500 using the (a,b) hybrid and (c) Huber loss functions to represent the error in 
measurements, solved with L-BFGS: Stream-wise component of the assimilated mean flow. The outliers (denoted by ∙) are introduced along (a) the horizontal 
component (𝑢), (b) the vertical component (𝑣), and (c) the horizontal and vertical components (𝑢, 𝑣) of the mean velocity at the sensor location [US] upstream of 
the step amounting to percent uncertainty: (a,b) [460], (c,d) [9900], and (e,f) [460,9900]. For details on the re-circulation region, see the caption of Fig. 16.

However, considering the criticality of the location of the outliers, the performance of the Huber loss function in recovering the mean 
flow field with reduced uncertainty is certainly striking.

As a check of the robustness of the reconstruction framework for an amplifier flow, we consider the cases of data assimilation where 
we introduce outliers at a sensor (denoted by US) located upstream of the step. Initially, we introduce an outlier only along the 
horizontal mean velocity component at the sensor US for which the stream-wise component of the reconstructed mean flow using 
the hybrid loss function is shown in Fig. 19a, respectively. The reconstructed mean flow accounts for a global error of 28% using 
the hybrid loss function as compared to 42% using the Huber loss function while the local error remains almost the same for both 
loss functions, see Table 7 for further details. However, the length of the re-circulation region is over-predicted by 2.5% using 
the Huber loss function and 6% using the hybrid loss function. When the outlier is introduced only along the vertical mean velocity 
component at the sensor US as shown in Fig. 19b, the performance of both the Huber and hybrid loss functions is similar with a global 
reconstruction error of around 9% (see Table 7), and the length of the re-circulation region is under-predicted by 5%. Finally, we 
consider the case of data assimilation where the outliers are introduced along the horizontal and vertical mean velocity components 
at the sensor US for which the reconstructed mean flow using the Huber loss function is shown in Fig. 19c, respectively. From Table 7, 
we can see that the uncertainty in the prediction of the length of the re-circulation region increases from 1% using the Huber loss 
function to around 18% using the hybrid loss function while the global reconstruction error differs by around 6%. We notice the 
inconsistency in the performance of Huber and hybrid loss functions for the mean flow reconstruction over a backward-facing step, 
and the reason for this behavior remains to be investigated.

7. Conclusions

We introduced a robust numerical framework for the accurate reconstruction of mean flows. The methodology adds a volume 
forcing term to the momentum equation to account for the divergence of the Reynolds stresses in the RANS equations, similar to the 
study of Foures et al., 2014 [10]. Flow around a circular cylinder demonstrated the performance of different loss functions, used to 
21

represent the point-wise error between the measured and the assimilated mean velocities. With sparsity in the measurement data, 
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we demonstrated that the quadratic representation of the error is sufficient to recover the mean flow with acceptable accuracy, once 
a regularization function, which promotes a smooth mean flow field, is introduced.

With the introduction of outliers in the sparse measurement data set, the quadratic loss function is no longer able to reconstruct the 
mean flow accurately. This failure is intrinsic to the choice of the loss function and is unrelated to the algorithm employed to solve 
the data assimilation problem. An absolute 

(
𝓁1
)

function, assigning weights to the point-wise error in a linear rather than quadratic 
fashion, has no significant effect on the accuracy of the assimilated mean flow. Moreover, the 𝓁1 loss function caused strong vari-

ations in the mean flow due to parameter fluctuations in the employed algorithm. With an IRLS transformation of the original 𝓁1
loss function, the quality of the reconstruction improved markedly in the limit of a vanishing IRLS parameter. Yet, an outlier near 
the point of separation on the circular cylinder surface caused a deterioration of the reconstruction of the mean flow re-circulation 
region. Finally, we demonstrated that the Huber loss function gracefully and effectively handles outliers in the measurement data. 
The Huber function combines the uniqueness from the 𝓁2 part and the robustness to large deviation errors from the 𝓁1 part. We 
also used a hybrid loss function as a continuous and differentiable proxy that approximates the combined effects of 𝓁1∕𝓁2 functions 
in limiting cases of the cut-off parameter. The hybrid loss function has the additional advantage, over the Huber loss function, of 
access to second-order (Hessian) information. The effective estimation of the epsilon/cut-off parameter is rather critical for the data 
assimilation process, as this parameter determines the switch between 𝓁1 and 𝓁2 behavior. We provide a mathematical framework to 
predict an approximate value of this parameter based on a few initial iterations using a quadratic loss function. In addition, we also 
observed that the presence of Gaussian noise at the measurement locations does not alter the performance of the hybrid loss function 
in the recovery of the mean flow. Furthermore, the performance of the hybrid loss function to recover the mean flow is markedly 
better than an equivalent 𝓁2 counterpart and this is reflected in the global mean flow assimilation error.

The effect of localized outliers on the recoverability of the mean flow around the circular cylinder has been explored as well. When 
the outlier location is asymmetrical with respect to the symmetry axis of the circular cylinder, the recovered mean flow also loses 
symmetry. Similarly, when the outliers are more localized along the symmetry axis of the circular cylinder, the recovered mean flow 
is symmetrical but the re-circulation region is strongly over/under-predicted by a quadratic loss function, but under no circumstances 
do we recover the true re-circulation zone using a 𝓁2 loss function. The Huber/hybrid loss function recovers the mean flow with 
diminished relative uncertainty, irrespective of the location and intensity of the outliers.

We demonstrated the robustness of the data assimilation framework through the reconstruction of the mean flow for an amplifier 
backward-facing step flow using a noisy sparse measurement data set. We considered strong levels of outliers (many standard devia-

tions from the mean) very close to and upstream of the backward-facing step and still recover the mean flow with sufficient accuracy.

All these findings therefore strongly encourage the application of the present methodologies to actual experimental measurements 
in future work. Furthermore, while this study focused on mean flow reconstruction, it may be worth noting that the present data 
assimilation framework could be straightforwardly extended to the assimilation of instantaneous measurements, changing the inter-

pretation of the optimized volume forcing term as an unknown Eulerian acceleration [51].
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Appendix A. Validation of optimization framework

We perform data assimilation for mean flow around a circular cylinder at 𝑅𝑒 = 150, with the same parameter values studied by 
Foures et al., 2014 [10]. We use the complete information about the mean flow as input to the data assimilation framework, where 
the optimization procedure is initialized by the base flow. The stream-wise component of the mean velocity is shown in Fig. A.20a. It 
matches well the result of Foures et al., 2014 [10]. The normalized objective function 𝑟 in Fig. A.20b clearly shows the efficiency 
22

of the present data assimilation framework to reduce the relative error to 10−6 within 500 iterations. We also display the stream-wise 
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Fig. A.20. Data assimilation of mean flow around a circular cylinder at 𝑅𝑒 = 150 using a 𝓁2 loss function to represent the error in measurements, solved with L-BFGS: 
Stream-wise component of (a) the assimilated mean flow, (c) the assimilated forcing, and (d) the solenoidal part of the forcing from DNS. (b) shows the convergence 
of the normalized objective function. The solid and the dashed lines refer to the re-circulation region for the assimilated and the true mean flows, and they are not 
distinguishable as they are overlapping.

component of the recovered forcing in Fig. A.20c and the solenoidal part of the true forcing from DNS in Fig. A.20d. Again, we obtain 
a good match with the result of Foures et al., 2014 [10].

Appendix B. Sub-gradient calculation for different loss functions

Any function is called sub-differentiable at a point if at least one sub-gradient exists at that point. The sub-differential of a function 
𝑔 is denoted by 𝜕𝑔 (𝑥) and consists of the set of all sub-gradients of 𝑔 at the point 𝑥, see Boyd and Vandenberghe, 2004 [40] for more 
details.

B.1. Sub-gradient for 𝓁2 loss function

For a function that is differentiable at a point, there exists a unique sub-gradient given by the gradient of the function at that 
point. An exact gradient of the Lagrangian with  (𝐳) =

∑
𝑖

||𝑧𝑖||2/2 in Step - 2 of Algorithm 1 can be calculated by taking the 

variation of the Lagrangian with respect to the variation in 𝐳 and is given as

∇𝐳 (𝐳) = 𝐳 − 𝜇{𝑘}
[
𝐫{𝑘+1} − 𝐳 − 𝝀{𝑘}

𝜇{𝑘}

]
(B.1)

On setting the gradient in the above equation (B.1) equal to zero, the update for the variable 𝐳 is obtained as

𝐳{𝑘+1} = 𝜇{𝑘}

1 + 𝜇{𝑘}

[
𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

]
(B.2)

B.2. Sub-gradient for 𝓁1 loss function

For an absolute value function (𝑔 (𝑧) = |𝑧|), a unique sub-gradient exists for the intervals 𝑧 < 0 and 𝑧 > 0, and their respective 
sub-differentials are given as 𝜕𝑔 (𝑧)|(𝑧<0) = −1 and 𝜕𝑔 (𝑧)|(𝑧>0) = +1. For 𝑧 = 0, the set of all sub-gradients is given by the inequality 
function |𝑧| = ℎ𝑧 where ℎ ∈ [−1,1]. Hence the sub-differential at 𝑧 = 0 is given by 𝜕𝑔 (𝑧)|(𝑧=0) = [−1,1].
The sub-differential for the Lagrangian with  (𝐳) =

∑
𝑖

||𝑧𝑖|| in Step - 2 of Algorithm 1, is calculated by considering all the set of 

sub-gradients and that is obtained by setting 𝑧𝑖 = 0 at each measurement location. We obtain the interval[
−1 − 𝜇{𝑘}

(
𝑟
{𝑘+1}
𝑖

−
𝜆
{𝑘}
𝑖

𝜇{𝑘}

)
,1 − 𝜇{𝑘}

(
𝑟
{𝑘+1}
𝑖

−
𝜆
{𝑘}
𝑖

𝜇{𝑘}

)]
; ∀𝑟𝑖 ∈ 𝐫, ∀𝜆𝑖 ∈ 𝝀 (B.3)

If 𝜁𝑖 = 0 is a sub-gradient in the above interval, then 𝑧𝑖 = 0 is optimal. This occurs precisely when

1 ≥
|||𝑟{𝑘+1} − 𝜆

{𝑘}
𝑖

||| ; ∀𝑟 ∈ 𝐫, ∀𝜆 ∈ 𝝀 (B.4)
23

𝜇{𝑘} ||| 𝑖 𝜇{𝑘} ||| 𝑖 𝑖
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Algorithm 1 ADMM.

Input: Initialize 𝐟{0} = �⃗�, and find first guess for the velocity field 𝐮{0} = 𝐮
(
𝐟 {0}

)
Put 𝐳{0} = (

𝐮{0}
)
− �̃�, 𝝀{0} = �⃗�, 𝜇{0} > 0, 𝛿 > 0

Output: Optimum values of 𝐟 , 𝐳
Procedure:

while
√
[𝐫 − 𝐳]T [𝐫 − 𝐳] > 𝛿 and 

√[
𝐮†− (𝐟 )

]T [
𝐮†− (𝐟 )

]
> 𝛿 do

Step - 1. Fix 𝐳{𝑘}, 𝝀{𝑘} and solve for 𝐟{𝑘+1} :

𝐟 {𝑘+1} = argmin
𝐟

𝜇{𝑘}

2

[
 (

𝐮
)
− �̃�− 𝐳{𝑘} − 𝝀{𝑘}

𝜇{𝑘}

]T [
 (

𝐮
)
− �̃�− 𝐳{𝑘} − 𝝀{𝑘}

𝜇{𝑘}

]
+ (𝐟 )

− ∫
Ω

𝑝
† {∇ ⋅ 𝐮

}
𝑑Ω− ∫

Ω

(
𝐮†
)T{

𝐮 ⋅∇𝐮+∇𝑝− 1
𝑅𝑒

∇2𝐮− 𝐟
}

𝑑Ω

Step - 2. Fix 𝐟{𝑘+1} , 𝝀{𝑘} and solve for 𝐳{𝑘+1} :

𝐳{𝑘+1} = argmin
𝐳

 (𝐳) + 𝜇{𝑘}

2

[
𝐫{𝑘+1} − 𝐳 − 𝝀{𝑘}

𝜇{𝑘}

]T [
𝐫{𝑘+1} − 𝐳 − 𝝀{𝑘}

𝜇{𝑘}

]
where 𝐫{𝑘+1} = (

𝐮
(
𝐟 {𝑘+1}

))
− �̃�

The update for this step for different loss functions is provided in Appendix B.

Step - 3. Fix 𝐟{𝑘+1} , 𝐳{𝑘+1} and update 𝝀{𝑘+1} :

𝝀{𝑘+1} = 𝝀{𝑘} − 𝜇{𝑘} (𝐫{𝑘+1} − 𝐳{𝑘+1}
)

Step - 4. Update 𝜇{𝑘+1} :

𝜇{𝑘+1} =

⎧⎪⎪⎨⎪⎪⎩
𝜌𝜇{𝑘}, 𝐢𝐟

√[
𝐫{𝑘+1} − 𝐳{𝑘+1}

]T [𝐫{𝑘+1} − 𝐳{𝑘+1}
]
>

(
𝜂 ×

√[
𝐮†−
(
𝐟 {𝑘+1}

)]T [
𝐮†−
(
𝐟 {𝑘+1}

)])
𝜇{𝑘}∕𝜌, 𝐢𝐟

√[
𝐮†−
(
𝐟 {𝑘+1}

)]T [
𝐮†−
(
𝐟 {𝑘+1}

)]
>

(
𝜂 ×

√[
𝐫{𝑘+1} − 𝐳{𝑘+1}

]T [𝐫{𝑘+1} − 𝐳{𝑘+1}
])

𝜇{𝑘}, 𝐨𝐭𝐡𝐞𝐫𝐰𝐢𝐬𝐞

where 𝜌 > 1, 𝜂 > 1

The primal and the dual condition residuals at (𝑘+ 1)𝑡ℎ iteration of the ADMM algorithm are

denoted as 
√[

𝐫{𝑘+1} − 𝐳{𝑘+1}
]T [𝐫{𝑘+1} − 𝐳{𝑘+1}

]
and 

√[
𝐮†−
(
𝐟 {𝑘+1}

)]T [
𝐮†−
(
𝐟 {𝑘+1}

)]
, and are

discussed in detail in Appendix C respectively.

end while

If 

(
𝑟
{𝑘+1}
𝑖

−
𝜆
{𝑘}
𝑖

𝜇{𝑘}

)
>

1
𝜇{𝑘} then all the sub-gradients at 𝑧𝑖 = 0 are negative, so the minimizer is achieved at some positive 𝑧𝑖 and this 

occurs at

𝑧𝑖 = 𝑟
{𝑘+1}
𝑖

−
𝜆
{𝑘}
𝑖

𝜇{𝑘} − 1
𝜇{𝑘} ; ∀𝑟𝑖 ∈ 𝐫, ∀𝜆𝑖 ∈ 𝝀, ∀𝑧𝑖 ∈ 𝐳 (B.5)

Similarly, if 

(
𝑟
{𝑘+1}
𝑖

−
𝜆
{𝑘}
𝑖

𝜇{𝑘}

)
< − 1

𝜇{𝑘} then all the sub-gradients at 𝑧𝑖 = 0 are positive, so the minimizer is achieved at some negative 

𝑧𝑖 and this occurs at

𝑧𝑖 = 𝑟
{𝑘+1}
𝑖

−
𝜆
{𝑘}
𝑖

𝜇{𝑘} + 1
𝜇{𝑘} ; ∀𝑟𝑖 ∈ 𝐫, ∀𝜆𝑖 ∈ 𝝀, ∀𝑧𝑖 ∈ 𝐳 (B.6)

A soft-shrinkage operator is defined as

{1∕𝜇}
(
𝐫 − 𝝀

𝜇

)
=

⎧⎪⎪⎪⎨⎪⎪

𝑟𝑖 −
𝜆𝑖
𝜇

− 1
𝜇

,

(
𝑟𝑖 −

𝜆𝑖
𝜇

)
>

1
𝜇

0 ,− 1
𝜇
≤
(
𝑟𝑖 −

𝜆𝑖
𝜇

)
≤ 1
𝜇

𝜆𝑖 1
(

𝜆𝑖
)

1

(B.7)
24

⎪⎩𝑟𝑖 − 𝜇
+
𝜇

, 𝑟𝑖 − 𝜇
< −

𝜇
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which can be written in compact notation as

{1∕𝜇}
(
𝐫 − 𝝀

𝜇

)
=

⎛⎜⎜⎜⎜⎜⎝
1 −

1
𝜇√[

𝐫 − 𝝀

𝜇

]T [
𝐫 − 𝝀

𝜇

]
⎞⎟⎟⎟⎟⎟⎠+
(
𝐫 − 𝝀

𝜇

)

=max
⎧⎪⎨⎪⎩
√[

𝐫 − 𝝀

𝜇

]T [
𝐫 − 𝝀

𝜇

]
− 1
𝜇
,0
⎫⎪⎬⎪⎭ ⋅

𝐫 − 𝝀

𝜇√[
𝐫 − 𝝀

𝜇

]T [
𝐫 − 𝝀

𝜇

]
(B.8)

where (⋅)+ denotes the positive part of its argument.

Hence the soft-shrinkage operator for an update of 𝐳 can be obtained as

𝐳{𝑘+1} = 𝓁1SHRINKAGE
(
𝜇{𝑘}, 𝐫{𝑘+1},𝝀{𝑘}

)
=max

⎧⎪⎨⎪⎩
√[

𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

]T [
𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

]
− 1
𝜇{𝑘} ,0

⎫⎪⎬⎪⎭ ⋅
𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}√[
𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

]T [
𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

] (B.9)

B.3. Sub-gradient for Huber loss function

The sub-gradient for the Huber loss function can be derived following along similar lines of 𝓁2 and 𝓁1 norms and can be written 
as

𝐳{𝑘+1} = HUBERSHRINKAGE
(
𝜇{𝑘}, 𝐫{𝑘+1},𝝀{𝑘},𝝐

)

=

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

𝜇{𝑘}

1 + 𝜇{𝑘}

[
𝑟
{𝑘+1}
𝑖

−
𝜆
{𝑘}
𝑖

𝜇{𝑘}

]
,
|||𝑟{𝑘+1}𝑖

||| ≤ 𝜖𝑖

max
⎧⎪⎨⎪⎩
√[

𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

]T [
𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

]
,0
⎫⎪⎬⎪⎭ ⋅

𝑟
{𝑘+1}
𝑖

−
𝜆
{𝑘}
𝑖

𝜇{𝑘}√[
𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

]T [
𝐫{𝑘+1} − 𝝀{𝑘}

𝜇{𝑘}

] ,
|||𝑟{𝑘+1}𝑖

||| > 𝜖𝑖

(B.10)

The Huber shrinkage operator follows a 𝓁2 sub-gradient calculation within and at the epsilon limit, and a 𝓁1 sub-gradient calculation 
strictly outside the epsilon limit, as shown in equation (B.10).

Appendix C. Optimal conditions for ADMM

The unconstrained Lagrangian in equation (21) without the penalty regularization term can be written as

([𝐮, 𝑝] , [𝐮†, 𝑝†] , [𝐳,𝝀] , 𝐟) = (𝐳) + (𝐟) − 𝝀T
[ (

𝐮
)
− �̃�− 𝐳

]
− ∫
Ω

𝑝
† {∇ ⋅ 𝐮

}
𝑑Ω− ∫

Ω

(
𝐮†
)T{

𝐮 ⋅∇𝐮+∇𝑝− 1
𝑅𝑒

∇2𝐮− 𝐟
}

𝑑Ω
(C.1)

The original Lagrangian in equation (21) can then be written as

([𝐮, 𝑝] , [𝐮†, 𝑝†] , [𝐳,𝝀] , 𝐟) = ([𝐮, 𝑝] , [𝐮†, 𝑝†] , [𝐳,𝝀] , 𝐟)+ 𝜇

2
[ (

𝐮
)
− �̃�− 𝐳

]T [ (
𝐮
)
− �̃�− 𝐳

]
(C.2)

C.1. Primal feasibility condition

The primal feasibility condition is given by

 (
𝐮
(
𝐟∗
))

− �̃�− 𝐳∗ = 0 (C.3)
25

where variables with ∗ denote the optimum for the vector variables 𝐟 and 𝐳.
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C.2. Dual feasibility condition

The dual feasibility condition is obtained by taking the sub-differential of equation (C.1) with respect to variations in the variables 
𝐟 and 𝐳. Taking the sub-differential of equation (C.1) with respect to 𝐟 gives

𝜕 = 0 ∈ 𝜕 (
𝐟∗
)
+ 𝐮†∗

(
𝐟∗
)

(C.4)

where 𝐮†∗ is the solution to equations (C.5) given below.

−𝐮 ⋅∇𝐮†∗ + 𝐮†∗ ⋅
(
∇𝐮

)T −∇𝑝†∗ −
1
𝑅𝑒

∇2𝐮†∗ = −T𝝀∗; ∇ ⋅ 𝐮†∗ = 0 (C.5)

Taking the sub-differential of equation (C.1) with respect to 𝐳 again leads to

𝜕 = 0 ∈ 𝜕(𝐳∗) + 𝝀∗ (C.6)

Since 𝐳{𝑘+1} minimizes  
([
𝐮, 𝑝

]
,
[
𝐮†, 𝑝†

]
,
[
𝐳,𝝀{𝑘}

]
, 𝐟{𝑘+1}

)
by definition, we have from equations (C.1) and (C.2)

0 ∈ 𝜕(𝐳{𝑘+1}) + 𝝀{𝑘} − 𝜇
[ (

𝐮
(
𝐟{𝑘+1}

))
− �̃�− 𝐳{𝑘+1}

]
∈ 𝜕(𝐳{𝑘+1}) + 𝝀{𝑘+1}

(C.7)

This means 𝐳{𝑘+1} and 𝝀{𝑘+1}
𝑖

always satisfy equation (C.6), so attaining optimality comes down to satisfying equation (C.3) and 
equation (C.4).

Since 𝐟{𝑘+1} minimizes  
([
𝐮, 𝑝

]
,
[
𝐮†, 𝑝†

]
,
[
𝐳{𝑘},𝝀{𝑘}

]
, 𝐟
)

by definition, we have from equations (C.1) and (C.2)

0 ∈ (
𝐟{𝑘+1}

)
+ 𝐮†

(
𝐟{𝑘+1}

)
(C.8)

where 𝐮†
(
𝐟{𝑘+1}

)
is the solution to equations (C.9) given as

−𝐮 ⋅∇𝐮† + 𝐮† ⋅∇𝐮𝑇 −∇𝑝† − 1
𝑅𝑒

∇2𝐮† = −T𝝀{𝑘} + 𝜇T [ (
𝐮
(
𝐟{𝑘+1}

))
− �̃�− 𝐳{𝑘}

]
; ∇ ⋅ 𝐮† = 0 (C.9)

The right-hand side forcing term in equation (C.9) can be simplified as follows

−T𝝀{𝑘} + 𝜇T [ (
𝐮
(
𝐟{𝑘+1}

))
− �̃�− 𝐳{𝑘+1} +𝐳{𝑘+1} − 𝐳{𝑘}

]
= −T𝝀{𝑘+1} + 𝜇T [𝐳{𝑘+1} − 𝐳{𝑘}

] (C.10)

Since the adjoint equations (C.9) are linear with respect to the direct variables 
(
𝐮, 𝑝

)
, the adjoint variables can be decomposed as (

𝐮†, 𝑝†
)
=
(
𝐮†∗, 𝑝

†
∗

)
+
(
𝐮†−, 𝑝

†
−

)
. The decomposed adjoint equations with the simplified forcing from equation (C.9) can be written as

−𝐮 ⋅∇𝐮†∗ + 𝐮†∗ ⋅
(
∇𝐮

)T −∇𝑝†∗ −
1
𝑅𝑒

∇2𝐮†∗ = −T𝝀{𝑘+1}; ∇ ⋅ 𝐮†∗ = 0 (C.11)

−𝐮 ⋅∇𝐮†− + 𝐮†− ⋅
(
∇𝐮

)T −∇𝑝†− − 1
𝑅𝑒

∇2𝐮†− = 𝜇T [𝐳{𝑘+1} − 𝐳{𝑘}
]
; ∇ ⋅ 𝐮†− = 0 (C.12)

It can be verified that equations (C.11) are already satisfied by the sub-differential equations (C.5). This means the quantity

𝐝{𝑘+1} = 𝐮†−
(
𝐟{𝑘+1}

)
(C.13)

which is given by the solution to equations (C.12), can be viewed as a residual for the dual feasibility condition. Hence the primal-dual 
condition residuals at (𝑘+ 1)𝑡ℎ iteration step of the optimization are given as

Primal condition ∶ 𝐩{𝑘+1} = (
𝐮
(
𝐟{𝑘+1}

))
− �̃�− 𝐳{𝑘+1} (C.14)

Dual condition ∶ 𝐝{𝑘+1} = 𝐮†−
(
𝐟{𝑘+1}

)
(C.15)

Appendix D. Optimal value of cut-off parameter

Guitton and Symes, 2003 [39] took the value of the epsilon/cut-off parameter 
(
𝜖𝑖
)

as the 98th percentile of the data or 0.01 times 
the maximum deviation in error. However, these estimates lack proper analytical support or justification. A more effective approach 
for selecting this parameter is based on the estimate of the deviation error of the data, as proposed by Bube and Langan, 1997 [22]. 
Following this general strategy, we evaluate the standard deviation for the hybrid distribution and obtain an a priori estimate of the 
cut-off parameter 

(
𝜖𝑖
)
. With [𝐫,𝝐] representing the vector of all measurement sensor locations, the mathematical approach described [ ]
26

below is presented for a particular measurement location, denoted by 𝑟𝑖, 𝜖𝑖 .
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D.1. Hybrid distribution

Under the assumption that the noise obeys a hybrid distribution at a sensor location, the associated loss function is expressed in 
hybrid form. The standard deviation (S.D.) of 𝑟𝑖 for a hybrid distribution can be calculated using the density function, 𝔽

(
𝑟𝑖
)

as

S.D. =
⎡⎢⎢⎣
+∞

∫
−∞

𝑟2𝑖 𝔽
(
𝑟𝑖
)
𝑑𝑟𝑖 −

+∞

∫
−∞

𝑟𝑖𝔽
(
𝑟𝑖
)
𝑑𝑟𝑖

⎤⎥⎥⎦
1∕2

=
[ +


]1∕2

𝜖𝑖 ≈ 1.643 𝜖𝑖

where,  =

∞

∫
0

𝑟𝑖 exp
(
−𝑟𝑖

)√
𝑟𝑖
2 + 2𝑟𝑖 𝑑𝑟𝑖 ≈ 2.78, and  =

∞

∫
0

exp
(
−𝑟𝑖

)√
𝑟𝑖
2 + 2𝑟𝑖 𝑑𝑟𝑖 ≈ 1.636.

(D.1)

In the above equation (D.1), the value of  is taken from equation (16). From the above formulation, an optimal value for the 
epsilon/cut-off parameter (𝜖𝑖) at a particular measurement location can be obtained as follows.

• A few initial iterations using a 𝓁2 loss function are performed, which do not require knowledge of the cut-off parameter;

• Then, the deviation error using equation (4) is calculated as 𝑟𝑖;
• Finally, the cut-off parameter 

(
𝜖𝑖
)

is chosen as 0.6 (= 1∕1.643) times the absolute deviation error, ||𝑟𝑖||. Using this value of 𝜖𝑖
and dividing by ||𝑟𝑖|| in the above equation (D.1), the standard deviation attains a value of 1 (same as that of a standard normal 
distribution for the quadratic loss function, see Table 1).

This cut-off/epsilon limit denotes the deviation at which the loss function can switch from 𝓁1 to 𝓁2.
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