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This work presents an actuator disk-like body force method designed for propeller modeling,

which is based on a full coupling between Computational Fluid Dynamics (CFD) and Blade

Element Theory (BET). An analysis is conducted on the model to identify best practices for

source term distribution. It is found that the source term volume shape has no impact on

propeller loads and flow field, and that the velocities used for the BET analysis at each radial

section should be evaluated exactly where half the source terms have been distributed in the

CFD domain. Four tip-loss corrections, including two from literature, are also analyzed and

compared to lifting-line and RANS blade-resolved computations. The best practices and the

most effective tip-loss correction lead to a final model that is compared to lifting-line, RANS and

URANS computations for different pitch angles and incidence angles, on the ONERA HAD-1

three-bladed light propeller. The RANS/BET body force model predicts thrust within 3% for

axial flow and 8% for cases with incidence. The same accuracy is obtained for wake prediction.
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Nomenclature

𝑐 = chord, m

𝐶𝑃 = power coefficient, 𝑃/𝜌 𝑛3 (2𝑅)5

𝐶𝑇 = thrust coefficient, 𝑇/𝜌 𝑛2 (2𝑅)4

𝐷 = drag force, N

𝐿 = lift force, N

𝑀 = Mach number

𝑛 = rotation frequency, Hz

𝑁𝑏 = number of blades

𝑁𝑖 = number of cells in radial direction

𝑁 𝑗 = number of cells in azimuthal direction

𝑁𝑘 = number of cells in axial direction

𝑃 = power, W

𝑅 = propeller radius, m

𝑟 = radial coordinate, m

𝑅𝑒 = Reynolds number

𝑇 = thrust, N

𝑉𝑥 = axial velocity, m.s-1

𝑉𝑡 = tangential velocity in rotor plane, m.s-1

𝑉0 = norm of free flow velocity, m.s-1

𝑉𝑟𝑒𝑙 = velocity relative to propeller section, m.s-1

𝑥 = axial coordinate, m

𝛼 = angle of attack, deg

𝛽 = pitch angle, deg

𝜃 = tangential angle coordinate, rad

Θ = incidence angle, deg

𝜌 = density, kg.m-3

𝜙 = local flow angle, deg

Ψ = azimuth angle, deg

Ω = rotation speed in rad.s-1

I. Introduction

Propeller and rotor studies have surged in recent years thanks to the research and development of compound

helicopters, aircraft with distributed propulsion, Urban Air Mobility (UAM) for public transportation, and to the

continuous effort to develop high-speed open rotors for commercial aviation. Compound helicopters and UAM concepts

often exhibit multiple rotors mounted on hubs or wings, such that installation effects and mutual rotor aerodynamic

interactions have a first order impact on the flight physics and aerodynamic performance of the vehicle. These effects

must then be taken into account for security and aircraft performance assessment. For commercial aviation, the challenge

is to design an aircraft that is competitive compared to turbofan-powered aircraft. The aerodynamic performance of both

the engine and airframe must therefore be carefully evaluated together to assess the benefits of the overall architecture.

State of the art Computational Fluid Dynamics (CFD) is able to provide such an assessment but at a cost in manpower

and computational resources that is not affordable in preliminary studies. On the other side of the spectrum of methods

available for propeller assessment are codes based on the Blade Element Momentum Theory (BEMT) [1] and the
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lifting-line theory [2]. These are very fast and accurate methods for computing isolated rotor performance but they

lose in accuracy when trying to account for strong installation effects. This is why methods developed to assess the

performance of aircraft with propellers or open rotors often rely on hybrid Navier-Stokes approaches. These use

CFD-RANS to model the flow fields, a lower fidelity method to model the propeller, and a coupling between the two.

Because there is no body-fitted blade mesh, this approach can offer a significant gain in mesh size, and thus reduce

computational costs. This paper will only focus on fully coupled methods, as a retro-action of the flow on the propeller

loading is of first importance when studying strong installation effects. Hybrid Navier-Stokes approaches can be either

time-accurate by modeling the distinct rotating blades [3], or time-averaged by averaging the propeller effect on the flow

over a whole revolution. Because time-averaged methods only predict the mean flow, they only give partial information

on installation effect studies. However, they make it possible to conduct steady simulations where blade-resolved

analyses of installation effects require unsteady computations, thus lowering computation costs further. Time-accurate

hybrid Navier-Stokes methods for propeller modeling will be investigated in future work, and this paper will only focus

on time-averaged methods. For helicopter, wind turbine, and propeller applications, blade loads are often computed

using the Blade Element Theory, which is well suited for hybrid Navier-Stokes computations because it takes the local

velocity fields as inputs and returns local loads.

The effect of the propeller can be included in the CFD computation in two ways. The first method is to use internal

boundary conditions in the computational mesh. Fejtek and Roberts [4] link propeller thrust to a pressure jump, and

propeller torque to a flow deviation on a helicopter application. These two conditions are applied at the rotor disk, which

must conform to the computational grid. Moens and Gardarein [5] use the same type of conditions to model interactions

between a propeller and a wing, but use maps of lifting-line results to compute blade loads. The second method to

include propeller or rotor effect into CFD-RANS computations is to use source terms in the Navier-Stokes equations.

This was first done by Rajagopalan and Lim [6] who coupled 2D Navier-Stokes with BET to model a helicopter rotor in

hover. Rajagopalan and Mathur [7] extend this to 3D Navier-Stokes to model a helicopter in forward flight. Zori and

Rajagopalan [8] study interaction effects between a helicopter rotor and a fuselage. These authors do not explicitly

explain how the source terms are distributed inside the CFD mesh. Sørensen and Miken [9] distribute them in a one cell

thick volume using a Dirac function. Sørensen et al. [10] project the source terms using a convolution product with a

3D Gaussian kernel. This is done to avoid instabilities that appear when the source term volume is only one cell thick.

The 3D Gaussian kernel is still widely used today [11, 12], but it spreads the distribution of source terms at radii greater

than the rotor radius, and leads to a distortion of the spanwise loads. As a result, a 1D Gaussian is now also used to only

distribute the source terms in the axial direction [13, 14]. The source term distribution methods presented above were

used to avoid numerical instabilities. Ortun [15] uses an axial distribution law to better reproduce real blade physics

by concentrating the majority of the source terms toward the front of the volume. The sources are furthermore only

distributed in the area swept by the blades. This method was used to study installation effects of a propeller on a wing.
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The same setup is used by Reboul et al. [16] for aeroacoustic predictions of an eVTOL rotor. However because these

various methods have been applied on different cases, there is no consensus in the scientific community as to what the

best practices are for source-term distribution. The different distribution methods have yet to be tested on a unique

application case.

The modeling methods presented above average the propeller loads on a full revolution and thus only give a

time-averaged prediction of the velocity fields. As a result, the blade-tip vortices are not captured, so the methods

require tip loss corrections for the same reasons as in the BEMT. Prandtl initially used vortex theory to propose a

correction factor to Betz’s optimal propeller design [17] to extend its validity from an infinite to a finite number of blades.

Glauert [1] then suggests a modification to Prandtl’s theory for a simple implementation in the BEMT. This modified

version can be seen as a correction of the induced velocities to virtually account for tip vortices. The formulation

derived by Glauert is nowadays still widely used and some refinement proposals were made, for example to correct

mass flow [18, 19] or to account for the possible azimuthal dependency of the correction [20]. Shen et al. [21] make an

extensive analysis of the coherency of the Glauert tip loss and find in particular that it implicitly assumes zero 𝐶𝑙 and

zero flow angle at the tip, which is not realistic for cambered airfoils. The authors thus propose for the BEMT a variant

to Glauert’s tip loss factor that better models the physics at the very tip of the blade.

All these methods were developed for BEMT, and the way they should be included in a Navier-Stokes and BET

coupling is not clear. Sørensen and Kock [22] initially applied Glauert’s correction factor by multiplying it to the

interpolated section’s lift coefficient. Shen et al. [23] proposed an iterative method that uses Glauert’s factor to correct

the sampled velocities before computing the loads with BET. They also correct the BET loads by a factor that brings

the loads down to zero at the very tip of the blade to account for 3D effects. Zhong et al. [14] attempt a review of the

existing tip loss corrections that exist for Navier-Stokes and BET couplings. However, these corrections were tested on

wind turbine applications and the conclusions are not necessarily directly valid for propeller applications.

The propeller modeling method presented in this paper is a steady three-dimensional RANS/BET coupling method.

The approach is detailed and applied to an isolated three-bladed light propeller. A thorough investigation into the

distribution methods of the source terms into the CFD mesh is conducted. A focus is made on the different possible

parameterizations of the source terms and on their effects on both the propeller’s aerodynamic performance and the

structure of its wake, which is of first importance if it impinges on a lifting surface placed downstream. Four tip-loss

corrections are also compared. The model is evaluated on a range of propeller pitch angles in axial flow as well as

on different incidence angles. Detailed comparisons are shown between results obtained by RANS blade-resolved,

lifting-line theory and RANS/BET methods.
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II. Propeller Geometry and Operating Point

The geometry studied in this paper is the ONERA HAD-1 propeller [15] shown in Fig. 1. It is a three-bladed light

propeller designed according to the minimum induced loss method of Adkins and Liebeck [24], for a tip Mach number

equal to 0.5, a 1.6 meter diameter and a propeller thrust representative of the cruise condition of a general aviation

aircraft with two propellers. In addition, the blade chord distribution obtained with the Adkins and Liebeck method was

smoothed with the parameterization proposed by Borer et al. [25]. The blade’s chord and twist distributions are shown

in Figure 2. The propeller’s main characteristics, cruise operating point and performance are summarized in Tables 1

to 3. The reference radius for the blade pitch angle is chosen at 75% of the propeller’s tip radius.

Fig. 1 HAD-1 propeller.

Table 1 HAD-1 propeller characteristics

Parameter Value
Blade count, 𝑁𝑏 3
Tip radius [m] 0.8
Hub-to-tip ratio 0.15

Chord ( ), Twist ( )
Fig. 2 Chord and twist distributions of HAD-1 blade.

Table 2 HAD-1 cruise operating point

Parameter Value
Mach number, 𝑀0 0.3
Angle of incidence [°] 0
Air temperature [K] 288.15
Air density [kg.m−3] 1.225
Rotation speed [rad.s−1] 212.7
Advance ratio 1.9
Blade pitch angle [°] 45

Table 3 HAD-1 performance at cruise operating point

Parameter Value
Thrust [N] 1390
Power [kW] 164.4
Thrust coefficient, 𝐶𝑇 0.15
Power coefficient, 𝐶𝑃 0.33
Efficiency, 𝜂 0.863
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III. Flow Modeling and Computational Methodologies

The RANS/BET body force method presented in this paper will be assessed by comparison of its results with

blade-resolved CFD computations (RANS and URANS for unsteady cases) that are used as references. Lifting-line

computations are also conducted using the same airfoil polars as for the RANS/BET approach. The lifting-line method

models distinct blades whereas the RANS/BET approach distributes the loads on a full revolution and thus needs a

tip-loss correction.

A. Blade-Resolved Approach

The Computational Fluid Dynamics (CFD) computations were performed with the elsA∗ finite-volume solver [26]

using the Reynolds-Averaged Navier-Stokes (RANS) equations in compressible regime. For steady operating points

at zero incidence, the simulations are carried out considering one blade channel only, using azimuthal periodic

boundary conditions. The convective fluxes are discretized using a second-order centered scheme with scalar artificial

viscosity [27] and Martinelli’s correction [28]. The coefficients of the second-order nonlinear, fourth-order linear

dissipation and Martinelli’s scaling exponent are set, respectively, to 𝑘 (2) = 1/2, 𝑘 (4) = 0.044, and 𝛼 = 0.33. The

diffusive fluxes are discretized using a second-order centered scheme and the turbulence modeling relies on a 𝑘 −𝜔 Kok

turbulence model [29] with shear-stress transport (SST) correction [30] and limiters [31]. The computations are carried

out considering an absolute velocity formulation within the relative reference frame. Characteristic relation-based flow

boundary conditions are used at the computational domain inlet, outlet, and radial boundary with infinite flow values

corresponding to the ones given in Tab. 2. All solid surfaces are considered as adiabatic walls using a low Reynolds

approach. The pseudo time-marching scheme used for the steady computations is the first-order backward Euler scheme.

For operating points with incidence, the flow becomes unsteady and periodic boundary conditions can no longer be

used. The mesh of the single blade channel is duplicated to obtain a full 360° mesh, and kinematic motion is applied to

the grid in the absolute frame. The unsteady simulations are carried out using a second-order three-time-level implicit

backward-difference scheme. The time-step was chosen so the propeller rotates half a degree at each iteration.

Five structured multiblock grids of a single blade channel were made using the NUMECA Autogrid mesh generation

software. The number of cells in each grid is given in Table 4. The computational domain extends 6 radii upstream, 6

radii downstream of the rotor pitch axis and 6 radii in the radial direction. Slices of the mesh containing 10.1 million

cells are represented in Figure 3. Each mesh was built so that the first-layer thickness complies with the 𝑦+ requirement

of the turbulence model of 𝑦+ ≤ 1.

A RANS simulation was conducted on each grid using the computational setup detailed above and the operating

point from Table 2. The propeller thrust and power computed at the end of each simulation are shown in Table 4. These
∗elsA V5.1.01 ONERA-Safran property
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(a) Blade section mesh (b) Blade section mesh - leading edge (c) Blade section mesh - trailing edge

Fig. 3 Blade-resolved mesh used for RANS and URANS computations.

two quantities of interest are converged well below 1%. The radial distributions of blade thrust and tangential loads are

represented on Figure 4 and are nearly identical for each mesh. The same is noted in Figures 5 and 6 for the azimuthal

averages of velocity fields in the wake, which are of interest in the next sections to compare to RANS/BET results.

As a result, grid convergence is assumed sufficient for the RANS blade-resolved computations to be used as

references for the comparisons with RANS/BET results. In the following, all blade-resolved results are obtained from

Grid 4. This grid may be over-refined for the case presented in this grid-dependency study, but the extra refinement may

be necessary for computations with higher pitch angles or for the study with incidence angles.

Table 4 Grid-dependency study results

Grid Number of cells Thrust [N] Power [kW]
1 3,363,296 1393.1 165.08
2 5,065,824 1390.6 164.90
3 6,958,816 1392.5 164.87
4 10,132,608 1389.7 164.39
5 12,452,352 1389.7 164.37

Grid 1 ( ■ ), 2 ( ▲ ), 3 ( ▼ ), 4 ( _ ), and 5 ( � )

Fig. 4 Axial (solid) and tangential (dashed) loads for
each grid.

Grid 1 ( ■ ), 2 ( ▲ ), 3 ( ▼ ), 4 ( _ ), and 5 ( � )

Fig. 5 Azimuthal average of axial velocity one radius
behind the rotor for each grid.

Grid 1 ( ■ ), 2 ( ▲ ), 3 ( ▼ ), 4 ( _ ), and 5 ( � )

Fig. 6 Azimuthal average of tangential velocity one
radius behind the rotor for each grid.
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B. Lifting-Line Approach

The lifting-line calculations are performed with the PUMA solver (Potential Unsteady Methods for Aerodynamics),

developed by ONERA. It relies on a coupling between a kinematic module and an aerodynamic module based on a

free-wake model combined with a lifting-line approach. The lifting-line method relies on 2D airfoil polars (lift, drag,

and moment coefficients) to compute the airloads on the blade sections. The free-wake model implements Mudry’s

theory [32], which rigorously describes the unsteady evolution of a wake modeled by a potential discontinuity surface.

The PUMA code is parallelized using OpenMP and the multilevel Fast Multipole Method has been implemented for

the computation of the velocities induced by each wake panel on any element. It is also able to take into account

the non-lifting potential field of solid surfaces with arbitrary geometries. In recent years, it has been successfully

applied and validated on fixed and rotating wings applications such as propellers [33], conventional and compound

helicopters [34, 35], as well as wind turbines [36].

Figure 7 shows the free wake computed by PUMA for an HAD-1 simulation. PUMA can also be given a perturbation

field to be included in the computations to account for the flow field around the spinner and hub. In the case studied

here, this perturbation field is generated using the finite volumes CFD code described in section III.A.

Fig. 7 Free wake of HAD-1 from PUMA colored by circulation. Fig. 8 Blade sections chosen for
airfoil polar computations.

For this study each blade was discretized in 35 sections by interpolation in HAD-1’s geometric definition. The

airfoil polars used by the lifting-line solver were computed for 6 blade sections using CFD, distributed as in Figure 8.

For each section, 2D RANS computations were carried out for various Mach numbers and incidence angles, ranging

respectively from 0.2 to 0.85, and from -8° to 12°. The airfoil polars were computed at the approximate Reynolds

number seen by each section.

At the end of the computation, PUMA returns integrated aerodynamic performance as well as blade loading

distribution and the 3D geometry of the wake and its circulation field. This data can be post-processed into a spatial

velocity field, using the Biot-Savart law, and compared to the velocity fields computed with the RANS blade-resolved

and RANS/BET approaches.

8



C. RANS/BET Approach

The RANS/BET approach presented in this paper models the propeller as distributed (volumic) source terms in a

CFD RANS computation on a grid that does not include the blades mesh. For each azimuthal position, the local flow

information at each radius is used to compute the section load with a BET approach, using the airfoil polars described

above. The load is then axially distributed using a prescribed weighting function. This is done at each azimuthal point,

such that the force is local (in the radial and azimuthal sense), thus making the approach able to model non-uniform

inflow conditions (such as incidence or interaction effects).

The RANS/BET source term approach is formally similar to the Body Force Method (BFM) approaches used for

internal turbomachinery flow (see refs. [37–40] for instance), in the sense that blades are represented by volumic source

terms that can be viewed as forces acting on the flow. However, the methods differ in the underlying modeling principles:

(i) for the RANS/BET approach, the starting point is to express the forces from isolated airfoils polars, wheareas (ii) for

turbomachinery BFM, the forces are expressed from the turning and the losses generated by a blade row.

Compared with classical blade-resolved approaches, the RANS/BET method offers a significant computational gain

for non-uniform conditions: (i) the grid size is reduced because the blades are not meshed, and (ii) the modeled flow is

steady because the method intrinsically smears out blade-to-blade effect, whereas a blade-resolved computation for a

non-uniform inflow requires unsteady computations. This is done at the cost of certain hypotheses: because of the use

of polars, the blades are assumed to be independent and with a 2D flow. Thus, blade-to-blade effects such as wakes or

tip vortices are not present in the resulting flow field. In other words, the flow obtained by the RANS/BET can be seen

as representative of the time-averaged flow over a full rotor revolution computed with a blade-resolved approach.

(a) Slice of CFD grid (b) Source term volume (c) Velocity fields extraction (d) Source terms distribution

Fig. 9 RANS/BET method recap.

1. Grids

Two distinct 3D grids are used in the RANS/BET method. The first one is the computational mesh used for the CFD

RANS simulation, displayed in Figure 9a. It does not include a body-fitted blade mesh but may include any other object

(propeller hub, wing, full aircraft). It must be refined where the source terms are applied. This can for example be done
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with an overset grid when the mesh contains many different objects. In this study a curvilinear structured 3D mesh

fitting the spinner prolonged by an infinite cylindrical hub is used. It is refined in the propeller and wake areas and is

composed of 10 million cells for a 360 degree volume. It should be noted here that the whole annulus domain is only

necessary for the final computations with an non-zero incidence on the propeller.

The second grid meshes the volume in which the source terms are distributed (Figure 9b). This auxiliary grid is

only used to compute the source terms and is independent of the CFD calculation. The volume may have different

shapes and the effect of this parameter is investigated in section IV.A. Regardless of the shape, the volume has 𝑁𝑖 , 𝑁 𝑗 ,

and 𝑁𝑘 nodes respectively in the radial, azimuthal and axial directions.

2. Propeller Loads Computation

As explained previously, the local load at a given radius and azimuth is computed using BET. To do so, the flow

velocities needed for the computation are extracted from the CFD flow fields. This is done by interpolating the CFD

solution on 𝑁 𝑗 sampling lines as displayed in Figure 9c. The sampling lines used in this paper are straight, but curved

lines for propellers with significant sweep may also be used. The only constraint is that the azimuthal positions and

radial discretization of the sampling lines must be the same as those of the source term volume mentioned above.

Each node of the sampling lines is assumed to represent a blade section, with a specific airfoil, a chord length 𝑐(𝑟)

and a pitch angle 𝛽(𝑟). By interpolation in the CFD flow field, each node also has an axial and a tangential velocity

𝑉𝑥,𝐶𝐹𝐷 (𝑟, 𝜃) and 𝑉𝑡 ,𝐶𝐹𝐷 (𝑟, 𝜃). The velocities extracted from CFD include both the free flow component 𝑉0 and the

velocity component 𝛿𝑉 due to the source terms or to interaction effects. However, because the computation is in the

absolute frame, the sampled tangential velocity 𝑉𝑡 ,𝐶𝐹𝐷 (𝑟, 𝜃) does not account for the component due to blade rotation,

which must be included in the relative velocity computation (equation (2)).

𝑉𝑥,𝑟𝑒𝑙 (𝑟, 𝜃) = 𝑉0,𝑥 + 𝛿𝑉𝑥 (𝑟, 𝜃) = 𝑉𝑥,𝐶𝐹𝐷 (𝑟, 𝜃) (1)

𝑉𝑡 ,𝑟𝑒𝑙 (𝑟, 𝜃) = Ω𝑟 −
(
𝑉0,𝑡 (𝜃) + 𝛿𝑉𝑡 (𝑟, 𝜃)

)
= Ω𝑟 −𝑉𝑡 ,𝐶𝐹𝐷 (𝑟, 𝜃) (2)

𝑉𝑟𝑒𝑙 (𝑟, 𝜃) =
√︃
𝑉𝑥,𝑟𝑒𝑙 (𝑟, 𝜃)2 +𝑉𝑡 ,𝑟𝑒𝑙 (𝑟, 𝜃)2 (3)

The relative velocities and pitch angle give the local flow angle with the blade section 𝜙(𝑟, 𝜃), and the effective

angle of attack 𝛼(𝑟, 𝜃) (equations (4) and (5)). The calculation of the angles is summarized in Figure 10a for a case

without incidence.

𝜙(𝑟, 𝜃) = arctan
(
𝑉𝑥,𝑟𝑒𝑙 (𝑟, 𝜃)
𝑉𝑡 ,𝑟𝑒𝑙 (𝑟, 𝜃)

)
(4)
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𝛼(𝑟, 𝜃) = 𝛽(𝑟) − 𝜙(𝑟, 𝜃) (5)

(a) Computation of the angle of attack (b) Computation of sectional loads

Fig. 10 Blade Element Theory applied to a propeller section for axial flow.

The lift and drag coefficients 𝐶𝑙 (𝛼(𝑟, 𝜃), 𝑀 (𝑟, 𝜃), 𝑅𝑒 (𝑟, 𝜃)) and 𝐶𝑑 (𝛼(𝑟, 𝜃), 𝑀 (𝑟, 𝜃), 𝑅𝑒 (𝑟, 𝜃)) are interpolated at

each sampling line node from a set of 2D airfoil polars, as in the lifting-line approach. The lift and drag forces are then

computed from equations (6) and (7). It is important to note that because the model assumes a 2D flow on the blade, no

radial force component is included (Figure 10b). The radial velocity component is also not taken into account in the

computation of the relative velocity 𝑉𝑟𝑒𝑙 (𝑟, 𝜃) (equation (3)).

𝑑𝐿

𝑑𝑟
(𝑟, 𝜃) = 1

2
𝜌𝑐(𝑟)𝑉𝑟𝑒𝑙 (𝑟, 𝜃)2𝐶𝑙 (𝑟, 𝜃) (6)

𝑑𝐷

𝑑𝑟
(𝑟, 𝜃) = 1

2
𝜌𝑐(𝑟)𝑉𝑟𝑒𝑙 (𝑟, 𝜃)2𝐶𝑑 (𝑟, 𝜃) (7)

𝑳(𝑟, 𝜃) and 𝑫 (𝑟, 𝜃) are summed and projected from the local blade section frame into the CFD computation frame

to obtain the loads at each blade radius and azimuth 𝒇𝑩𝑬𝑻 (𝑟, 𝜃) = ( 𝑓𝐵𝐸𝑇,𝑥 (𝑟, 𝜃), 𝑓𝐵𝐸𝑇,𝑦 (𝑟, 𝜃), 𝑓𝐵𝐸𝑇,𝑧 (𝑟, 𝜃)) in N.m-1.

𝑁 𝑗 blade loads have been computed instead of 𝑁𝑏, so in order to distribute the right amount of force into the computation,

𝒇𝑩𝑬𝑻 (𝑟, 𝜃) needs to be scaled:

𝒇𝒔 (𝑟, 𝜃) =
𝑁𝑏

𝑁 𝑗

𝒇𝑩𝑬𝑻 (𝑟, 𝜃) (8)

3. Source Terms Computation and Distribution

Once the loads are computed, the sampling lines are stacked into a surface (referred to as "sampling surface"), and

the loads moved to the cell centers. They are then transformed into force densities and distributed axially into the source

term volume. Each cell of the sampling surface is associated to a volume 𝑉𝑒 (𝑟) of the source term volume, which

is located at the same radial and azimuthal position (Figure 11). This volume is composed of 𝑁𝑘 cells in the axial

direction. To obtain a uniform distribution of the source terms over the auxiliary mesh in the axial direction, the force
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density in each cell must be:

𝒇𝒅 (𝑟, 𝜃) =
𝑑𝑟 (𝑟)
𝑉𝑒 (𝑟)

𝒇𝒔 (𝑟, 𝜃) (9)

Fig. 11 Definition of the cell extrusion volume 𝑉𝑒.

As discussed previously, a weight function 𝑤𝑒 (𝑟, 𝑥) can also be applied to the sources to change the distribution in

the axial direction as long as it is divided by a normalization factor 𝐹𝑛 (𝑟). The final form of the distributed source terms

is then:

𝒇 (𝑟, 𝜃, 𝑥) = 𝑤𝑒 (𝑥)
𝐹𝑛 (𝑟)

𝒇𝒅 (𝑟, 𝜃) where 𝐹𝑛 (𝑟) =
∑

𝑘 𝑤
𝑘
𝑒𝑉

𝑘∑
𝑘 𝑉

𝑘
(10)

The source term field 𝒇 (𝑟, 𝜃, 𝑥) is then injected into the CFD computation by interpolation from the source term

volume to the computational mesh and is accounted for in the right-hand-side of the RANS equations at the next CFD

iteration (Figure 9d).

4. Resolution Process

A CFD simulation is started on the computational mesh. The source terms are recomputed as described above every

20 RANS iterations so the flow can stabilize in the area of the propeller before the sources are updated again. This is

repeated until the computation is converged, which takes about 5000 iterations.

IV. Study and Analysis of the RANS/BET Body Force Model

For the RANS/BET method, the previous section shows that several choices have to be made regarding the

construction of the loads and their distribution: (i) the shape of the volume where the source terms are applied, (ii)

the relative position within this volume of the sampling lines where the local flow parameters are extracted and (iii)

the axial distribution of the forces. In this section, several options for these parameters are discussed and tested, and

their influence on the resulting loads and flow fields are investigated. All the computations are done for the propeller

presented in section II, for a zero incidence angle.
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A. Influence of the Source Term Volume

As mentioned in section III.C.1, the source term volume can be chosen to have any shape as long as it is coherent

with the sampling lines. In this section, three different shapes are compared, which are represented in Figure 12. The

options considered are the volume swept by the blades in a blade-resolved simulation (labeled ’fitted box’), a cylinder

that has the same length as the volume swept by the blades (labeled ’bounding box’) and another cylinder that has a

length of 1.5 ∗ 𝑐𝑚𝑎𝑥 (labeled ’extended box’).

Fitted box ( ), Bounding box ( ), Extended box ( ), Sampling line ( )

Fig. 12 Sections of source term volumes.

For all cases, the sampling lines are placed at x=0, corresponding to the stacking line of the propeller’s blade sections,

which is at 25% of the chord for all spanwise sections. The volumes are placed so that their upstream boundaries are

25% of the volumes’ axial length upstream of the sampling lines, as in Figure 12. The axial distribution of the source

terms replicates the setup proposed by Ortun and relies on the calibrated Weibull density function used in Ref. [15],

which mainly distributes the sources at the upstream part of the volume, as shown in Figure 14. The reasons behind this

setup will be explained by the results in the rest of section IV.

A RANS/BET simulation was run for each volume shape. The radial distributions of the axial and tangential loads

evaluated by the BET are plotted in Figures 13a and 13b. A flow field analysis downstream of the propeller is also made.

Figures 13c and 13d show the radial profiles of the axial and tangential velocities half a propeller radius downstream of

the sampling lines.

In all these figures, the curves for the different volumes are all superimposed. An analysis of the flow field further

downstream, not shown here, leads to the same observation. The number of cells the source term volume has in the axial

direction was also found to have no impact on the results. It can therefore be concluded that the shape of the source term
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volume has no impact on the results of the model. It should be noted here that: (i) this is an important finding as this

question is rarely directly addressed in literature on similar methods, (ii) and that this conclusion is in fact related to the

choice of how the axial distribution is made, as will be demonstrated in the next section. In the rest of the paper the

source terms are always distributed in a volume shaped as the extended box. This is done to relax the constraint on

cell-size for the interpolation of the source terms into the computational mesh.

(a) Spanwise thrust from BET (b) Spanwise tangential loads from BET

(c) Axial velocity field (d) Tangential velocity field

Fitted box ( _ ), Bounding box ( ■ ), Extended box ( ▲ )

Fig. 13 Computation results for three shapes of source term volumes.

B. Influence of Source Term Axial Distribution and Velocity Sampling

A Gaussian projection kernel is commonly employed in the literature to directly distribute source terms into the

CFD computational mesh, without resorting to interpolations [10, 13]. However other distribution functions can be

used. Actually, thin airfoils operating at subsonic conditions have their aerodynamic center close to the quarter chord.

This property can be reproduced in a RANS/BET body force simulation by using a weight density to unevenly distribute

the source terms in the axial direction. For example, a Weibull density function can be used, as done by Ortun [15].

To quantify the influence of the source term distribution on the RANS/BET results, we consider here three axial

distribution densities: uniform, Gaussian and Weibull (Figure 14). For each one, three computations are made in which

the velocity sampling lines are placed so that 25%, 50% and 75% of the source terms are distributed upstream of them.

Figures 15a and 15b show the radial distribution of axial and tangential loads for each computation. Figures 15c

and 15d show the axial and tangential velocities half a propeller radius downstream of the rotation center. For a given

percentage of the sources distributed upstream of the sampling lines, all the tested distribution functions lead to identical

blade loads and flow fields. This result clearly shows that the shape of the axial distribution function has no direct impact
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Uniform ( ), Gaussian ( ), Weibull ( )

Fig. 14 Density functions used for axial distribution of source terms.

on the results, which can be interpreted physically. Since no radial forces are applied in the body force volume, a fluid

particle travels through the volume at approximately the same radius. The flow being axisymmetric, the acceleration

seen by the fluid particle throughout its movement in the body force volume is a constant modulated by the normalized

distribution function. As such, the integral of the acceleration over a given streamline is the same regardless of the

distribution function. The validity of this result when the propeller operates at incidence will be evaluated in section

VI.C.

(a) Spanwise thrust from BET (b) Spanwise tangential loads from BET

(c) Axial velocity field (d) Tangential velocity field

Uniform 25% ( ■ ), 50% ( ▲ ), 75% ( _ ), Gaussian 25% ( ■ ), 50% ( ▲ ), 75% ( _ ),
Weibull 25% ( ■ ), 50% ( ▲ ), 75% ( _ )

Fig. 15 Computation results for different source terms distributions.

The only parameter that has an effect on the results is the quantity of source terms that is distributed upstream

of the sampling lines. This parameter is critical because if more sources are placed upstream of the sampling lines,
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the velocities used for the BET will be higher, resulting in lower angles of attack and lower blade section loadings.

Conversely, if less source terms are placed upstream of the sampling lines, the induced velocities will be low and the

efforts higher. This system is stable but its convergence point still depends on the location used to evaluate the velocities

used in BET, as shown in Figure 15.

C. Comparison to Blade Element Momentum Theory

The previous sections have shown that the RANS/BET method’s key parameter is the quantity of source terms that

is distributed upstream of the velocity sampling lines. To correctly choose this parameter, velocities in the wake of the

propeller are compared in this section with classical BEMT results, which are recalled hereafter and summarized in

Figure 16. Froude’s momentum theory for actuator disks models the propeller as a pressure jump that guarantees axial

velocity continuity. It states that, under a few assumptions, the induced axial velocity in the wake far downstream is

twice that in the disk plane [41, 42]. Glauert also shows in the blade element momentum theory that the tangential

velocity induced by an actuator disk is discontinuous, its value immediately downstream of the rotor plane being twice

the one in the actuator disk plane [1]. When the wake contraction is limited, as it is the case for a lightly loaded propeller

such as HAD-1, this tangential velocity is constant in the wake by Kelvin’s theorem.

Fig. 16 Summary of fundamental BEMT results.

Only the flow field induced by the body force is relevant for comparison with BEMT. It is obtained by subtracting the

velocity field of a RANS computation (accounting for the spinner and hub but without source terms) from a RANS/BET

computation (accounting for the spinner, the hub, and source terms). This is done to isolate the contribution of the

propeller to the flow field from the distortion of the flow by the spinner and the hub. In the RANS/BET computation,

50% of the source terms are distributed upstream the velocity sampling lines and the rest downstream, using a Gaussian

axial distribution.
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Figure 17 shows longitudinal slices of axial velocity, tangential velocity, and pressure fields induced by the body

forces. The limits of the body force domain is represented with white lines. The first slice clearly shows the continuity

of axial velocity through the body force region, whereas the other two show tangential velocity and pressure jumps, as in

the BEMT theory. A more in depth analysis, not shown here, revealed that these jumps are very sudden when using

axial distribution functions that smear the source terms over a small region (Gaussian or Weibull distributions), and

much smoother when using a uniform distribution. However, the axial velocity flow fields were found to be nearly

identical, even within the body force volume, regardless of the distribution function. In all cases, the flow fields were

found to be identical outside the body force volume, as seen in the previous section.

(a) Axial induced velocity field (b) Tangential induced velocity field (c) Induced pressure field

Fig. 17 Longitudinal slices of fields induced by the body forces.

Figure 18 shows the radial variation of the induced axial and tangential velocities for RANS/BET and BEMT

computations at different axial locations (labeled ’BF’), where 𝑋 = 0 is the propeller plane (ie., the velocity sampling

plane in RANS/BET). The theoretical value of the induced flow far downstream is also plotted (labeled ’Froude and

Glauert Theory’), which is obtained by multiplying the RANS/BET velocity fields from the propeller plane by 2, as it is

the case in the BEMT.

For the induced axial velocity, the radial distributions tend progressively toward the theoretical value predicted by

Froude’s theory. For the induced tangential velocity, Glauert’s theoretical value is reached rapidly behind the propeller.

The velocity profile then stays constant downstream because the wake contraction is negligible. Both these observations

would evidently not be the same if more or less than 50% of the source terms were distributed upstream the propeller.

Indeed if less sources are distributed upstream, the induced velocities are lower in the rotor plane and much higher

downstream, leading to a velocity ratio much larger than 2. It is the opposite if more than 50% of sources are distributed

upstream.
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(a) Spanwise axial velocity profiles (b) Spanwise tangential velocity profiles

BF 𝑋 = 0 ( ), BF 𝑋 = 0.5 ∗ 𝑅𝑡𝑖𝑝 ( ), BF 𝑋 = 3.5 ∗ 𝑅𝑡𝑖𝑝 ( ), Froude and Glauert Theory ( ), BEMT 𝑋 = 0 ( )

Fig. 18 RANS/BET and BEMT induced velocity profiles comparison.

Figure 18 also shows that the induced velocities in the rotor plane computed by BEMT are almost identical to

those computed by RANS/BET, which further shows that the source terms are correctly distributed in the RANS/BET

computation and that the velocities are correctly sampled.

These results therefore show that in order to verify the founding results of the BEMT, the source terms should be

equally distributed upstream and downstream of the sampling lines. This is interesting because it is what some authors

do without detailed justification. Ortun [15] and Reboul et al. [16] use a calibrated Weibull axial distribution and place

the source term volume 25% of its length in front of the sampling plane. By integrating the Weibull function in the axial

direction, it can be shown that this setup corresponds to a distribution of 50% of the source terms upstream the sampling

lines. Sørensen et al. [10] distribute the source terms using a Gaussian density centered on the sampling lines, which

also corresponds to a distribution of 50% of the source terms upstream of the sampling lines. In the rest of the paper,

half the source terms are distributed upstream of the sampling plane, and half downstream.

V. Tip-Loss Correction

Different source term distribution methods have been evaluated and an optimal setup has been found. The RANS/BET

model needs to be further refined by adding a tip-loss correction to better match the RANS blade-resolved results. The

two following sections explain why a tip-loss correction is necessary, and assess four tip-loss corrections, including two

from the literature.

A. RANS/BET Computation with Prescribed Loads

In this section, the radial loads are prescribed using the results from the RANS blade-resolved approach instead

of being computed using BET. The objective is to evaluate how accurately the body force computation can restitute
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the velocity fields from the correct radial loads. Figure 19 shows the azimuthal average of the velocity fields half a

radius behind the propeller computed by RANS with a blade-resolved approach, and the velocity fields computed by the

RANS/BET with prescribed loads. The trends of the blade-resolved computation are very well restituted by RANS/BET

for both the axial and tangential velocity fields.

(a) Azimuthal average of axial velocity field (b) Azimuthal average of tangential velocity field

RANS blade-resolved ( ), RANS/BET with prescribed loads ( )

Fig. 19 Velocities from RANS/BET computation with prescribed forces.

At the end of the RANS/BET computation with prescribed loads, the disk loads are recomputed by BET from the

velocity fields of the solution. The objective is now to evaluate if the right loads can be computed from BET if the

velocity fields are correct. Figure 20 shows the radial distribution of the axial and tangential loads that are prescribed in

the body force computation and the loads that are recomputed by BET from the velocity fields. The results show that the

loads are overestimated by the BET computation by up to 40% near the tip of the blades.

(a) Spanwise thrust (b) Spanwise tangential loads

RANS blade-resolved (■), Loads prescribed in body force computation ( ), Loads recomputed by BET ( )

Fig. 20 Blade loads from RANS/BET computation with prescribed forces.

This section thus shows that the correct velocity fields are restituted by the body force computation if the correct

radial loads are prescribed. However, BET greatly overestimates the loads at the blade tip from the correct velocity

fields. This confirms the well-known result that the sampled velocities or the BET loads need to be corrected in order

for the RANS/BET approach to be accurate [1, 17]. This correction corresponds to the tip-loss correction, which is

investigated in the following section.
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B. Assessment of Tip-Loss Corrections

As explained previously, the RANS/BET method solves a time-averaged field over a full propeller revolution. As a

result, the flow field does not include any local perturbation due to the physical presence of distinct blades, such as

tip vortices. This leads to lower induced velocities in the sampling plane and thus overestimated loads at the blade

tips. This is not the case for lifting-line computations, which solve the distinct blades and account for the tip vortices

using a free wake model. Figure 21 represents a slice of the velocity fields in the propeller plane for both methods and

clearly shows the absence of tip vortices in the RANS/BET computation. This limitation is inherent to the method

and corrections must be applied to increase fidelity. Two types of corrections are commonly applied in the literature.

The most physically coherent method is to correct the sampled velocities to artificially account for local perturbations,

especially near the blade tips. Another method is to directly use the sampled velocities to compute the loads with BET

and apply a radial correction factor on the loads afterward.

(a) 𝑉𝑥/𝑉0 - RANS/BET (b) 𝑉𝑥/𝑉0 - Lifting-line (c) 𝑉𝑡/𝑉0 - RANS/BET (d) 𝑉𝑡/𝑉0 - Lifting-line

Fig. 21 Velocity fields in rotor plane from RANS/BET and lifting-line computations.

Four tip-loss corrections are tested and compared in the following. This procedure is similar to the one conducted by

Zhong et al. [14] for wind turbine applications.

1) Glauert correction. It corrects the sampled velocities using a factor derived by Glauert for the BEMT [1]. It is

implemented using an iterative procedure described by Shen et al. [23].

2) Glauert + Shen et al. correction. The Glauert correction does not account for 3D flow and thus does not

predict a zero load at the very blade tip due to pressure equalization between the pressure and suction sides.

To account for this, Shen et al. [23] suggest to correct the blade loads at the very tip using a factor 𝐹𝑆ℎ𝑒𝑛, in

addition to using the Glauert correction. 𝐹𝑆ℎ𝑒𝑛 has the same shape than the Glauert factor but with an additional

coefficient 𝑔 that depends on the number of blades and the tip speed ratio. The correction factor is implemented

by changing equations (6) and (7) to:
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𝑑𝐿

𝑑𝑟
=
1
2
𝜌𝑐𝑉2𝑟𝑒𝑙𝐶𝑙 ∗ 𝐹𝑆ℎ𝑒𝑛 (11)

𝑑𝐷

𝑑𝑟
=
1
2
𝜌𝑐𝑉2𝑟𝑒𝑙𝐶𝑑 ∗ 𝐹𝑆ℎ𝑒𝑛 (12)

with 𝐹𝑆ℎ𝑒𝑛 =
2
𝜋
cos−1

[
exp

(
−𝑔 𝑁𝑏 (𝑅 − 𝑟)

2𝑟 sin 𝜙

)]
(13)

and 𝑔 = 𝑒𝑥𝑝(−0.125(𝑁𝑏Ω𝑅/𝑉0 − 21)) + 0.1 (14)

3) Glauert + calibrated loads correction. The authors propose here a tip-loss correction that uses the Glauert

correction of the sampled velocities and lowers the loads using a correction factor 𝐹𝐶 . The latter is designed

to reduce the difference in spanwise thrust between the RANS/BET simulation with Glauert correction, and

the blade-resolved simulation. The ratio (𝑑𝐹𝑥/𝑑𝑟)𝐵𝑙𝑎𝑑𝑒𝑅𝑒𝑠𝑜𝑙𝑣𝑒𝑑 /(𝑑𝐹𝑥/𝑑𝑟)𝑅𝐴𝑁𝑆/𝐵𝐸𝑇 is modeled by analogy

with Shen et al.’s factor by equation (15) where 𝑔1, 𝑔2 and 𝑑𝑟 are calibration coefficients chosen to best fit the

ratio over the blade span. 𝐹𝐶 is then implemented as for the previous correction in equations (11) and (12) by

replacing 𝐹𝑆ℎ𝑒𝑛 with 𝐹𝐶 defined by:

𝐹𝐶 =
2
𝜋
cos−1

[
exp

(
−𝑔1

𝑁𝑏 (𝑅 − 𝑟)
2𝑟 sin 𝜙

)]
∗ 2
𝜋
cos−1

[
exp

(
−𝑔2

𝑁𝑏 (𝑑𝑟 − 𝑟)
2𝑟 sin 𝜙

)]
(15)

4) Calibrated loads correction. It is the same as the previous correction, but without the correction of sampled

velocities. The correction 𝐹𝐶 is computed as the ratio of the spanwise thrust from the blade-resolved simulation

and from the RANS/BET simulation without any tip correction. The constants 𝑔1, 𝑔2 and 𝑑𝑟 are thus different

from the previous correction.

The simulations using the previously detailed corrections are compared to a RANS/BET computation without

a tip-loss correction and to a blade-resolved CFD-RANS computation. The propeller thrust, power and efficiency

computed by each approach are given in Table 5. The radial distribution of thrust and tangential loads are presented in

Figure 22.

Table 5 Integrated loads for each tip-loss correction

Modeling method Thrust [N] Power [kW] Efficiency [-]
RANS blade-resolved 1390 164.4 0.863
RANS/BET - no correction 1748 (+25.7%) 199.1 (+21.1%) 0.896 (+3.3pts)
RANS/BET - Glauert 1574 (+13.3%) 184.3 (+12.1%) 0.872 (+0.9pts)
RANS/BET - Glauert + Shen 1514 (+9.0%) 176.8 (+7.5%) 0.874 (+1.1pts)
RANS/BET - Glauert + loads calibration 1426 (+2.6%) 167.3 (+1.8%) 0.870 (+0.7pts)
RANS/BET - loads calibration only 1438 (+3.5%) 162.9 (-0.9%) 0.901 (+3.8pts)
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(a) Spanwise thrust (b) Spanwise tangential loads

RANS/BET - no correction ( ), RANS/BET - Glauert ( ), RANS/BET - Glauert + Shen ( ),
RANS/BET - Glauert + loads calibration ( ), RANS/BET - loads calibration ( ), RANS blade-resolved ( )

Fig. 22 Radial distribution of loads for each tip-loss correction.

The Glauert correction leads to a good prediction of the efficiency but does not reduce the thrust and power

sufficiently. The same observation is made when the Shen et al. correction is added, despite a more accurate prediction

at the very tip of the blade. The Glauert + calibrated loads correction gives a good prediction of the propeller thrust,

power and efficiency. The spanwise loading is also very close to the blade-resolved results despite a slight overestimation

that persists near the tip. The calibrated loads correction alone is rather accurate on spanwise loads but poorly predicts

the propeller efficiency. Because this method does not correct the sampled velocities, the lift and drag coefficients

interpolated in the 2D profile characteristics are necessarily not the correct ones. The correction of the thrust with 𝐹𝐶

brings it down to the right value, but the same factor has no reason to be suited for the torque as well. This observation

highlights that, contrary to sampled velocity corrections, the loads correction has an arguable physical significance when

applied elsewhere than at the very tip of the blade to model 3D effects. For example, the computation of an effective

angle of attack directly from the sampled flow may hit a detached point in the 2D airfoil characteristics, whereas it

would have hit an attached point if the sampled velocity had been corrected first, thus leading to a drastically different

lift to drag ratio, even if the loads are corrected by 𝐹𝐶 afterwards. This observation is also true for the Glauert + loads

calibration correction, even if the correction is satisfying in this case. In order to replicate the flow physics as well

as possible, it would be best to use a calibrated correction of sampled velocities and a Shen et al. correction of the

loads to account for 3D effects at the very tip of the blades. However, the correction of the sampled velocities changes

simultaneously 𝛼 and 𝑉𝑟𝑒𝑙 , which modifies 𝐶𝑙 and 𝐶𝑑 by interpolation, thus finally modifying the loads. This deep

coupling makes it difficult to calibrate a sampled velocities correction. As a result, the Glauert + loads calibration

correction was used in the rest of the paper and its validity for other propeller operating points with different blade

loadings will be investigated in section VI.B.

The wake velocity profiles one radius behind the propeller for each computation are represented in Figure 23.

They show a direct correlation between loading overshoot and wake velocity overshoot. It is important to note that

the coefficients used for the calibrated tip-loss are specific to a given propeller. In theory, any propeller geometry
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(a) Spanwise axial velocity profiles (b) Spanwise tangential velocity profiles

RANS/BET - no correction ( ), RANS/BET - Glauert ( ), RANS/BET - Glauert + Shen ( ),
RANS/BET - Glauert + loads calibration ( ), RANS/BET - loads calibration ( ), RANS blade-resolved ( )

Fig. 23 Wake velocity profiles for each tip-loss correction.

modification changes the circulation distribution over the blade span and modifies the tip vortex, which in turn should

require a new specific tip-loss correction. In practice, a small change in twist or chord distribution that does not modify

the tip vortex structure significantly may not require a new calibration, but this has not been tested in the current work.

As a result, this type of correction is not the best suited for a wide parametric exploration for propeller design. It can

however be very effective to evaluate the performance of a given propeller on the aircraft on which it is installed when

conducting installed simulation.

VI. Assessment of the Final RANS/BET model

In this section the final RANS/BET model, which distributes the source terms as recommended in section IV

and uses the tip loss correction retained from section V.B, is thoroughly compared to the RANS blade-resolved and

lifting-line methods. This comparison is first done on the cruise operating point, then on several blade pitch angles, and

finally in non axial flow by adding an incidence angle. This is done to evaluate the accuracy of the RANS/BET model in

typical applications, and on other operating points than the one used for the tip-loss calibration.

A. Comparison at Cruise Operating Point

The free flow conditions studied in this sections are still the ones from Table 2. The integrated loads obtained

for each modeling approach are shown in Table 6. The propeller thrust and power are slightly overestimated by the

lifting-line and RANS/BET body force approaches compared to RANS blade-resolved but the efficiency is quite accurate.

The body force prediction is especially close to the CFD results thanks to the calibrated tip correction.

The spanwise distribution of axial and tangential blade loads are shown in Figure 24. On the first half of the blade

span, the lifting-line and body force methods predict the blade-resolved loads very accurately. Both methods over

predict the maximum spanwise thrust by about 6% close to the tip. The maximum tangential load is also overestimated,

by 8% for the lifting-line method and by 5% for the body force method.
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Table 6 Integrated loads for each approach

Modeling method Thrust [N] Power [kW] Efficiency
RANS Blade-Resolved 1390 164.4 0.863
Lifting-Line 1463 (+5.3%) 174.0 (+5.8%) 0.858 (-0.5pts)
RANS/BET 1426 (+2.6%) 167.3 (+1.8%) 0.870 (+0.7pts)

RANS blade-resolved ( ), Lifting-line ( ), RANS/BET ( )

Fig. 24 Axial and tangential loads computed by the three methods.

The velocity fields downstream of the propeller are also studied. Figure 25 shows the spanwise variation of the

azimuthal average of velocity profiles one radius downstream of the propeller. Both mid-fidelity methods reproduce

the CFD trends accurately. The lifting-line approach slightly overestimates the axial velocity and underestimates the

tangential velocity compared to CFD. The body force velocity profiles fit the CFD profiles remarkably well.

RANS blade-resolved ( ), Lifting-line ( ), RANS/BET ( )

Fig. 25 Azimuthal average of axial and tangential velocity profiles one radius behind the propeller.

B. Propeller Pitch Variation
Propeller performance is also evaluated for different blade pitch angles for the RANS blade-resolved, lifting-line

and RANS/BET body force approaches. The propeller thrust and efficiency as function of blade pitch and thrust are

shown in Figure 26. The lifting-line and body force approaches follow the RANS blade-resolved efficiency trends

accurately, the differences going from 0 to 0.5 efficiency point. Figure 26a shows that for a given pitch angle the lifting

line approach overestimates the thrust much more than the body force method, but by also overestimating the power it

still gives a more accurate efficiency-thrust curve than the RANS/BET method.
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(a) (b) (c)
RANS blade-resolved ( ), Lifting-line ( ), RANS/BET ( )

Fig. 26 Propeller characteristics.

C. Propeller in incidence

In this section, the performance of the final RANS/BET body force model is investigated in non-axial flow conditions.

The propeller is taken at a 45 degree pitch angle for incidence angles Θ of 3, 6, and 9 degrees. The downward

moving blade (advancing side) sees a greater velocity than the upward moving one (retreating side), leading to a

non-axisymmetric disk load (Figure 27). The blade load variation throughout a propeller revolution also leads to the

appearance of a non-zero in-plane (1P) force when adding the contribution of each blade. These loads are limiting

for aircraft structures and must be well predicted during the design phase. In this paper the 1P loads are studied as a

modulus and a phase angle (defined by the conventions of Figure 27). The modulus corresponds to the norm of the

in-plane force, and the phase corresponds to the angle between the 1P force vector and the upward axis.

Fig. 27 HAD-1 propeller under incidence colored by pressure.

To study these operating points, the blade resolved reference results were obtained using URANS simulations on

a 360° domain, as described in section III.A. The RANS/BET setup that is used for these computations is the same
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one that was used in the previous section: source terms distributed in the extended box with a uniform axial density,

velocities evaluated at 50% of the source terms distribution, and Glauert correction of the induced velocities and

calibrated loads correction on the 45° pitch angle axial flow case. As mentioned in section IV.A, the shape of the source

term volume could have an impact on disk load and flow field for non axial flow. A comparison was made with a source

term volume four times less thick than the extended box, for an incidence angle of 9°. Both loads and flow fields were

found to be identical with the extended box case. This shows that the independence of the RANS/BET results to source

term volume can in practice be generalized to much broader cases than axial flows.

Figure 28 shows the propeller thrust, power, 1P load modulus and 1P phase angle averaged over a full propeller

revolution for the studied incidence angles. The RANS/BET model fails to predict the decline of the thrust for low

incidence angles but still predicts the thrust within 8% for all incidence angles, which is similar to the lifting-line

prediction. For all incidence angles the error on power is constant at around 2% for the RANS/BET model and 6% for

the lifting-line method. These errors are acceptable for the RANS/BET method as its prime purpose is to restitute a

rather accurate wake and not to be exact on propeller performance. Furthermore, all the computations shown here are

conducted at a 45° pitch angle. In practice, these methods are always trimmed to match a given thrust. The prediction

of the 1P loads modulus and 1P phase is very accurate for the RANS/BET method. This shows that the RANS/BET

method is capable of correctly modeling the induced velocities when the propeller is under low incidence. Under higher

incidences or lower advance ratios, the blade-vortex interactions are stronger and the RANS/BET simulations are no

longer expected to perform as well. The lifting-line model does not have this problem and is thus expected to predict the

1P loads relatively well. It is the case for the modulus, but the phase is offset by around 15°. This shows that additional

corrections would be needed when using the lifting-line method for cases with incidence.

In the following, the results are studied more in depth for the 9° incidence angle. The conclusions are similar for the

other angles. Figure 29 shows blade thrust and tangential loads as functions of the azimuth angle for the three modeling

methods. These curves are compared in the frequency domain in Table 7. The Fast Fourier Transform (FFT) results

are limited to the first two frequencies, the next ones having negligible amplitudes. The URANS blade-resolved and

RANS/BET curves are in phase whereas the lifting-line results are offset by around 10°, which is coherent with the 1P

phase results shown previously.

To correctly restitute the wake, the RANS/BET integrated blade loads must be in phase with those computed by the

URANS blade-resolved method, but their spanwise distributions also need to be similar. Figures 30 and 31 show the

spanwise variation of axial and tangential loads over the whole disk for the three studied methods. Overall, both the

RANS/BET and lifting-line methods replicate the blade-resolved trends very well. The RANS/BET approach slightly

overshoots the loads at the tip of the blades, especially at the more loaded azimuths, but the prediction on the lower

part of the blade is very accurate on the whole disk. The model replicates the tangential loads with more fidelity than

the axial loads. This could be an effect of using a load correction as a tip-loss correction instead of only using a fully
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(a) Average of propeller thrust (b) Average of propeller power

(c) Average of propeller 1P loads normalized by thrust (d) Average of propeller 1P phase

URANS blade-resolved ( ), Lifting-line ( ), RANS/BET ( )

Fig. 28 Propeller performance averaged over a revolution for different incidence angles.

URANS blade-resolved ( ), Lifting-line ( ), RANS/BET ( )

Fig. 29 Blade axial and tangential loads over a revolution (9° incidence angle).

calibrated induced velocity correction. The lifting-line method seems to overshoot the tip load slightly less than the

RANS/BET approach, but the load map is rotated compared to the URANS results, as noted previously.

Figure 32 shows the spanwise distribution of axial and tangential loads for the azimuth with the maximum efforts

(top curve), the minimum efforts (bottom curve), and the average over all azimuths (middle curve). As shown previously,

the azimuths of the max and min efforts are different for the three modeling methods. They are very close for the

blade-resolved and RANS/BET methods, but are offset for the lifting-line method. The graph is actually quite similar

to those found in section VI.A in axial flow. The curves almost overlap each other on the first part of the blade, and

a slight overshoot persists when getting closer to the blade tip. For the RANS/BET method, this shows that the tip

loss correction calibrated for an axial flow case in section V.B is still effective for a non-axial flow situation. However

the overshoot grows as the blade becomes more loaded, indicating that the tip-loss correction could still be further

refined. For the lifting-line method, the spanwise max and min loads are well predicted, but at the incorrect azimuths.
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Table 7 Amplitude and phase coefficients of single blade loads obtained by Fourier analysis.

Component Approach
Mode 0 Mode 1 Mode 2

Amplitude [N] Amplitude [N] Phase [°] Amplitude [N] Phase [°]

Axial
URANS 486 353 −101 33 168
RANS/BET 521 380 −102 31 165
Lifting-line 520 341 −113 32 149

Tangential
URANS 533 378 −100 20 −159
RANS/BET 550 399 −100 12 −144
Lifting-line 565 368 −114 21 −173

(a) URANS blade-resolved (b) RANS/BET contours with
blade-resolved iso-lines

(c) Lifting-line contours with
blade-resolved iso-lines

Fig. 30 Distribution of blade axial loads over a revolution.

Furthermore, the loads overshoot at the tip seems to be constant regardless of the azimuth of the blade.

The main objective of the RANS/BET method is to correctly reproduce the time-averaged wake of an URANS

blade-resolved computation. Figure 33 shows slices of the velocity field half a rotor radius downstream of the propeller,

for the URANS blade-resolved and RANS/BET computations, for a 9° incidence angle. The velocity fields shown are

those extracted from the CFD computation minus the free flow components. Figure 34 shows velocity profiles extracted

from Figure 33 at azimuth angles of 0, 90, 180 and 270 degrees. The trends are overall very well predicted by the

RANS/BET method for both axial and tangential flow. The maximum differences are very localized and within 10% of

the blade-resolved induced velocities. As expected from the overshot efforts, the velocities are also generally slightly

overestimated, especially in the axial direction. Trimming the propeller to the URANS blade-resolved thrust would fix

this issue, but with a possible distortion in the radial direction. Figure 33c shows a vortex between the blade and the hub,

which is shed at the azimuth where the blade is the most loaded. This corner separation can only be partly predicted by

the RANS/BET method, as can be seen in Figures 34b, 34d and 34f. It is one of the limitations of this approach when
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(a) URANS blade-resolved (b) RANS/BET contours with
blade-resolved iso-lines

(c) Lifting-line contours with
blade-resolved iso-lines

Fig. 31 Distribution of blade tangential loads over a revolution.

RANS blade-resolved ( ), Lifting-line ( ), RANS/BET ( )

Fig. 32 Max, mean and min axial and tangential spanwise blade loads over a revolution.

modeling flows with high incidence angles.

VII. Conclusions

This work presented a RANS/BET propeller modeling body force method. The approach is based on a full coupling

between CFD which computes the flow field, and BET which computes the propeller loads using velocities sampled

from the CFD computation. The loads are then accounted for in the CFD computations using source terms in the RANS

equations. In this method, the source terms are distributed in a volume, which differs from classical actuator-disk-like

approaches. This RANS/BET approach was tested on ONERA’s HAD-1 three-bladed light propeller, and results were

compared to lifting-line and RANS blade-resolved results.

Different source term distributions were thoroughly studied. The shape of the volume in which the source terms

are distributed was found to have no impact on propeller loads or on velocity fields in the wake. This result was
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(a) 𝑉𝑥𝑖 - URANS
blade-resolved

(b) 𝑉𝑥𝑖 - RANS/BET with
blade-resolved iso-lines

(c) 𝑉𝑡𝑖 - URANS
blade-resolved

(d) 𝑉𝑡𝑖 - RANS/BET with
blade-resolved iso-lines

Fig. 33 Slices of velocity fields half a rotor radius behind the propeller.

explained for axial flows, but computations at different propeller incidence angles led to the same observations. It was

also shown that a key parameter to correctly setup a RANS/BET computation is the quantity of source terms placed

upstream of the velocity sampling lines that are used for the BET computation. Results show that the only way to verify

fundamental Blade Element Momentum Theory results is to distribute half of the source terms upstream of the velocity

sampling lines, and the other half downstream. This is in agreement with what was done in previous work without

proper justification. As a result, any density function can be used to distribute the source terms in the axial direction, as

long as the distribution is balanced on both sides of the sampling lines.

Because the RANS/BET approach averages the propeller loads over a whole revolution like an actuator disk, it does

not model tip vortices. The need for a tip-loss correction was explained and four formulations were tested. The one that

performed the best is a Glauert correction of the induced velocities combined with a loads correction calibrated on a

blade-resolved case. The proposed correction is specific to the studied propeller, but it was shown to be resilient to a

change of operating point. Future work could include developing a calibrated induced velocities correction, which

would lead to a better prediction of propeller efficiency.

The RANS/BET model was evaluated for a wide range of pitch angles in axial flow and the obtained propeller

characteristics were in good agreement with the RANS and URANS blade-resolved simulations. This shows that

the tip-loss correction that was calibrated on a specific operating point is also valid for other pitch angles. Likewise,

the RANS/BET model was tested for propeller incidence angles of 3°, 6°, and 9° to evaluate its capacity to predict

non-axial flows. The propeller performance was slightly less accurate than without incidence, but the loads distribution

and the velocity fields in the wake were remarkably well predicted compared to RANS and URANS blade-resolved

computations.

All the work presented in this paper focused on building a model capable of predicting the loads and flow field

accurately compared to a RANS and URANS blade-resolved computation, for a propeller at a given pitch angle. For
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pre-design analyses, the body force models are always trimmed to target a given thrust. Future work will include

trimming the developed model to match CFD blade-resolved thrust and evaluate how accurately the flow field can be

predicted. The work done on source term distribution will also be used to develop an actuator line model capable of

predicting unsteady propeller wakes.
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(a) Induced axial velocity at Ψ = 0° (b) Induced tangential velocity at Ψ = 0°

(c) Induced axial velocity at Ψ = 90° (d) Induced tangential velocity at Ψ = 90°

(e) Induced axial velocity at Ψ = 180° (f) Induced tangential velocity at Ψ = 180°

(g) Induced axial velocity at Ψ = 270° (h) Induced tangential velocity at Ψ = 270°

URANS blade-resolved ( ), RANS/BET ( )

Fig. 34 Profiles of induced velocities half a propeller radius behind the rotor at different azimuth angles Ψ.
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