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Abstract

We consider the Fourier-Laplace transforms of a broad class of polynomial Ornstein-
Uhlenbeck (OU) volatility models, including the well-known Stein-Stein, Schobel-Zhu, one-
factor Bergomi, and the recently introduced Quintic OU models motivated by the SPX-VIX
joint calibration problem. We show the connection between the joint Fourier-Laplace func-
tional of the log-price and the integrated variance, and the solution of an infinite dimensional
Riccati equation. Next, under some non-vanishing conditions of the Fourier-Laplace trans-
forms, we establish an existence result for such Riccati equation and we provide a discretized
approximation of the joint characteristic functional that is exponentially entire. On the practi-
cal side, we develop a numerical scheme to solve the stiff infinite dimensional Riccati equations
and demonstrate the efficiency and accuracy of the scheme for pricing SPX options and volatil-
ity swaps using Fourier and Laplace inversions, with specific examples of the Quintic OU and
the one-factor Bergomi models and their calibration to real market data.

JEL Classification: G13, C63, G10.

Keywords: Stochastic volatility, Derivative pricing, Fourier methods, Riccati equations, SPX-
VIX calibration

1 Introduction

Fourier inversion techniques hold a pivotal role in stochastic volatility modeling, particularly in the
context of option pricing and hedging (Andersen and Andreasen [8], Carr and Madan [10], Eberlein,
Glau, and Papapantoleon [16], Fang and Oosterlee [19], Lewis [26], Lipton [27]). They offer the
dual advantage of significantly reducing computational time while maintaining a remarkable degree
of accuracy, especially when compared to standard Monte Carlo methods. When it comes to model

*eduardo.abi-jaber@polytechnique.edu. The first author is grateful for the financial support from the Chaires
FiME-FDD, Financial Risks, Deep Finance & Statistics at Ecole Polytechnique.

fxiaoyuan.li@axa-im.com. The second author acknowledges the financial support from AXA Investment Man-
agers

fxuyang.lin@polytechnique.edu.
We would like to thank Alessandro Bondi, Louis-Amand Gérard, Camille Illand, Sergio Pulido and Ning Tang for
fruitful discussions.



calibration, the applicability of Fourier methods is paramount, as thousands of derivatives across
various maturities and strikes need to be evaluated simultaneously in real time.

Despite their numerical advantage, Fourier techniques have traditionally been confined to specific
continuous stochastic volatility models where the characteristic function of the log-price is known
in (semi)-closed form. These models usually exhibit Markovian affine structures in the sense
of Dulffie, Filipovi¢, and Schachermayer [14] such as the renowned Heston [24], Stein-Stein [32]
and Schobel-Zhu [30] models, together with some of their non-Markovian Volterra counterparts
(Abi Jaber [1, 2], Abi Jaber, Larsson, and Pulido [5], Cuchiero and Teichmann [11], El Euch and
Rosenbaum [18], Gatheral and Keller-Ressel [22]). The key ingredient in all these models is to
compute the characteristic function of the log-price by solving a specific system of deterministic
Riccati equation.

More recently, Fourier techniques have also found applications in Signature volatility models in
Abi Jaber and Gérard [3] and Cuchiero, Gazzani, Méller, and Svaluto-Ferro [12], where the volatil-
ity process is modeled as a linear functional of the path-signature of semi-martingales (e.g. a
Brownian motion). In such models, certain characteristic functionals have been related to non-
standard infinite dimensional system of Riccati ordinary differential equation (ODE). However,
there exists no general theory regarding the existence of solutions for such equations, except for
the specific result in Cuchiero, Svaluto-Ferro, and Teichmann [13, Proposition 6.2] which provides
the existence of a solution to the infinite dimensional ODE for the case of the characteristic func-
tion of powers of a single Brownian motion modulo a non-vanishing condition of the characteristic
function. The primary challenge comes from the intricate questions on analyticity of the logarithm
of the characteristic function. Furthermore, numerically solving these equations poses challenges
due to their stiffness and complexity. This forms our primary motivation: to establish theoretical
results within a specific framework for a larger class of Riccati equations related to integrated
quantities of power series of Ornstein-Uhlenbeck processes and to develop more suitable numerical
schemes.

We demonstrate that Fourier techniques can be effectively extended to a broad class of flexible
models previously considered infeasible as they fall beyond the conventional class of affine diffusions,
including the celebrated one-factor Bergomi model (Bergomi [9], Dupire [15]) that has been shown
to fit well to the SPX smiles and the recently introduced Quintic Ornstein-Uhlenbeck (OU) model
of Abi Jaber, Illand, and Li [7], which has demonstrated remarkable capabilities in fitting jointly
the SPX-VIX volatility surface for maturities between one week to three months supported by
extensive empirical studies on more than 10 years of data in Abi Jaber and Li [4], Abi Jaber,
Tlland, and Li [6].

We refer to the class of models covered in this paper as the class of polynomial OU models, where
the volatility of the log-price, denoted by o, is defined as a power series of an Ornstein-Uhlenbeck
process. Our three main theoretical results regarding the joint Fourier-Laplace functional of the
log-price and integrated variance process are:

(i) A verification result on the expression of the joint Fourier-Laplace functional in terms of a
solution to an infinite dimensional system of Riccati ODE in Theorem 3.2,

(ii) The existence of a solution to such a system of ODE modulo a non-vanishing condition of
the joint characteristic functional in Theorem 3.5,

(iii) An approximation procedure for the joint Fourier-Laplace functional in terms of exponentially
entire expressions in Theorem 3.13.

On the practical side, we devise a numerical scheme to solve this system of infinite dimensional
(stiff) Riccati equations making the application of Fourier pricing for models such as the one-factor
Bergomi and the quintic OU models usable in practice. We demonstrate the efficiency and accuracy
of the scheme for pricing SPX options and volatility swaps using Fourier and Laplace inversions.
We also successfully calibrate using Fourier techniques the Quintic OU and the one-factor Bergomi



models on real market data to highlight the stability and robustness of our numerical method
across a wide range of realistic parameters values. We provide a Python notebook implementation
here: https://colab.research.google.com/drive/1VCVyN1qQmLgOW]j0y4fbWftyDgEQdmbn57us
p=sharing.

The paper is organised as follows: in Section 2, we introduce the class of polynomial OU volatility
models. In Section 3, we present our three main theoretical results. In Section 4, we design a
numerical scheme for solving the infinite dimensional Riccati ODE and test our scheme on pricing
SPX wvanilla options and volatility swaps for the one-factor Bergomi and quintic OU volatility
models of various maturities and calibrate both models using real market data. Proofs of theorems
discussed in Section 3 are collected in Section 5 onwards.

Notations. For a power series g, we denote by g the coefficients of 2%, i.e. ¢(z) = Y ;o qxa”.
We denote by |g| the absolute power series of g, i.e. |¢|(z) = > = ,lgx|z”. We remark that
|g]x= |ax|- Tt is well-known that if p and g have an infinite radius of convergence, then p(x)q(z) =
Yo (p*q)x* also has an infinite radius of convergence, with (p*q) := Zf:o piqr—;. Unless stated
otherwise, we will assume that all power series in this paper have infinite radius of convergence.
Moreover, we specify that the term continuity means joint continuity when applied to a function
taking (t,z) as variables. For example, a function f : [0,7] x R — C is C* in z if all its space
derivatives in z exist and are continuous in (¢,x). We also adopt the following notations for the

partial derivatives: f; = %, = %, z = gi{ when they exist. We say that a function f: R — C
is (real)-entire on R, if it is equal to a power series ¢ (with infinite radius of convergence), that
is for all z € R, f(z) = > po, qrz". We say that it is (complex)-entire when R is replaced by C.
Clearly, any real-entire function admits a complex-entire extension. When there is no-ambiguity,
we will simply use the word entire. We say that a function does not vanish if it is non-zero at each
point of its domain.

2 Polynomial Ornstein-Uhlenbeck volatility models

We consider the class of polynomial Ornstein-Uhlenbeck (OU) models for a stock price S with the
stochastic volatility process o expressed as a power series of an OU process X:

dSy = SiordBy, Sp > 0,
or = go(t)p(Xy), plx) =Y pra®, (2.1)
dX; = (a+ bXy)dt + cdWr, kz)i’g €R,
with a,b,pr € R,c#0, B = pW—i—ﬂWJ- and p € [—1,1]. Here (W, W) is a two-dimensional
Brownian motion on a risk-neutral filtered probability space (Q, F, (F;)¢>0, Q) satisfying the usual

conditions. The deterministic bounded input curve go : [0,7] — Ry allows the model to match
certain term structures of volatility, e.g. the forward variance curve since we have for go(t) :=

&o(t)/E[p*(X)]:
E Uotagds] /Otgo(s)ds, t>0.

The real-valued coefficients (pg)r>0 are such that the power series p has infinite radius of conver-
gence, i.e. > po o |prl|z|F< oo for all z € R and fOT E[p?(Xs)]ds < oo so that the stochastic integral

is well-defined. This is the case for instance when p is a finite polynomial or the exponential
function. These two specifications already provide several interesting models used in practice:
e Stein-Stein [32] and Schébel-Zhu [30] model: p(z) = x;

e Bergomi model [9, 15]: p(z) = exp(z);
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e Quintic OU model [7]: p(z) = po + p1z + psz® + psa®,  po,p1,p3,p5 > 0.

We will consider the following class of power series p for which fOT E[p?(X,)]ds < cc.

Definition 2.1. A power series p:x — Y - pra® is said to be negligible to double factorial
if the power series > oo (k — 1)! ppa® has an infinite radius of convergence, i.e.

lim sup(|px|(k — 1)!1)* =0,

k—o0

with the convention (—1)!1=0!l= 1.

By Definition 2.1, a power series p negligible to double factorial also has infinite radius of conver-
gence. This allows us to show that our class of polynomial Ornstein-Uhlenbeck volatility models
(2.1) is well-posed in Proposition 2.3. For this we need a simple lemma about the absolute power
series which will be useful later.

Lemma 2.2. °

(i) for all z € R, |p(x)|< |p|(|z|) and |p| is monotonically increasing on R ;

(i) for all z,y,z > 0, |p|(z +y + 2) < (pl(32) + [pl(3y) + [p|(32))-
Proof. (i) is obvious; for (ii), it suffices to notice that (z +y + 2)* < £((3z)* + (3y)* + (32)*) <
((3z)* + (3y)* + (32)F). O

Proposition 2.3. Let gy : [0,7] — R be a measurable and bounded function. Let p be a power
series with infinite radius of convergence such that p* is negligible to double factorial. Then,

/TIE[pQ(Xt)]dt < 00, (2.2)
0

so that the stochastic integral fo 0sdBs, with o5 = go(s)p(Xs), is well-defined and

1 t t
Sy, = Sy exp (—2/ afds+/ asst), t>0, (2.3)
0 0

is the unique strong solution to (2.1).

Proof. Under (2.2), it is straightforward to obtain that the unique strong solution S to (2.1) is
given by (2.3). It suffices to prove (2.2). For this, we note that the explicit solution of X is given
by

t t
X, =" Xy + a/ =9 s + c/ =) qw,.
0 0

We set w(t) := a J b(t=5)ds, which is a deterministic continuous function of ¢, and W, =

cfot e?t=9)dW,, which is a Gaussian random variable ~ N(0, ¢ 2e2 —1) for t € [0,T]. Applying
Lemma 2.2 yields

T T
1Ko+ o) + W) ds| < [ 1571 (e Xol o)+ ds
0

<[ Z\p (36 o) + [3u()]+ |37 [*) ds
0 _



and since €% < el’!T with w(s) bounded in [0, T], there exists a constant C7 > 0 such that

T o° T 0o
| S0 (e ol + 3ue) 413 ) ds < [ STl (36X (30 + BTIF) s
0 k=0 0 k=0

By assumption, p? has an infinite radius of convergence, then so does |p?|, therefore

oo o0
S P2l X0l < 0o, S Ip2I(3C)F < oo,
k=0 k=0

and thus we only need to prove

T o~
/O E[lp?| (133 )]dt < oc.

The random variable 3W; is Gaussian with bounded variance in [0,T1], so there exists a constant

—~ k
C > 0 such that E[|3W;| | = E[|CZ|¥] for all ¢t € [0,T], where Z is a standard normal variable.
Given E[|Z|F] < (k — 1)!!, hence

E[lp*[(C1Z)] < > Ip°|e(k = D! C* < o0,
k=0

since p? is negligible to double factorial. This completes the proof. O

Remark 2.4. In Proposition 2.3, p*> needs to be negligible to double factorial. As we will see later
in Lemma 6.3 below, the square of a power series negligible to double factorial is also negligible to
double factorial. Hence p negligible to double factorial is sufficient for Proposition 2.3 to hold.

Example 2.5. Polynomials of finite degree (e.g. the Stein-Stein and the Quintic OU models) and

the exponential function (e.g. the one-factor Bergomi model) are clearly negligible to double facto-

k
rial. For the exponential function p(x) = €%, e > 0, it suffices to observe that limy_, o ( (kk_!l)”)% =

limkﬁoo(,i—;)% = 0. However, the function p(x) = e is not negligible to double factorial. Indeed,
limsupy,_, o (|pe|(k — 1)1 = v/2e. In particular, if b > 0, then the expectation of p(X,) does not

3 The joint Fourier-Laplace transform

Our goal is to compute the joint Fourier-Laplace transform of the log-price and integrated variance

T T
E lexp (/ g1(T — s)dlog S +/ g2(T — s)o?ds) ’ ft] , t<T,
¢ ¢

for some complex-valued functions g1, g2 : [0, 7] — C.

Remark 3.1. If g1, g2 are measurable functions [0,T] — C, such that R(g1) = 0,R(g2) < 0, and
p? is negligible to double factorial, then the exponential above exists and with modulus of at most

1, so that the conditional expectation is well-defined.

It follows from the Markov property of X that the above conditional expectation can be reduced
to computing the deterministic measurable function F : [0,T] x R — C given by

F(t,z) :=E |exp </tTgl(T — s)dlog Ss + /tT g2(T — s)a?ds) ’ X = x] . (3.1)




We will present three main results related to the computation of the characteristic functional F
in (3.1). The first result can be seen as a verification result and uncovers an affine structure in
infinite dimension in terms of the powers (1, X, X2, X3, ...) by making a connection with infinite
dimensional Riccati deterministic equations (Theorem 3.2 and Corollary 3.6). The second result
is concerned with the existence of a solution to the infinite dimensional Riccati deterministic
equation (Theorem 3.5). The last result provides an approximation procedure for obtaining the
characteristic functional (Theorem 3.13).

3.1 A verification result

Our first main result uncovers an affine structure in infinite dimension expressed in powers (1, X, X2, ...

and makes a connection with the following system of infinite dimensional deterministic Riccati
equations:

640 = (020 + 22 (016~ 1) B - s
Ak +2)(k +1)

+ bk (t) + a(k + 1)1 (t) + 5

Yrpa(t)

DN

C ~ ~

+ 5 () = D(O))k + pg1 () go(T = e+ POk, Vr(t) = (k+ Dby (1),  (32)

¥i(0) = 0. (3.3)

Theorem 3.2. Let gy : [0,T] = R, g1,92 : [0,T7] — C be measurable and bounded functions.
Let p be a power series with infinite radius of convergence such that p® is negligible to double
factorial. Assume that there exists a continuously differentiable solution (¥y)>o to the system of
infinite dimensional Riccati equations (3.3) such that the power series Y ;. Subyeio,r)|¥k (t)|z* has
an infinite radius of convergence. Define the process

t i
Utzziﬁk(T—t)th‘f‘/o 91(T—5)d10g53+/0 92(T — s)o2ds.
k>0

Then the process M := exp(U) is a local martingale. If in addition M is a true martingale, then
the following expression holds for the joint characteristic functional F given in (3.1):

F(t,z)=exp [ > vu(T—t)a® |, t<T. (3.4)
k>0

Proof. The proof is given in Section 5. O

Remark 3.3. Theorem 3.2 is in the spirit of [13, Theorem 5.5] which provides a similar verification
result for the characteristic function of (real)-entire functions of solutions to stochastic differential
equations with (real)-entire coefficients. Contrary to [13, Theorem 5.5], Theorem 5.2 deals with
time-integrated quantities.

A possible strategy for obtaining the representation (3.4) would involve verifying the assumptions
outlined in Theorem 3.2. These assumptions include ensuring the existence of a solution for the
system of Riccati equations (3.2)-(3.3), such that the power series (¢x)r>0 has infinite radius of
convergence; together with proving that the local martingale M is a true martingale. The latter
can typically be achieved by arguing, for instance, that >, R(¢Yr(t))z* < 0 to obtain that M is
uniformly bounded by 1 whenever g;, go are purely imaginary for instance.

In the specific case of the Stein-Stein model, i.e. when p is an affine function, these assumptions
are comparatively easier to confirm, as highlighted in the next example.



Example 3.4. In the case of the classical Stein-Stein model [32], the volatility process process is
defined as:
[ go(t)Xt

This is equivalent to (2.1) by setting p1 = 1 and px, = 0 for k # 1. Notice the convolution term
(pxp)r =1 for k =2 and zero otherwise. In this case, the infinite dimensional Riccati equations
(3.3)-(3.2) reduce to the following:

Uhl1) = (1) + (D) + SV
1) = B 0) 202 (0) + 200 5 pr)oT — D0,
030 = (20 + 22 (010 - ) g3(r -1

L 30) 260300 + 20l — )

¥r(0) =0, ke{0,1,2},
'wk =0, k> 3,

which is a system of standard finite-dimensional Riccati equations whose existence is well-known
whenever gy, gs are such that

§R(gz(t) + @

5 (gl(t)—l))SO, t<T.

Hence the characteristic functional of the classical Stein-Stein model is affine in (1, X, X?):
F(t,z) = exp (Yo(T — t) + 1 (T — )z + (T — t)2*), t<T,

for which 1o, 11 and s can even be solved explicitly when go, g1 and g2 are constants, see [28].

Obtaining the representation (3.4) under the Stein-Stein model can be attributed to the finite
number of terms, i.e. (g, 11,%2) of the Riccati equations, involved in the sum. However, when
dealing with an infinite sum, a notable challenge arises in proving that the log of the characteristic
functional log F' is entire in the variable  on R. In Section 3.2, we show how to generate a solution
for the system of infinite-dimensional Riccati equations modulo a non-vanishing condition of log F'.
In Section 3.3, we provide an expression for the characteristic functional using approximation
arguments where the approximations are entire functions thanks to the Gaussianity of the process
X.

In Section 4, we numerically illustrate the validity of Fourier pricing in the context of the Bergomi
and Quintic OU models using the representation (3.4). Readers interested in the numerical imple-
mentation can jump directly to Section 4.

3.2 Existence for the Riccati equations

Our second main result generates a solution to the infinite dimensional system of Riccati equations
(3.2)-(3.3) by differentiating the logarithm of the characteristic functional F:

Yp(t) := %35 log F(T —t,x) , t>0.

=0
This requires the logarithm of a complex-valued function, see Appendix B for its precise definition.

Theorem 3.5. Fiz go : [0,T] — R, ¢1,92 : [0,T] — C continuously differentiable such that
R(g1) =0 and R(g2) < 0. Let p be a power series negligible to double factorial. Then, F in (3.1)
is well-defined for any t <T, x € R and (t,x) — F(t,z) is continuous. If in addition F does not



vanish on [0,T] X R, then log F' can be defined as in Definition B.5. Furthermore, log F' is C* in
x and C' in t. In particular, the family of functions

1
Y (t) = Ea’; log F(T —t,z)| , t>0, k>0, (3.5)
solves the system of Riccati ODFEs (3.2)-(3.3).
Proof. The proof is given in Section 6. O

Theorem 3.5 establishes the existence of a solution to the Riccati ODEs (3.2)-(3.3) when the
coefficients are real as shown in the following corollary.

Corollary 3.6. Fiz gy :[0,7] > R, g1 =0 and g2 : [0,T] — R_ continuously differentiable. Let p
be a power series negligible to double factorial. Then, log F is C™ in x and C' in t and the family
of functions (Yi)k>o0 given by (3.5) solves the system of Riccati ODEs (3.2)-(3.3).

Proof. In this case, F' reduces to the Laplace transform of the integrated variance:

exp (/fT 92(T — s)a?ds) ’ X = m] )

which shows that F' > 0 and that it trivially satisfies the non-vanishing condition on [0,7] x R in
Theorem 3.5, so that an application of Theorem 3.5 yields the result. O

F(t,z) =E

Remark 3.7. Theorem 3.5 is in the spirit of [18, Proposition 6.2], which provides the existence of
a solution to the infinite dimensional ODE for the case of the characteristic function of powers of
a single Brownian motion modulo similar assumptions. In contrast, Theorem 3.5 deals with more
involved time-integrated quantities which requires a more delicate analysis.

Although Theorem 3.5 does not establish that log F'(¢,) is entire, its analyticity can be inferred
from the properties of solutions to parabolic partial differential equations (PDEs).

Remark 3.8. In order to prove Theorem 3.5, we establish the following PDE for f(t,x) =
F(t,z) exp(v(t)q(x)) in Theorem of 6.11:

filt, @) + folt. )@+ ba) + 56 fuu(t,) + f(t,2) 30 wilt)pi(e) = 0,
f(T,x) = exp(v(T)g(x)).

where v, u; are continuous and p; are analytic functions. Following [17, Theorem 6.2 in Section
I1.2.], given that functions u;(t) are continuous in [0,T], a + bx, p;(x) are bounded, Holder contin-
uous and analytic in variable © within any open bounded set of R, one would obtain that f(t,-) is
analytic. Notice that exp(v(t)q(+)) is also analytic, then so is F(t,-). Since analyticity is a local
property, if F does not vanish, then log F(t,-) is also analytic. Therefore, we can deduce a local
representation: for any t < T, there exists ry > 0 such that

F(t,x) = exp (Z (T — t)xk> , X € (=T, 1),

k=0

where the (Yi)r>0 are defined by (3.5). In our case, both p; and g are not only analytic but also
entire. Extending the proof of analyticity using PDE techniques to establish that F(t,-) is entire
might be possible, and that will lead to a global representation as in (3.4). However, this needs a
more delicate analysis at the PDE level, diverging from our probabilistic approach that allowed us
to obtain a global representation in terms of approximations by exponentially entire functions, see
Theorem 3.13 below. Such a question holds independent interest for PDFEs in its own right.



3.3 The Fourier-Laplace transform by approximation

Our third main result provides an approximation procedure for the characteristic functional F'.
The main idea is to approximate the Riemann sum on the sample paths of the Ornstein-Uhlenbeck
process X to exploit an underlying Gaussian density in finite dimension.

For this, we need first to get rid of the stochastic integrals and express them in terms of functions
of Xr and Lebesgue’s integrals on (X;)s<p. This is done by combining It6’s Lemma and the
Romano-Touzi conditioning trick [29] in the next Lemma.

Lemma 3.9. For p negligible to double factorial, go : [0,T] = R, g1,92 : [0,T] = C continuously
differentiable with R(g1) = 0,R(g2) < 0, there exists power series q,p;, i = 1,2,3 with infinite
radius of convergence, and functions v,u;,i = 1,2,3 such that:

exp (/ Zuz $)pi(Xs)ds +v(T)q(Xr) — v(t)q(Xt)> ‘ X, = x} .

In addition, u;,v are continuous on [0,T], R(u1) < 0,R(uz), R(uz),R(v) = 0, p1 = p? such that
pi,q are all negligible to double factorial.

F(t,x) =

Proof. The proof and the precise expressions of u;, v, p;, ¢ are given in Appendix A. O

We now introduce F, the discretized version of F.

Definition 3.10. For u, = % 2?2—01 d:r , where &y is the Dirac mass at a point t, we define the
function '

F,(t,z) =

exp </ Zul $)pi(Xs)pn(ds) + v(T)q(Xr) — v(t)q(Xt)> ‘ X, = x} .

Definition 3.11. Given an entire function g on R, we define the extension of g to the complex

plane by g.(z) =" g(k)(o)z ,2€C.

)
Remark 3.12. Given an entire function g on R, the power series ZZOZO g kl(o)xk has infinite

()
radius of convergence, so does Y - gT(O)zk, thus g.(z) is well-defined in C, and is entire on C.

Theorem 3.13. Suppose that p is negligible to double factorial, go : [0,T] = R, g1,92 : [0,T] = C
continuously differentiable such that R(g1) = 0,R(g2) < 0, then F,(t,-) as specified in Defini-
tion 3.10 is well-defined and entire in x € R. If in addition, the extension of F,(t,-) to the
complez plane (F,(t,-)). does not vanish for alln € N and t < T, then, log F,, is entire in x € R
such that

Fu(tx) =exp | > tun(T—t)a® |, t<T,
k>0
and

F(t,x) = lim F,(t, x),

n—oo

where for all n € N, the family of functions 1y, 1 is defined by

Uk (t) = Ok (t) — pgr(t)go(T — t)p’;kl k>1,

wn,O (t) = (bn,o (t) 5




where the family ¢n 1 solves a (step-wise) ‘discretized’ system of Riccati ODEs:

Ak+2)(k+1)

O go(t) = bk i (8) + alk + 1)dn, 11 (1) + 5

¢n,k:+2 (t)

2

%(%( )% Gn()ky  Gnk = (k+ D pr, %t ¢ {0,1,2,...,n}
bni(t) = hm O k(s Zuz 1) %te{l,z,...,n}

Onk(0) = v(T)qr

Proof. The proof is given in Section 7. O

Remark 3.14. One of the features of Theorem 3.13 is to obtain that the functions F,(t,-) are
entire in © € R with no additional assumptions. Unfortunately, log Fy,(t,-) inherits this property
only when the extension of F,(t,-) to the complex plane (F,(t,-)). does not vanish, see Lemma B.3.
The requirement of F,, being non-vanishing on the real line is not enough, see Remark B.4. For
this reason, we could not obtain a Corollary of Theorem 3.13 without the non-vanishing condition
to deal with Laplace transforms as we did in Corollary 3.6.

4 Numerical illustration

4.1 Numerical scheme for high-dimensional Riccati equations

In this section, we show how to solve the infinite dimensional Riccati equations ¢ in (3.2)-(3.3)
numerically for derivative pricing and hedging. The idea is to solve a truncated version of the ODE
by assuming ¥y ~ 0,k > M for some integer M.

Even the truncated version of the infinite dimensional system of Riccati equations can be extremely
difficult to solve. Standard techniques such as the Runge—Kutta methods usually fail to solve the
ODE, especially when the parameters b and ¢ in (2.1) are large. For example, see [13, Figures 2
and 3] for other attempts to a similar problem.

We present a customized algorithm that combines variation of constants and the implicit Euler
scheme. For this section alone, all matrix and vector indices will start from 0. With some abuse
of notation, we re-write the Riccati ODE (3.3) in the following matrix form:

2

¥() = P(8) + Av(t) + Qult) + T (1) * () + LONY(2),

with 1/(t) denoting the vector (¢g(t),11(t),...)" and 1/’ (t) the vector of element-wise derivative of
Y(t). P(t) is a vector with it’s k' element being (gg(t) + ng(t)(gl (t) — 1))93(T —t)(a * a)y for
ke {0,1,...}. Aisa diagonal matrix with its diagonal Ay ,, = bk. @ is an upper triangular matrix
with Qg k1 = a(k + 1), Qkrt2 = ¢*>(k+ 1)(k +2)/2 and zero elsewhere. The term (1(t) * 1(t))
denotes the discrete convolution of the vectors v(t), with its k* element given by (1(t) * ¥(t))p.
Finally, N is a matrix with N;; = kpj;1—r where p,, denotes the power series coefficient such
that p,, = 0 whenever m < 0, with I(t) collecting the term cpgy(t)go(T — t).

Variation of constants gives:

ti+1 t'i+1
U(tin) = e () + / et P(s)ds + / ATIQu(s)ds
i t;
E (4.1)

tit1 . - tit1
i A(tiy1—s) Atiy1—s)
+ G [ I s e ds+ [ AN N (s)s

10



with A = ¢;41 — t;. By truncating the vector ¢ up to some level M and assuming (¢x)g>ar = 0,
we approximate the solution of 1(¢;41) in (4.1) by the following quasi-implicit scheme:

U(tisr) = e 2P(t) + GaP(t:) + GaQu(tis)
2 ~ ~
+ S CAW (1) * D(te)) + Cal(t)N(tin).

where Gp = ftt_i“ eAlti+179)ds is a diagonal matrix with Gy = (e?*~=DA —1)/(b(k —1)),1 < k <

M +1 and Glfl = A. Similarly, @ and N are now (M + 1) x (M + 1) matrices as defined above,
with ¢ and P(t;) both vectors of dimension M + 1 .

For the quadratic term (¢(t;) * ¥ (ti41)), we define
ROY(tig) i= (§(t:) * (tig)),

where R® is a (M +1) x (M + 1) matrix with R} = (j +2 — k)kt,,,_, (t:), (¢ (t:)).<0 = 0. We
can now solve v iteratively by:

Yltin) & T (AN(L) + GaP (1)),

where J = <I - Ga (%R(i) +1(t;))N + Q)) Detailed implementation of our algorithm can be

found in a Python notebook here: https://colab.research.google.com/drive/1VCVyN1qQmLg
0WjOy4fbWftyDgEQdm5n57usp=sharing.

Lemma 4.1. Assume that R(¢) < 0, the matriz J is invertible.

Proof. Since R(¢) < 0, the matrix Ga (%R(i) +1(t;) N+ Q)> is a upper triangular matrix, where

the real part of the its diagonal is less than zero. Thus J is also an upper triangular matrix with
non-zero diagonal elements, thus completes the proof. O

Matrix @ contains very large coeflicients resulting from the term (62(k +2)(k+1)/ 2) when k is

large. This term introduces numerical instability so we capped (k + 2)(k + 1) to some level k2,
to ensure the scheme does not blown up.

We first test our algorithm on the term E[exp(—VZ—f)} considered in [13, Figures 2 and 3], which
can be expressed by the solution of a particular case of the Riccati ODE in (3.2)-(3.3) with initial
condition ¥4(0) = —1/4!, (a,b,g1,92) = 0 and ¢ = 1. The reference value can be computed via a
numerical integration quadrature with respect to the Gaussian density, allowing us to evaluate our
algorithm’s performance. Figure 1 illustrate numerical convergence in terms of M, with step size
n = 100 and k4, = 15 fixed. We clearly observe the instability of the Runge-Kutta scheme with
increasing truncation M, whereas the scheme we propose remains stable with the increase of M.

11


https://colab.research.google.com/drive/1VCVyN1qQmLgOWjOy4fbWftyDqEQdm5n5?usp=sharing
https://colab.research.google.com/drive/1VCVyN1qQmLgOWjOy4fbWftyDqEQdm5n5?usp=sharing

Elexp(—W}/4!)] Error

1.00 g
1 ’
0.0030 by
0.98 Iy
'l
0.0015 P
0.96 L
0.0000 | ==ssszzzzzzzzs=ss=sssszzzz=sTTho
0.94 ..
-0.0015
0.92
0.0 0.2 0.4 06 0.8 1.0 0.0 0.2 0.4 0.6 08 1.0
t t

Figure 1: Numerical solution of E[exp(—‘ll—fl)] with different values of M using our algorithm vs.
the exact solution. For comparison the explicit Runge-Kutta 4 solution with M = 20 are added in
red.

4.2 Pricing SPX derivatives via Fourier

Our numerical scheme gives us direct access to the characteristic function of log S to price deriva-
tives via Fourier inversion techniques, using the expression (3.4) with g2(t) = 0 and g1 (¢) = iu, for
u € R. Specifically, we show how one can price European options via Fourier techniques for the
Quintic Ornstein-Uhlenbeck Model [7] and the one-factor Bergomi model [9, 15]. This also serves
as a numerical validation of the representation (3.4).

There are several Fourier inversion techniques available in the literature to price European-style
Vanilla call and put options. Here we adapt the pricing formula suggested in [26] which involves
only one integral to evaluate:

N 1
Cy(Si, K, T) :=E [(Sr — K)T|F] = S; — g R [e(“ﬁz)knp (u - ;)] u;li}l,
where Cy(S¢, K, T') denotes the European call option price with strike K and maturity T —t, k; :=
log(K/S;) is the log-moneyness and p(u) := F(t,x) the Fourier-Laplace transform of log(Sr/S¢)
by fixing g1 = iu and go = 0. We use the the representation of F(¢,z) in (3.4) and compute the
improper integral numerically via the Gauss-Laguerre quadrature, which has been demonstrated
to be efficient, see [3, 25].

To speed up the computation of Cy, we add a control variate to reduce the number of evaluation
of p(u) for different wu:

_A 8 > (iut1)k: A NN S _du
Ci(Sp, K, T) = Cy(Sy, K, T) i 3‘%[6 \"T2) " 2)) e T

™

where ét(StJ( ,T) is the appropriate call price of the control variate and @ (u) is the Fourier-
Laplace transform of log(St/S:) of the control variate.

In this section, we choose the Heston model as the control variate, which admits a closed form char-
acteristic function that is also affine in its state variables, see [24]. The Heston model parameters
can be efficiently selected via a standard optimization algorithm such that the difference between
%) (u — 1) and @ (u — i) is minimized. Of course, other control variates with explicit characteristic

2 2
functions such as the Black & Scholes model can also be used.

4.2.1 Quintic Ornstein-Uhlenbeck volatility model
The volatility process o; under the Quintic OU Model takes the form of:

12



[ 7£O(t) xr) = X IB I5
t = E[p<Xt)2]p(Xt)7 p() = po + p1z + p3z” + psa”, w2

t
X, = €a/ eas_l(tfs)dwg,
0

with ¢ > 0 and @ < 0. The non-negative coefficients pg,p1,p3,p5 > 0 (p2 = p4s = 0) ensure a
negative leverage effect as well as the martingality of S whenever p < 0, see [7] . The particular
parametrization with X means a = 0,b = ac™! and ¢ = & from (2.1). This model has shown to
produce remarkable joint fits to both SPX and VIX implied volatility surfaces [6, 7].

Since X is an OU process which can be simulated exactly, one could be tempted to use Monte
Carlo to estimate the SPX derivatives with appropriate control variates. However, the calibrated
values of € are usually very small and « is negative, pushing the model effectively into a fast
regime with large mean reversion of order ac~! and large vol of vol é*. It is known the standard
Euler-scheme for pricing SPX derivatives can reproduce large estimation bias for longer maturities
T due to the highly erratic paths of o, requiring finer step size or other asymptotic approximation
techniques [20, 21]. Pricing via Fourier methods hence presents an attractive alternative given the
increased efficiency and accuracy. To demonstrate, we choose the following parameters: p = —0.65,
a = —0.6, (po,p1,p3,p5) = (0.01,1,0.214,0.227), &u(t) = 0.025, € = 1/52 which are typical values
one can expect from calibrating the model to SPX and VIX smiles from [7]. Figure 2 shows the
convergence of SPX implied volatility of different maturities as the truncation level M increases:

T =1 week 6 months

061 0.40 -
: --- Mcos%cl | |

Z 051 — M=12 ;
= - M =22 0.30

T 0.4 _
g —EM=a2 0.25 -
g 03 0.20
£02] 0.15 |
0.1 0.10
020 -015 -0.10 -0.05 0.00 06  -04 0.2 0.0
log-moneyness
1 year 2 years
0.40 - 0.40 1
0.35 4 0.35
0.30 1 0.30
0.25 A 0.25
0.20 A 0.20 -
0.15 A 0.15
0.10 A 0.10 1
-1.0 -0.8 -0.6 -04 —0.2 0.0 02 -15 -1.0 -05 0.0

Figure 2: SPX implied volatility of different maturities in the quintic OU model, computed with
our algorithm with different level M. Dotted red lines are Monte-Carlo 95% interval computed
with 500,000 simulations and n = 10,000 number of steps per maturity slice.

4.2.2 One-factor Bergomi model

The one-factor Bergomi model [9, 15] assumes oy to be log-normal:

o= Vel e (i - {PECK))

. (4.3)
X, = <€04‘/ eaefl(t—s)dW&
0
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with € > 0 and o < 0. Similar to quintic OU model before, we have a = 0,b = ae~! and ¢ = ¢°.
We now approximate the exponential as a truncated sum up to level N:

~ ()

g¢ ]E[p(Xt) ] ( t Zpk t Pk = Zkklv
where ¢ in converges to oy in (4.3) when sending N — co. We now fix p = —0.7,e = 1/52,a =

—0.7,m = 1.2,&(t) = 0.025 for the numerical experiment and set N = 8. Figure 3 shows that our
numerical scheme quickly converges to Monte-Carlo estimates of the original one-factor Bergomi
model:

T =1 week 6 months

0.5 -—- Mcoss%cl | 0357
2 — M=16
£ 0.30 4
% 0.4 - M =35
L — M =50 0.25 A
* 03
3 0.20 +
a
0.1 T T T T T 0.10 L T T T T
-0.20 -0.15 -0.10 -0.05 0.00 -0.6 -0.4 -0.2 0.0
log-moneyness
1 year 2 years
0.35 0337
0.301 030
0.25 1 0.25 -
0.20 1 0.20 A
0.15 - 0.15 +
0101, ] ; ; : ; 1 0.10 1 ‘ ‘ ‘
-1.0 -0.8 -0.6 -0.4 -0.2 00 02 -1.5 -1.0 -0.5 0.0

Figure 3: SPX implied volatility of different maturities in the one-factor Bergomi model, computed
with our algorithm with different level M. Dotted red lines are Monte-Carlo 95% interval computed
with 500,000 simulations and n = 10,000 number of steps per maturity slice.

4.3 Pricing ¢-volatility swaps via Laplace inversion

The g-volatility swap rate K, is defined by:

T q
K, :_El<;/) U?ds) ], q € [0,1].

For the case of a standard volatility swap (i.e. ¢ = 1/2), one can price the swap rate K? via the
following inverse Laplace transform [31]:

K, —E|[2 TZd TLoF
%_ Toass 2\/‘ ’LL3/2 U,

where F(u) = F(t,x) from (3.1) by setting ¢ = 0 and g5(t) = —u/T using the presentation (3.4).
Again, we can accelerate the computation via a control variate, for example the Black & Scholes
control variate:

1 [ Fgg(u) — F(u)
Ky =ops+ 2\/7?/0 032

with Fpg(u) = exp(—uo%g) where opg is an arbitrary level of volatility that can be fixed upfront.

du,
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Compared to the previous section, we are even more confident of our numerical scheme thanks
to Corollary 3.6. For demonstration purposes, we use the same model parameters for the Quintic
Ornstein-Uhlenbeck and the one-factor Bergomi model as per the previous section, and adopt a
parametric forward variance curve in the form of &y(t) = Voe ¥ + Vo (1—e %) with Vy = 0.025, k =
5 and Vo, = 0.06.

Figure 4 shows the volatility swaps of the two models computed by inverse Laplace transform with
truncation level M = 32 vs. that computed by Monte-Carlo with 400,000 simulations and 10,000
steps:

Quintic OU volatility swap Bergomi volatility swap
0.20 { — laplace 0.22 { — laplace
-—-— MC 95% Cl -—- MC 95% Cl

0.18 -
0.20

0.16 -
0.18 1

0.14
0.16 -

0.12

0.10 - 014

0.0 0.5 1.0 15 2.0 0.0 0.5 1.0 15 2.0
T T

Figure 4: Volatility swaps under the Quintic OU model (left) and the one-factor Bergomi model
(right) for maturities up to 2 years, using the same parameter values as in the previous section.

4.4 Model calibration to market data via Fourier

The family of polynomial OU volatility models allows fast pricing of VIX futures and VIX options
via numerical integration of the payoff with respect to the standard Gaussian density, see [7]. To-
gether with fast Fourier pricing, this opens doors to joint calibration to SPX and VIX smiles. This
section also serves the purpose of highlighting the stability of our numerical discretization scheme
combined with Fourier inversion in a calibration procedure where a large number of evaluations of
the characteristic function are needed for a wide range of realistic model parameters and Fourier
variables.

In a nutshell, the calibration of a model involves minimizing the mean square error between prices
coming from the model vs. that from market data. Without going too much into the details, we
first demonstrate the capability of the quintic OU model (4.2) to jointly calibrate two slices of
maturities of SPX smiles together with one slice of maturity of the VIX smile, with calibrated
parameters p = —0.6763,« = —0.6821, (po, p1,ps,p5) = (0.0202,1.3332,0.0578,0.0071) and fixed
e = 1/52: with &(¢) coming directly from market data:
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Figure 5: Quintic OU model (green lines) jointly calibrated to the SPX and VIX smiles (bid/ask
in blue/red) on 23 October 2017 via Fourier using the Nelder-Mead optimization algorithm. The
truncation level of the Riccati solver is set at M = 32.

Next, we showcase the calibration results of the one-factor Bergomi model (4.3) on four slices
of maturities of SPX smiles between around 1 week to 3 months, with calibrated parameters
n = 1.1416, p = —0.6744, e = —0.7377 and fixed £ = 1/52:

SPX Implied volatility: T= 9 Days T=30 Days
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2 04l
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Figure 6: One-factor Bergomi model (green lines) calibrated to the SPX smiles (bid/ask in
blue/red) on 23 October 2017 via Fourier using the Nelder-Mead optimization algorithm. The
truncation level of the Riccati solver is set at M = 32.

The market data of SPX and VIX volatility surface is purchased from the CBOE website https:
//datashop.cboe.com/. For more calibration examples under the quintic OU and the one-factor
Bergomi models, please refer to the the Appendix C.

5 Proof of Theorem 3.2

We first introduce a lemma to justify the use of Ito’s formula to the series -, - ¥w(T — t) X}
Lemma 5.1. Under the condition of Theorem 3.2, h(t,x) == 3~ q¥x(T — t)x* is C% in x and
Cint, with hy(t,2) = Y450 (k+ D)1 (T =), by (t,2) = Y450 (k+2) (k4 1)thpra(T — t)2*,
hi(t,z) = Zkzo —p (T — t)z".

Proof. First, [ (T —t)z"|< SuPte[O,T]|¢k(t)||x|kv and Zkgo SuPte[O,T]|¢k(t)‘|x|k< oo. So h(t,x) =
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> im0 Uk(T — t)a* is well defined. In addition, if we restrict = in a bounded set of R, then
R (t,x) == >} _o¥k(T — t)z¥ is continuous and converges uniformly to h(t, ) when n — oo, so
h(t, ) is continuous.

Notice that the domain of convergence for 3, - sup,co,r1[¥ (t) |z < oo is R, then so is > ko Vk(T—

t)z*. So hy(t, ), hey(t, ) are well-defined, continuous and have the expression as the statement
for the same reason as for h(t,z).

To treat hy(t, ), we should at first prove that 3, sup,e o vy (t)|z* has also an infinite radius of
convergence.

Indeed, using the Riccati expression (3.2), we only have to check that we have an infinite radius

of convergence for
Z sup |ag x|z, (5.1)
k>0 te[0,T)

where ay . is among (p * p)i, kiby.(t), (k + 1oppr, EEEED gy 1 () % 9 (8)k, (p * D (E))i

1

): =
0 and thus we obtain that when a; , = kg (t), (k + 1)tp11 = QZ(t)k, kam, (5.1) has an
infinite radius of convergence.

By assumption and Cauchy-Hadamard Theorem, we know that lim sup,,_, .. (sup;cjo,77|¥n (t)

Also, for two power series > a,z™ and Y~ b,z" both with infinite radius of convergence, their
product Zn o(axb)pz™ also has an infinite radius of convergence. And notice that (pxp)x, (w(t) *
O(8)k, (pei)() i are dominated by ([pl#[p])i, (Supyeqo [¥(0) 1+ subsego i1 (8) e, ([Pl supyefo 7 [0

Thus when a; is among (p * p)k,(d)( ) * w( ))k,(p * ¢( )k, (5.1) has also an infinite radius
of convergence. Therefore }_; sup;epo 1/ (¢ )|z* has an infinite radius of convergence, so that

Y k>0 — V(T — t)z* also has infinite radius of convergence and converges uniformly when x is in

a bounded subset of R and also on t € [0,T]. So Y ,vo—¢},(T — t)z* is well-defined and also
continuous. B

Next, notice that h'(t,z) = Y ;_, —¢,(T — t)z* and given the the uniform convergence of both
series ) ;- —i (T —t)x* and 2 k>0 (T —t)x", we deduce that hy(t, z) = (Xk>0 V(T —t)x), =
Skso —Ur(T —t)ak.

O

Proof of Theorem 3.2. We first notice that since the power series >, |1, (t)|2* has an infinite radius
of convergence, U, is well-defined for all ¢ < T'.

With Lemma 5.1, we can now apply It6’s formula on the semimartingale M:

dM, 1
=dU, + =
M, et 2<

dU, = g1(T — t)dlog S; + go(T — t)o2dt — Zwk T —t)XFdt

U>t7

> (k+ DYn(T — ) XFdX, + ) 5(lc +2)(k + 1)p(T — t) XFd(X),.
k

Plugging (2.1) into (5.2), we have:
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dUy = ((QQ(T—t)—gl() Zwk T - )X}
+ 3 alk + V(T = OXF + 3 bkp(T - )XF + CQWW(T - t)Xf> dt
k k k

+ (Z e(k + 1)u(T = ) XF + pgr (T — t)Ut)th + V1= 2 (T = t)o, dWi,
k

2
(Zcmpk —0)XF + pgi(T - )0t> dt + (1 — p*)g}(T — t)oldt.
k

Applying the Cauchy product on the power series ), pp X[ leads to

T = (X [ =0 - D800 = ol — vl = 1)+ alh+ D (T =)
k

Ak+2)(k+1)

+ bkwk(T — t) + 9 wk+2(T — t)
P (@ -+ LEDBO g,

+ g (T = Dgo(t)e(p + DT — )] XF) b

+ <Z k(T — ) XF + pgr (T — t)o‘t>th + V1= p2g1(T — t)or dW;-.
k

M is a local martingale if and only if it has zero drift (i.e. dt part is zero a.s.). This is true for all

values of X by assumption from (3.2), so that M is a local martingale. Moreover, if M is a true

martingale, we have
T T
exp / g1(T — s)dlog Ss + / 92(T — s)o2ds || Fy
t t

= exp Zz/}k —th , t<T.
k>0

E

which follows from the martingality of M and the assumption of the initial condition of 1 from
(3.3). This completes the proof. O

6 Proof of Theorem 3.5

To prove Theorem 3.5, we adopt the representation of F' as mentioned in Lemma 3.9:

exp (/ Zul $)pi(Xs)ds +v(T)q(X1) — v(t)q(Xt)> ‘ X, = ;L"| ,

where the functions p; = p?,ps, p3,q are all negligible to double factorial and (uy,us,us,v) are
continuous such that R(u;) < 0, R(uz) = R(us) = R(v) = 0. Consider the following function f
defined by:

F(t,z) =

ft,x) lexp (/ Z:uZ $)pi(Xs)ds —|—v(T)q(XT)> ' X = x]

= F(t, ) exp( ()(J(ir))a (6.1)
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for all ¢t < T and = € R. We recall that f is well-defined, since

(/ Zul $)pi(Xs)ds +v(T)q (XT)> :/t R (ur (5)p*(Xs)) ds < 0.

Our proof is composed of five parts:

e In Subsection 6.1, we start by deriving some properties of power series negligible to double
factorial which will be used later.

e In Subsection 6.2, we prove the regularity in x of f given by (6.1), i.e. f is C* in x such

that the partial derivatives gT{ are bounded in a sense in preparation for the Feynman-Kac

formula in Subsection 6.3.

e In Subsection 6.3, we prove that f bolveb the associated PDE coming from Feynman-Kac
formula. In particular, we prove that mdeed exists.

e In Subsection 6.4, we introduce a system of ODE and obtain a solution by comparing the
derivatives of all orders of both sides of Feynman-Kac formula at = = 0.

e In Subsection 6.5, we prove that the system of ODE in Theorem 3.5 has a solution, via a
system of ODE introduced in Subsection 6.4.

6.1 Properties of power series negligible to double factorial

We collect some properties of power series that are negligible to double factorial as defined per
Definition 2.1.

Given a power series p(z) = Y- pra®, we define the set Ap(p) as the R-algebra generated by all
higher-order derivatives {p,p’,p” ...} of p:

l
= {chfs,lfs,2"'fs,ms e Na ms € Na Cs € Rv fS,i € {pap/ap/l"'} for every i and 8} .

Notice that if ms = 0, then by convention the product fs1fs2:- - fom, =1

Remark 6.1. This definition comes from the calculations of the successive partial derivatives
Fo, Fry,... For example, in the simple case when g9 = 1,91 = 0,90 = —1, by setting Z =
exp (— OT "p? (X, )ds), we have F(t,xz) = E[Z|Xo = x| by the Markov property of X. Since
we can write X, = e Xy + Y, where Y, does not depend on Xy, this means formally, F, =

E[Z,|Xo = ], where Z, = —Zfo Zebgpp (Xs)ds and pp' € Ap(p) appears. Higher order
derivatives like Zyy, Zyrr will also formally generate the elements in Ap(p).

Now we prove some properties of power series which are negligible to double factorial. For the
lemma below, we recall the convention (—1)!!= (0)!'!= 1. Notice that although the proof is a little
cumbersome, the essential idea is the observation that £!! behaves like (| £])! 22 and Y% =0 ( ) = 2%

Lemma 6.2. There exists a constant C' > 0, such that for all £ € N, we have that

: 1 325
g(k_1)!!(e_k_1)!! Sw—o
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Proof. For k = 0,4, we have (k_l)”(é_k_l)” = (e-ll)!!' So we need only to prove that for a constant
C >0,

T
L

1 =2 1 1325
I :I;)k;!!(é—Q—k)!! = —-n

k=1
Case 1: £ = 2/, is an even number. If k = 2k; is an even number, k!l (£ —2 — k)!!1 = 2671k 1 (¢4, —
1—Fk)l. If k = 2k; + 1 is an odd number, k!l (¢ — 2 — k)!!= (2k; + 1)!1 (£ — 3 — 2kl >
04—

(2k1+z)7!!1(z;—2’1€1—2k1)u > (2k1)!!(éz2—2k1)!! _ 24 lkl!(ﬁl—l—kl)!. Therefore,

— 1 <elz’:1 (+1 0+l (120t

p Ok!!(€—2—k)!! T 02‘31*1k1!(€1—1—k1)! (-1 (=2

— =

((+1)(0—1)2071 (203
ST - Su-or

Case 2: £ = 2¢1 + 1 is an odd number, then

~
N
o~
|
w

1 1 1
- - <
MI(E—2 -k 2 E(—3=M1 =21

b
I

0

b
I

0

and since ¢ — 3 is even, as the Case 1, we have, for a constant C' > 0:

§ 1 P (0 —1)22%" P Ce32%
kzok!!(é—?)—k)!! (=21 = (-2 (=21 = (6=
£
Therefore there exists constant C' such that for all ¢, Zi;% T 4_12_ o < ((’Z_g 12)2”. O

Lemma 6.3. The following statements are true.

(i) If p is negligible to double factorial, then so is q(x) = foz p(y)dy.

(i) The set of power series which are negligible to double factorial is closed under addition,
differentiation, scalar multiplication, and multiplication. Thus if p is negligible to double
factorial, then for any q € Ap(p), q is also negligible to double factorial.

(iii) If p(z) = 3. pra® is negligible to double factorial, then so is q(x) = > ppc*a®, where c is a
constant.

(iv) If p is negligible to double factorial, then so is |p|.

Proof.
(i) Note that g(z) = 3277, ka’lxk. It follows that
k-1 _
lim sup(|qe|(k — D11 * = 1imsup((|pk_1|!)ﬁ)k—kl
k— o0 k—o0 k
< lim sup((|pg—1|(k — 2)!! )ﬁ)% =0,

k—o0

using that @ < Bl = (k—2)11
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(ii) Let p,q be negligible to double factorial and note that ¢'(z) = > po(k + 1)grr12”. Then,

lim sup(|q;|(k — 1)!! )% = lim sup((|gx+1|(k + 1)!! )%ﬂ)%y

k—o0 k—o0

then by (k+ 1)!1 < (k+ 1)k!!,

lim sup(|qy| (k — 1)!1)F < limsup((|ger k! 1) &1) % (k+1)F = 0.

k—o0 k— o0

By |a+ bt < JalF+[pl¥, limsupy o (lax + pil(k = DINF = 0, and limsupy_, o (|egr|(k -
D!1)% =0 for any constant c.

Next, we will show that pq is again negligible to double factorial. For any € > 0, there exists
N, such that for all k > N, we have that (|gx|(k — 1)!!) < €*, (|px|(k — 1)!'!) < €*. Therefore
there exists constant C. such that (|gx|(k — 1)!!) < Cee®, (|px|(k — D!!) < Cee® for all k.
Thus by Lemma 6.2,

l
(pa)i|= 1 prai—+]
k=0

: : 2¢l 2 173
> 3 Cce C20(V2e)
< < <
- k:()|pk||ql_k|_ k=0 (k=DM —k-—1!= (-1~

thus limsup,_,._(|(pg)i|(I — 1)!!1)T < v/2e. Since € can be any arbitrary positive number, we

obtain
1
T

lim sup(|(pg)[(I — !)T = 0.

=0
Therefore, pq is also negligible to double factorial.
(iii) Notice that
limsup(|qi|(k — 1)) = |e[lim sup(|px|(k — 1)!1)* = 0.

k—o0 k—o0

(iv) It is obvious, since the modulus of p has no impact on the limsup,,_, . (|pk|(k — 1)!1)*.

6.2 Regularity in space

In this subsection, we prove the regularity of f in x given by (6.1), i.e. f is C* in x such that

the partial derivatives % are bounded in a sense in preparation for the Feynman-Kac formula in

Subsection 6.3.

Theorem 6.4. The function wen by (6.1) is C*° in x, i.e. the partial derivatives i{ exist
g y ) 2 =

and are continuous in (t,x), for k € N. Furthermore, for each k € N, there exists a power series
qr negligible to double factorial and a constant Cy, independent of (t,x), such that

]f)kfozx)

Dk < laxl(lz]) + Cr, t€[0,T], z €R. (6.2)

Before proving Theorem 6.4, we first simplify the expression of f in (6.1) to get rid of the condi-
tioning. Thanks to the Markovianity of X, we can write f after a change of variable as:

fit,x) =RE[Z(t, x)], (6.3)
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with
T—t 3
Z(t,x) := exp </ Zul(t + s)pi (ebsx +w(s) + Ws) ds
0 =1

+0(T)q(e® TV 4+ w(T —t) + WTt)) : (6.4)

Notice X; = e’z +w(t) +W, when X, = z, with w(t) :==a fot Pt=0) gy and W := cfot ett=w) quy,,.
From now on, we will consider mainly the representation (6.3) for f(¢,x).

The main idea for proving Theorem 6.4 consists in taking successive derivatives in z inside the
expectation above and applying the dominated convergence theorem. To illustrate this, we first
calculate formally %. Notice that the derivative in z for the terms inside the exponential of Z (¢, x)
is:

h(z) := /OTt 23: u;i(t + 5)ep] (ebsx +w(s) + Ws) ds

i=1
+o(T) Ty (eb(T—t)x Fw(T —t)+ WT%) : (6.5)
so that one expects
0
U (1,2) = E[h(x) 2(1,2)]. (6.6)

Notice that |Z(t,x)|< 1 since the terms inside the exponential of Z(¢,x) have a non-positive real
part as a result of Lemma 3.9. Therefore we only need to bound h(z+6Axz) for 6 € [0, 1] and small
enough Az € R. Notice that u;,v are continuous and thus bounded on [0, 77, e’ is also bounded
in [0,T], pl,q" are negligible to double factorial by the statement (ii) of Lemma 6.3. So we only
need to bound the expressions of the following form

/Ot q (ebsm +w(s) + WS) ds and ¢ (ebtx +w(t) + Wt) ) (6.7)

where ¢ is any power series negligible to double factorial.

First of all, we introduce a new definition and a lemma to help bound in a certain sense the
quantities in (6.7). We also introduce the notation W} := sup,,|W;|, which will be useful for
applying Doob’s inequality.

Definition 6.5. We say that a family of processes (My(z))i<r zer s estimable if there exists a
power series q negligible to double factorial such that for all fized t € [0,T] and z € R,

My ()| < |a|(|z]) + la|(W5), a.s.

We will prove that the expressions in (6.7) are estimable in Proposition 6.7 below. For now, let us
first prove that |q|(|z|) + |¢g|(W7) is integrable via the following lemma.

Lemma 6.6. The set of estimable family of processes is closed under addition and multiplication.
In addition, for all power series q negligible to double factorial, E [|q|(W7*«)} < oo. Therefore, if

My (z) is estimable, then there exists a power series q negligible to double factorial and a constant
C, such that for all t € [0,T] and z € R, E[|M(x)|] < |q|(|z]) + C.

Proof. For the first part of this lemma, recall that by the statements (i7) and (iv) of Lemma 6.3, the
property of being negligible to double factorial is closed under addition, multiplication, and taking
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absolute power series. So the set of estimable family of process is obviously closed under addition.
For the multiplication, it suffices to use the basic inequality (a + b)(c + d) < a® + b + % + d°.

To show that E [\q|(W})} < o0, recall W, = ebt f(f e~YscdW,, where fot e YscdW, is a true mar-
tingale. There is a positive constant Cp such that C—lT < et < Cp when 0 < t < T. We use W,

to denote fot e YcdW, and W, to denote its maximal process sup,<;|W|. By Doob’s maximal
inequality for k > 2,

__ . E NP _ _
E (7)) < o (7] < 0 (27 ) EWrl] < 1ChE (W) < 4o W]
For k=1,
TA7* 1 T7*\2 4 17..\2
E[Wi] <5 (1+E[(75)?]) <1+4C1E [(W1)7].
Notice that Wy is a centred normal distribution and that the constant Cy can be taken large

enough so that the variance of Wy is smaller than C2. It follows that E [\WTV“} < (C2)% (k—1)!1.

By modifying a little the coefficients |g|o, |¢|1,|¢|2 in the power series |g|, which does not influence
the conclusion, we obtain that C'= 4372 |q|x(k — 1)! 1 C3F satisfies the requirements and is finite,
since ¢ is negligible to double factorial. O

Proposition 6.7. If q is negligible to double factorial, then the expressions in (6.7) are estimable,
and

?|

where q is negligible to double factorial and only depends on T,q, and C is a constant.

/t q (ebsx +w(s) + WS) ds
0

] +E Hq (ebtm +w(t) + Wt)

| <laliah+c, te.T), s e,

Proof. Fix t € [0,T] and z € R. We first bound ¢ (ebtx +w(t) + Wt):

’q (ebt:r +w(t) + Wt)

< lal (e al+Hewo 1 +Wel) < 3 lali ((3e]al)* + 3w ()" +3W, ")
k=0

by Lemma 2.2. Since € and w(t) are both bounded in [0, 7], there exists a constant Cr > 0 such
that

> lale ((3e™al)* + 3w )+ 3WiIF) < 3 lali (13Cral+B3Cr)* + 3Wi]*)
k=0 k=0

<|ql(13C7z]) + |al(13C7|) + lal(3W3).

Setting d(x) = al(3(Cr + 1)) + lal(|3Cr]), we get |g (e"a +w(t) + Wi)| < d(lal) + d(W5) =
1G] (J=]) + |(j|(W;) By Lemma 6.3, |g| is also negligible to double factorial, and ¢ is still negligible
to double factorial. So ¢ <ebt:r +w(t) + Wt) is estimable. An application of Lemma 6.6 yields the

bound for the expectation. Furthermore, the term f(f q (ebsx +w(s) + Wsds) is clearly bounded

by T|q|(|z|) + T|Q|(W;) So we can update ¢ to G(z) =T V 1]g|(3(Ct + 1)x) + T V 1]¢|(|3C7]) to
obtain the claimed bound and end the proof. O

We have now that |f0t q (ebs(m + 0Ax) +w(s) + WS) ds|< |G (Jx + 0Ax|) + |§\(W;) < |q|(|x|+1) +
|§|(W7*«) since we can choose that |Az|< 1, § € [0,1] with coefficient of |g| all positive. The
dominating function |§|(|z|4+1)+ \q~|(W;) is integrable. For the term ¢ (ebt(x + 0Ax) +w(t) + Wt),

we can build a dominating function in a similar way.
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Going back to (6.6), we now have all the ingredients to apply the dominated convergence theorem
when Az — 0 on
flt,z+ Ax) — f(t, x) Z(t,x + Az) — Z(t, x)

A =E e =E[h(x + 0Ax)Z(t,x + 0Ax)],

where 0 € [0,1]. Recall h(z) from (6.5), and that |Z(¢,z)|< 1 and u;, v are bounded, €’ is bounded
in [0,77], p},q" are negligible to double factorial. Therefore, (6.6) holds. Of course, we would like

to prove by induction that
oFf
(b w) = B [Hy(t,2)Z (1)

holds for all k € N to show that f is C°° in x , where

OH(t,x)

Hk+1(t7x) = Or

+ Hi(t,z)h(x), Ho(t,z) =1, Hi(t,x)= h(z). (6.8)

To achieve this, we need to prove first that Hj are well-defined. Then, similarly to before, we will
bound Hy(z) so that we can apply by induction the dominated convergence theorem to

k k

. Dk
Alalzgo Az

— lm E Hi(t,x + Ax)Z(t,x + Ax) — Hg(t,2)Z(t, x)

o Axz—0 Az

= lim E[Hgq1(t,z+ 0Az)Z(t,x + 0Azx)].
Az—0

For Hy(t,z), we need to compute agf), recall that h(z) is just a sum of the Riemann integral of

the continuously differentiable function and a differentiable function with respect to x for a fixed
w outside a null-set. Therefore,

Oh(x) /Tt ¢ 2s, 11 (b T
= g ui(t + s)e“”p ez +w(s) + W) ds
ox 0 o1 ( )

+ v(T)eQb(T—t)q// (eb(T_t).’E + U}(T _ t) + WTft) .

Thus Hy can be obtained explicitly, and similarly for Hs, Hy,..., Hg,.... This procedure will
differentiate many times the function h(z), so it is useful to define:

T—t 3
hi(z) : = / Z u(t + s)ekbspz(-k) (ebsx +w(s) + Wq) ds
0 =1
4 o(T)ekb T (k) (eb(T—t)m Fw(T —t)+ WT%) _
Definition 6.8. We define the set A, (h):

!
A (h) := {Z Cshsihsa - hsm, : 1 EN, ms €N, ¢s €R, hy,; € {h}y for every i and s}
s=0

as the R-algebra generated by higher order derivatives of the function h(x). We call hy, generating
elements of Agz(h).

Notice that if ms; = 0, then by convention the product hg1hs2---hsm, = 1.

In the next Lemma 6.9, we will characterize Hj, defined in (6.8).
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Lemma 6.9. For every k € N, the function Hy in (6.8) is well-defined. In addition, Hy is
differentiable in x, continuous in (t,x) and estimable.

Proof. First, note the following three facts:

(i) h(xz) = h1(z) is a generating element of A, (h),
(ii) Hop=1¢€ Ay(h),

(iii) All generating elements hi(x) of A, (h) are differentiable in by applying the Leibniz’s rule,
and ahgiix) = hgt1(x). Soif g € A, (h), then % exists and € A, (h).

By induction and noticing that A, (k) is closed under linear sum and multiplication, Hy, are well-
defined and in A, (h). For fixed w € Q outside a null-set, the generating elements hj, are continuous
in (¢,z) and differentiable in . This implies that Hy, is also continuous in (¢, z) and differentiable
in x.

We know u;, v are continuous (and thus bounded), €kt* is bounded in [0, 77, pgk)7 ¢*) are negligible
to double factorial by the statement 2 of Lemma 6.3. By Proposition 6.7, generating elements hy
of A, (h) are estimable. Since Hy € A, (h) is a linear sum of finite product of generating elements
of A;(h), by Lemma 6.6 Hy, is also estimable. O

We are now ready to prove Theorem 6.4.

Proof of Theorem 6.4. Take Hj, as defined in (6.8) which are estimable by Lemma 6.9. By applying
Lemma 6.6,the term Hy(t,z)Z(t,z) is estimable with its expectation bounded by |gx|(|z]) + Ck.
Gi| = 17t o)< EZ(t,2)]) < 1 which
trivially satisfies the inequality in (6.2). Next, suppose that it is true for up to case k, recall the

definition of Z from (6.4) and that Z, = hZ, where h is defined in (6.5). Thus (HyZ), = Hy41Z.
Since both Z and Hj41 are differentiable in z as per 6.9, by the Mean value theorem:

Using induction, we first notice that for the case k = 0,

1

v (Hk(t, v+ AD)Z(t,x + Ax) — Hy(t, 2)Z(t, x)) — Hyr(t, 2 + 0A2) Z(t, z + 0AT),

where 0 is € [0,1]. Strictly speaking, since HZ is a complex-valued functions, we need to apply
the Mean value on both the real part and imaginary part separately with different §. However,
this does not change the proof at all, so to simplify the notation and discussion, only 6 is used.

By Lemma 2.2, Lemma 6.9 and the fact that |Z|< 1, and Hp41(t, 2 + 0Az) is dominated by
lgk+1|(J2]+1) + |gr+1|(W3) with bounded expectation by Lemma 6.6 if we choose that |Az|< 1,
where ¢x11 is negligible to double factorial. Applying dominated convergence theorem, for Az — 0
we have:

ak-i—lf
Oxk+1

(t,z) =E|Hgy1(t, ) Z(t, x)

Therefore, for all k € N, where ¢; negligible to double factorial and a constant C}, we have that
(6.2) holds. Finally, for the continuity of %(t,x), it suffices to notice that before taking the
expectation, the random variable Hy(t,z)Z(t,z) is continuous with respect to (¢,2), Then fixing
(to,xo), again by Proposition 6.7, Lemma 6.9, its expectation is uniformly bounded with ¢t < T,
and |z|< |zo|+1 bounded. So again by the dominated convergence theorem and taking the limit
at (to, zp), the continuity holds. O
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6.3 Feynman-Kac

In this subsection, we derive the Feynman-Kac formula in Theorem 6.11. Since we do not have
that f; exists a priori in our setting, we shall prove its existence and obtain the Feynman-Kac
formula at the same time.

First, we introduce a lemma which will be useful later.

Lemma 6.10. Let z € C such that R(z) < 0, then |exp(z) — 1|< 3]z].

Proof. We write z = z+yi, z < 0and y € R. Then |exp(z)—1|= |exp(z+yi)—1|= |exp(yi)(exp(z)—
1) + exp(yz) — 1|< |exp(z) — 1|+[cos(y) — 1+[sin(y)].

If z = 0, then |exp(z) — 1|= 0. If & < 0, 2RO < | @@L«

If y = 0, then |cos(y) — 1|= 0,]sin(y)|= 0. If y # 0, [<=W=t|< jesli)=ly< g sin) < sinly)
1.

[RVAN

Theorem 6.11. The function f given by (6.1) and equivalently (6.3) is C* in x, C* in t, and
solves the following partial differential equation (PDE):

{ft(t’ 'T) + fm(ta CE)(a + b.%‘) + %CQfZEJE(t7 m) + f<t7 SC) Z?:l ui(t)pi(x) =0, (6.9)

f(T,z) = exp(v(T)q(x)).
Proof. By Theorem 6.4, f is C* in x. We will compute the infinitesimal generator

o1
lim —(E* [f(to, Xr) — f(to, 2)])
r—0t T
in two ways to obtain the PDE and the existence of f; at the same time. Here E” means the
conditional expectation with Xy = x.

First way: fix tg, we compute the quantity using the classical definition of generator. By Itd’s
formula:

A (10, X0) = fodXo + 3 furd(X) = cLodW, + (;chm +(a+ bXt)fw> dt.

Note that f,, fz. are evaluated at (to, X¢) here. By Theorem 6.4, statement (i) of Lemma 6.3,
fo(t, ), (@ + bx) fo(t, ), fou(t, ), f2(t,z) are all bounded by |q|(|z|) + C, where ¢ is negligible to
double factorial. Combining with Proposition 6.7, E* [ [, f2(to, X¢)dt] is bounded by |g|(|z|) + C
for 7 € [0, T], where g is negligible to double factorial. Thus [; cfs(to, X¢)dW; is in L? and is a true
martingale for ¢ € [0, 7). Similarly, the Riemann integral [; (3¢ foa (to, X¢) + (a4bXy) fo(to, X¢))dt
is estimable with finite expectation. In addition, we have

1 /1 1
;/ (§C2f1x(t(]7 X)) + (a4 bXy) f (2o, Xt)dt‘ < 51[1p] §C2|f9:1:(tOva)|+|(a + bX) fo(to, Xs)l,
0 se€[0,r

where the right hand side is still estimable and dominated by a random variable with finite expec-
tation. By dominated convergence theorem,

1
lim —
r—0t T

= lim lEm [/T(;CQfm(to,Xt) + (a + bXy) fu(to, Xi))dt
0

r—0t T

(B [f(to, Xr) — f(to, v)])

:%8 Fanltor o) + (@ + b2) fato, 7). (6.10)
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Second way: compute the generator lim,_,o+ T(E‘L’ [f(to, X;-) — f(to,x)]) directly by applying the

f(
Markov property of X;. Define Z; := exp fo i wi(T—t+5)p; (Xs) ds) and Y; = v(T)q(Xy), we
apply Markov property of X; to the representation of f(¢,z) in (6.1), i

T—t 3
flt,z) =E [exp </0 Zui(t + s)pi(Xs)ds +v(T)q(XTt)> ‘ Xy = x} ,
i=1

and by Markov property for r € [0, ],

£(t,X,) =E

T—t4r 3
exp (/ Z ui(t —r+ s)pi(Xs)ds + U(T)q(XTHT)) ‘ XT} )

i=1
By the tower property of conditional expectation, we have

T—t+r 3
exp (/ Z ui(t — 7+ s)pi(Xs)ds + fu(T)q(XT_tJrr)) ’ XTH

=1

E* [f(t, X,)] =E* |E

T—t+r 3
=E” |exp ( Z wi(t —r+ s)pi(Xs)ds + v(T)q(XTHT))]

r 3
=E* | Zp_t4r - €Xp </ Z ui(t —r+ s)p; (Xs) ds) exp (YT_H_T)] .
L 0 =1

Therefore,

% (E” [f (to, X)) — f(to,)])

1 "

Z;EI 27 —to+r €XP (-/ > wito —r + s)pi (Xo) dé’) exp (Yr—tg4r) — Zr—1, exp(Yr—¢,)
0 =1

1 xT

:;E exp (Yr—tg4r) Zr—to4r — exp (Yr_1y) Z1—4,
r 3

1 xr

—|—;IE- exp (Yr—totr) ZT—to+r (exp (—/ Zui(to — 7+ 8)p; (Xs) ds) - 1>1
0 =1

:%(f(to —r,z) — f(to, x))

r 3
exp (Yr_ig4r) Zr—to+r (exp (—/ Zui(to —r+35)p; (Xs) ds) — 1)] .
0 =1

1
+-E"
.

Now we want to apply dominated convergence theorem when r — 07 to the term

exp (YT,tO+,,«) ZT7t0+"" <exp (_ /T Z ul(to —r 4+ s)pl (Xs) dS) - 1)] .
0 =1

1
ZE®
r

To dominate the term inside the expectation, notice that at first R(Y;) = R(v(T)q(X:)) = 0, thus
lexp(Yr—ty++)|= 1. In addition,

r 3
%ZT_t0+r (exp (/0 Zui(to —7r+8)p; (Xs) ds) - 1>
T—to+r 3 r 3
= %exp </ Zui(to —r+8)p; (X5) ds) (1 — exp </0 Zui(to —r 4+ 8)p; (Xs) ds)) ‘ .

i=1
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Since R(u1) < 0, R(ua), R(uz) = 0,p1 = p?, therefore
T—to+r 3 T—to+r
§R(/ Zui(to—r—f—s)pi (Xs)ds) :/ %(ul(to—r—i—s)pl (XS))ds§0
r i—=1 T

and thus ‘ exp (frTftOH Z?:1 ui(to —r + 8)p; (Xs) ds) ‘ < 1. Therefore we only need to dominate
the term
1 "
- (exp (/ Zui(to —r+5)p; (Xy) ds) — 1> .
0 =1

Since R( [, Z?:l u;(to — r + s)p; (Xs)ds) <0, by Lemma 6.10 we just need to dominate the term

3

< ZHUZHOO sup [p;i(Xs)|-

i—1 s€[0,r]

3
1 T
;/ Zui(to—r—l—s)pi(XS)ds
0 =1

Notice |u;(s)| are bounded, p; are negligible to double factorial so |p;(X5)|, s € [0,T] is dominated
when conditioned Xy = = by Proposition 6.7. Thus by the dominated convergence theorem :

r 3
exp (Yr_io4r) Zr—to4r (exp </0 Z ui(to — 7+ $)pi (Xs) ds) - 1)]

3
- _ Z ui(to)pi(x) f(to, )

1
lim -E*

r—0t 1T

which is finite. Equating with (6.10), the term lim, o+ +(f(to—r,z)— f(to, *)) is thus well-defined.
Of course, one can also replace ty by tg + r and perform similar computations as per the above

two methods on the quantity

lim S(E® [f(to+ 1 X,) — f(to +r,2)))

r—0+t T

to obtain the existence of f; and also the PDE in (6.9). A subtle point to note is that for the
first method, we do not apply Ito’s formula to f(¢o + r, X,.) for the variable r, which requires the
existence of the partial derivative f; a priori. Instead, we obtain the existence of f; by applying
Itd’s formula to X, in f(tg + u, X,-) and evaluate at u = r:

(= 1t + 7, X0) — St 4] )

1 "1
:;E“" U (iczfm(to+r,Xt)+(a+bXt)fz(t0+r,Xt))dt )
0

and taking the limit for » — 07 as above. The continuity of f; is directly obtained from the
continuity of the other terms in this equation, with boundary condition at 7" comes from the
continuity of f and its definition. O

6.4 Infinite dimensional ODE

In this subsection, we obtain a solution of the system of ODE by comparing the derivatives of both
sides of the PDE (6.9) when = = 0.

Since f is continuous by Theorem 6.4, in addition if f does not vanish, we can define log f such
that exp(log f) = f and log f(T,0) = v(T)q(0), see Lemma B.1. Note log f is also continuous in

(t,z), and exp(log f)(T,z) = f(T,z) = exp(v(T)q(x)) with log f(T,x) = v(T)q(x).
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Theorem 6.12. If f does not vanish, then
Lok
or(t) == Hamlogf(T—t,x) , t>0
solves the system of ODE

3
= Zul(T —
i=1

Ak+2)(k+1)

+ bk (t) + ak + 1)dria (t) + 5 Dr+2(t)
2~ ~ ~
+ 5(¢(t) *O()k, k() = (k+ 1)drya(t),
¢1(0) = v(T)q. (6.11)

In order to prove the Theorem, we first link the PDE (6.9) to the system of ODE (6.11). Suppose
f does not vanish and set g(t,z) =log f(T — t, ), then the following PDE holds:

{gt(t, ) = 30y wilT = t)pi(a) + ga(t, 2) (@ + ba) + 5 guu(t ) + 302 (1, 2),
9(0,z) = v(T)q().

Since by Theorem 6.11, f is C'! in t and C* in z, by Lemma B.2, log f is also C! in t and C* in
x. Then so is g.

To prove this theorem, we will need the following lemma.

Lemma 6.13. If a function h is C* in (t,x), and one of the partial derivatives 8:(% and g;at
exists and is continuous, then they both exist and are equal.

Now we can prove Theorem 6.12.

Proof of Theorem 6.12. Since F(t,x) does not vanish, we can define log F' as per Definition B.5,
ie.
exp(log F(t,x)) = F(t,z), logF(T,0)=0.

We can now define log f(t,z) = log F'(t,z) + v(t)g(x) such that exp(log f(t,x)) = f(t,z). By
Theorem 6.11, f is C™ in 2 and C' in ¢, then since log f is continuous, by Lemma B.2, log f is
also C* in z and C" in t. In addition, the PDE below can also be deduced:

(g )i Zul i) + (10g £)a(t ) (a-+ ba) + 33 (10g e (1,2) + 5 (log £, 2)

log f(T,x) = v(T)q(x).

The boundary condition comes from the fact log f(T,0) = v(T)q(0), with the continuity of log f
and the fact that exp(log /))(T,z) = f(T,z) = exp(v(T)q(x)).

Now substitute g(t,z) = log f(T — t, x):

1 1
—c gm(t x) + fCZgi(t,x) (6.12)

3
ge(t, Z T = t)pi(z) + g2(t,2) (a + bx) + 5 5
o(T

9(0,z) = v(T)q(x).
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Since the right side of (6.12) is C™° in z, so is g;. Notice that by definition %g(f, 7)|z=0= k! ¢ (t).
We aim to take the k" partial derivative with respect to z on both sides of (6.12) at z = 0 to
deduce the equation in (6.11). For the left side of (6.11), Lemma 6.13 allows the interchangeability
of dt, dx and the following equality can be proven by induction:

ok o o o
@ag(taxﬂm:o: awg(tw%’)h:o: k! ¢§V(t)

The right side of (6.11) can be deduced by noticing that azk g(t Z)|e=0= k!¢ (t) for all k. To

obtain that ok
A2 )lomo= KL+ SOk ult) = (b + D (),

first notice that -2, 5 9(t, @) |o=0= k! ¢x(t) implies ;’Tigx(t, 2)|a—0= k! ¢1,(t). The convolution follows
naturally by applylng the general Leibniz rule.

Lastly, the initial condition of (6.11) can be easily deduced from the fact that g(0,z) = v(T)g(x).

O

6.5 Putting everything together

Proof of Theorem 3.5. Since p is negligible to double factorial by assumption, and g¢ : [0,7] — R,
91,92 : [0,T] — C are continuously differentiable such that $(g1) = 0,R(g2) < 0, then F(¢,z) in
(3.1) is well-defined. We recall from Lemma 3.9 that

exp ( / Zuz pi(Xo)ds + o )q(Xﬂv(t)q(Xt)) \Xt—x],

with w;, v are continuous in [0,7], R(u1) < 0,R(uz), R(uz),R(v) = 0, p1 = p?, and p;,q are
negligible to double factorial. Notice that F(t,x) = f(t,z)exp(—v(t)g(x)). Theorem 6.4 yields
that F' is continuous.

F(t,x) =

If in addition, F' does not vanish, then so does f. By Lemma B.1, we can define log f,log F such
that log F' = log f — v(t)q(x). By Theorems 6.4 and 6.11, f is C* in z and C! in ¢, and so is
F. By Lemma B.2, log f,log F are also C*™ in 2 and C" in t. Then, we can take the k' partial
derivative with respect to z for log F' = log f — v(t)g(z) around « = 0. Then, the system of ODE
(6.11) in Theorem 6.12 induces the system of ODE (3.3) by setting ¢, := ¢ — v(T — t)gqr with
¢y, defined in (6.11), with the coefficients of the ODE (3.3) coming from the precise definition of
(wis pi)ieq1,2,3} as defined in Appendix A. O

7 Proof of Theorem 3.13

Before proving Theorem 3.13, we introduce the following definition of the function f,:

Definition 7.1. For u, = ZZ o 61T, with &; the Dirac measure at point t, we define

exp (/ Zuz $)pi( Xs)pn(ds) + v(T)q(XT)> ’ X = x]

= F,(t,z) exp(v(?ﬁ)q(ay))7 t<T,x €R,

falt,z) =

with F,, as defined in Definition 3.10.
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By the Markov property of X, we can remove the conditioning and write f, (¢, z) equivalently as

fu(t,z) =E

T—t 3 N
exp </0 Z ui(s + t)pi (e x + w(s) + W) un(ds +t)

i=1

+o(T)q(e? e 4+ w(T —t) + WT_t)> . (7.1)

Notice that X; = etz + w(t) + W, for Xo = z, w(t) := af(;5 P t=dy and W, := cfot L= g,

The function f,, is well-defined, since fOTft R (ul(s)pQ(esz +w(s) + Ws)) u(ds +1t) <0 given the
condition of u;, p;, v and g from Lemma 3.9.

The main advantage of considering functionals (f,, F,) over (f, F) is their entire property in z
shown in Theorem 7.3 below. As we shall see, the results of (f, F) in Section 6 can be easily
extended to to (f,, F},). We now layout the following steps to prove Theorem 3.13:

e In Subsection 7.1, we prove that f, is entire in x € R, without any additional conditions
imposed on f, or F,.

e In Subsection 7.2, we prove discretized versions of the results in Section 6, in the case when
fn(t,) (or equivalently F,(t,-)) does not vanish on R.

e In Subsection 7.3, we prove Theorem 3.13 under the assumption that the extension of
(F(t,-)) to the complex plane (F,,(t,-)). does not vanish.

Lemma 7.2. f,(t,z) — f(t, ), when n — oo, for allt <T and x € R.

Proof. This follows from a direct application of the bounded convergence theorem: the Riemann
sum converges to the Riemann integral, and the exponential has a module at most 1. O

7.1 Entire property

In this subsection, we do not need any additional condition imposed on f, or F, about their zeros.

Theorem 7.3. For fized t, f,(t,-) is entire in x € R.

We first introduce a lemma that will be useful in proving Theorem 7.3. The idea of the proof
is standard and comes from exploiting the fact that the Gaussian density is entire. A similar
argument has been used for single marginals in [13, Lemma 6.1].

Lemma 7.4. Suppose that (W;)i>0 is a centered Gaussian Process with independent increments
such that Wy — Wy has non-zero variance whent > s. Let 0 =tg <t; < ...<t, =T. Take g a
bounded measurable function from R™ to C, then E[g(x + Wy, x + Wy, ...,z + Wy, )] is entire in
x.

Proof. Denote the variance of W, — Wy, _, as v; > 0, we have

i—1

Elg(x + Wy, o+ Wiy, ...z + W)

2

N 1 ?41_332 - Y
:(H Trv»)/ 9(2/1,91+y2,...,y1+...+yn)e)<p<_(2v1)_22“ dyrdys . .. dyp.
i=1 ¢ " i

=2
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Denote g(y) = g(ylayl + Y2,y +yn)7 we have
Elg(x + W,z +Wy,,...,x+ W, )]

=exp <x2) (ﬁ m) / 9(y) exp ( Z; 2yvl> exp <l;)11) dyrdys . .. dyn
—oo (52) (I 5=) [ atwrews (—Z§’> (
o () (T ) S8 [ oo (- $520)

where we applied Fubini in the last step since

[ St Z)

i=1

Sloll [ exp (= 25+

i=1 v

k
) dyrdys . .. dyy,
v

. <.
Il 3 | 3 |
— —

k
<yl> dy1dys . ~'dyn> a®,
U1

k
(xy1 ) dyidyz . . . dyy

) dyidys . . . dy, < oo.

This implies an infinite radius of convergence for

) S Lo £E) (1) )

ie. Efg(x + Wy ,x + Wy,,...,x + W, )] is equal to a power series with an infinite radius of con-
vergence, so it is entire in x € R.

O
Proof of Theorem 7.5. We define t; = ]T ,j=0,1,...,n—1, then

fult, )

3
exp <Z pile b(t;—t) g 4 w(t; —t) + Wy, —¢)

=1t<t;<T

+o(T)q(e" Tz +w(T —t) + WT,»)

The exponential is bounded by 1. And notice that e?ti =g+ W, = Pt =0 (x4 e VLD, ).
Recall that W, = fot eP(t=)cdW,,. Therefore, e ?'W, = cfg e~budW, is a Gaussian Process sat-

isfying the condition of Lemma 7.4, since ¢ # 0. Then, an application of Lemma 7.4 yields the
result. O

7.2 Discretized versions of the theorems in Section 6

In this subsection, we prove discretized versions of the results in Section 6, in the case when f,, (¢, -)
(or equivalently F),(t,-)) does not vanish on R.

Remark 7.5. Recalling Corollary 3.6, the conditions that g1 = 0 and go R-valued with go < 0
guarantee that f,,(t,-) and F,(t,-) do not vanish on R.
Theorem 7.6. (Discretized version of Theorem 6.4) The function f, defined in (7.1) is C* in x

with 2 ,;’ continuous in (t,x) in the region (JT (JH) ) xR for j =0,1,...,n— 1. In addition,
there e:msts a power series qx negligible to double factorml and constant Ck mdependent of (t,z),

s
such that |55 |< |qul(|z]) + Ch.
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Proof. Notice that all the lemmas and proofs used in Section 6 dealing with f being C'*° in = and

the bound o by replacing the integral with a finite sum. O

Theorem 7.7. (Discretized version of Theorem 6.11) For j =0,1,...,n — 1, the function f,

(i) is continuous in the region (ﬂ %] x R. In addition, f, is C* int and C* in z in the
regwn(]T (J+1) )xR,j=0,1,...,n—1,

(ii) solves the following PDE

fit fulatbe) + 56 fre =0, & supD(1n)U(T),

3
sli}lril+ f(s,x) = f(t,z)exp (—Z; Zul(t)pl(x)> , t€supp(in),
i=1
f(T,z) = exp(v(T)g(x)),
with supp(p,) = {0, L, 2L (n_nl)T}

Proof. The proof follows along the same lines as the proof of Theorem 6.11. By Theorem 7.6 and
Lemma 6.3, (f,,).(t,7) and (f,)2(¢,x) are bounded by |q|(|z|) + C, Where q is negligible to double
factorial. Therefore by Proposition 6.7, the stochastic integral fo fn)z(s,2)dW, € L? and is a true
martingale. The Riemann integral is still dominated, allowing the interchange between limit and
the expectation and thus computing the the inﬁnitesimal generator lim,_,q+ %(E“’ [fn(to, X)) —
fn(to,x)) as per the first way in Theorem 6.11.

The second way of computing the generator in Theorem 6.11 can also be adopted to compute
lim, o+ (B [fu(to, X)) — fn(to, z)) thanks to the Markov property of X;. Indeed, define

Z{' = exp (/ Zuz —t+8)p; (Xs) pn (T —t + ds)) , Y =0(T)q(Xy).

we have

% (Eaj [fn (th XT’)] - fn(t0’$))

1
:—]EI

r 3
CET | ZF X (— / S wilto —r + 8)p <Xs>un<to—r+ds>> exp (Yr—tgr) — Z_ 1y exp(Vr_s,)

1 x n n
= E [exp (Yr—to+r) 27—ty 4r — P (YT—10) Z7y, ]

3
1 s
+=E* {exp (Yr—tot+r) 27—ty 1r (exp <—/ Zui(to — 71+ 8)p; (Xs) pn(to — 7+ ds)) - 1>
0 =1

:l(f(to —r,x)— f(to,x))

r
1] = ]

—&—;Ex exp (Yr—tgtr) 23—t 4r - (exp <—/ Zui(to —r =+ 8)p; (Xs) pin(to — r + ds)) — 1)
0 =1 _

Notice that, if ¢ ¢ supp(p,) U {T'}, where supp(u,) U {T'} is a finite set, then there exists 19 > 0
such that ro < |top — t| for all ¢ € supp(u,) U {T'}, thus for 0 < r < g,

B [ exb (Vrotoir) Zcsyr (00 (= Jg Sl wilto =7+ 9001 (Xo) pinlto =7 +-5)) =1)| = 0.
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So similar the proof of Theorem 6.11, (f,,); exists and 0 = (fn): + (f1)e(a + bz) + 2¢*(f1)zz. The
boundary condition when t ¢ supp(u,) U {T'} can be deduced by applying the definition of .

O

Remark 7.8. Theorem 7.7 shows that for fixed x, f,(t,x) is left continuous for t € [0,T] and is
discontinuous at t € supp(pr,).

We now define log f,, in the following Lemma 7.9.

Lemma 7.9. If f,(t,-) does not vanish for © € R, then there exists log f,, such that exp(log f,,) =
fn, and in the regions (JT (JH) | xR,j=0,1,...,n—1, log f.(t, x) is continuous in (t,x), and

i 10g f(s,2) = log fu(t:2) = D wi(tpi(e), ¢ € supp(in),

s—tt

log fu(T, ) = v(T)q(x).

Proof. We want to use Lemma B.1 to define log f,, from f,,. However, Theorem 7.7 shows that f,
is discontinuous when ¢ € supp(u, ), with

s—tt

3
lim f,(s,2) = fn(t,x)exp (—: Zuz(t)pz(x)> ,t € supp(in ),

we need to first define

3
faltor) = fatr)en | - 3 S uislnie) |

sesupp(pn) =1
s>t

where f,, is continuous on [0,7] x R and fu(T,2) = f(T, x) = exp(v(T)q(x)). And since f, is non
zero, so is f,. We can now apply Lemma B.1 to yield the existence of g continuous on [0,7T] x R,
such that exp(§) = f,, and to specify g, we choose that G(T',0) = v(T)q(0). We can now define:

3
log fult ) =(t,2) + S D uils)pue). (7.2)

s€supp(pun) =1
s>t

(ﬂ

n ?

Since Y-, cupp(un),s>t L 2?21 u;(8)pi(z) is continuous in the regions W] x R, for j =

0,1,...,n — 1the definition of log f,, in (7.2) yields that

L. exp(log fn) = fn-

2. In the regions (%, %] xR, j=0,1,...,n—1, log f,(¢, ) is continuous in (¢, x).

3. lim, -+ log fu(s,x) = log fu(t,z) — L S0 w;(t)pi(x), t € supp(py).

Furhtermore, since exp(log fu(T,x)) = exp(§(T,2)) = fu(T,x) = fu(T,2) = exp(v(T)q()),
log frn(T,z) — v(T)gq(x) € {2kmi, k € } Noticing that log f,.(T,z) = g(T,x) is continuous in z,
and log f,(T,0) — v(T)gq(0) = g(T,0) — v(T)q(0) = 0, we deduce that log f,(T,z) = v(T)q(z). O

We now introduce the discretized version of Theorem 6.12.
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Theorem 7.10. Suppose that f,(t,-) does not vanish on R, then
Lok
Gn k(1) = Ea;c log fn (T —t, ) , t20
: =0
solves the following system of ODE:

2k +2)(k +1)

G 1o () = bk i (t) + alk + 1) k11 (t) + 5

Pn et2(t)
%(¢n( ) * Eén(t))kv E&n,k = ¢n,k+1(k + 1)7 te {T —ulu ¢ Supp(:u’n)U{T}}
(bn,k:( )— hm (bnk: Zuz ka te{T—u:UESUpp(un)}

¢n.k(0) = v(T)gx. (7.3)

Proof. By Theorem 7.7, in the regions (% UH)T) xR, for j =0,1,...,n—1, f, is C' in ¢t and
C* in z. Since f, # 0, thus by Lemma B.2, log f,, in 7.9 is C! in t and C* in z in these regions.
Set gn(t,x) =log fn(T —t,x), gn then satisfies the following PDE:

1 1
g:(t,x) = g (t,x) (a + bx) + fc2gm(t,m) + fCQgi,t €{T —u:u ¢ supp(pu,)U{T}}

2 2
lim g(s,z) =g(t,z) — — Zuz —t)pi(x),t € {T —u:u € supp(pn,)}
s—t— i1

9(0,z) = v(T)q(x).

Next, we apply Lemma 6.13 as in the proof of Theorem 6.12, and then comparing the derivatives
of both sides in z yields the system of ODE. Lastly, the initial condition of (7.3) can be easily
deduced from the fact that g, (0,x) = v(T)q(z). O

7.3 Putting everything together

In this subsection, we will use the condition that the extension of f,, in the the complex plane
(fn(t,*))ec, defined in 3.11 does not vanish for € C as opposed to € R. This condition is both
necessary and sufficient to guarantee that log f,, is entire in z € R, see Lemma B.3 and Remark
B.4.

Lemma 7.11. If (f,)c(¢,-) does not vanish on C, then f,(t,x) = exp (Zkzo qﬁmk(T—t)zk),
where ¢ i are defined as in Theorem 7.10.

Proof. By Lemma B.3, log f,, is entire on R, and notice that ¢, ,(t) = %(9@ log fn(T — Lx)’zzo.
O

Proof of Theorem 3.13. By Lemma 7.11, f,(t,x) = exp (Zkzo On k(T — t)xk), where ¢y, are
defined as in Theorem 7.10.

We set ¢, 1 (t) = ¢nk(t) —v(T — t)gx. By Lemma 3.9 and Lemma A.1, this is equivalent to

ok (t) — pg1(t)go(T — t)pkfl, E>1,

bni(t) = e

)
1pn,U (t) = ¢n,0 (t) .
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Therefore, by Lemma 7.2,

F(t,x) =f(t,z) exp(—v(t)q(x))
= lim_fo(t, 2) exp(—v(t)q(z))

and, by Lemma 7.11,

fu(t, ) exp(—v(t)q(x)) =exp Z Gn (T —t)z* | exp(—v(t)g(z))

k>0

=exp | D (bnk(T 1) — v(t)gr)a"

k>0

=exp [ Y Yn k(T —t)z"

k>0

Recalling that F,(t,2) = f.(t,z) exp(—v(t)g(x)) by Definition 7.1 ends the proof. O

A Proof of Lemma 3.9

Lemma A.1. Let p be a power series with an infinite radius of convergence. Define the power
series 11,72 by

1

n(0) =~ 1@+ bopl) + 5 @) o) = [y a e,

which again have an infinite radius of convergence. Then, for any continuously differentiable
function h : [0,T] — C, it holds that

T T
/t h(s)p(Xs)dWs = /t (h(s)r1(Xs) — W (s)r2(Xs)) ds + h(T)ra(Xr) — h(t)ra(Xe).

Proof. This follows from a straightforward application of It6’s Lemma on the process (h(s)r2(Xs))s<r
between ¢ and T'. Recall the dynamics of X in (2.1). O

Proof of Lemma 3.9. Using dlog Sy = f%?dt + 0¢d By, we have:

T T 1
/t g1(T — s)dlog S, :/t —59.(T - $)90(5)p*(Xs)ds + pgr (T — s)go(s)p(Xs)dW
+ V1= p2g1(T — 8)go(s)p(X)dW-.

Conditioning on F; V F}¥ the integral ftT 1 — p2g1(T — 8)go(s)p(Xs)dW is Gaussian with con-
ditional variance ftT(l — p?)g3(T — s)g3(s)p*(Xs)ds. Therefore,

E

T
exp (/t 1—p2gi(T — 8)90(8)p(XS)dWSL> ‘ Fv ]__¥V]

T
= exp (;/t (1= pgi(T - 5)93(8):02(Xs)d8> :
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so that

F(taXt) =E

T T
exp </ 91(T — s)dlog Ss + / g2(T — s)gfdg) ‘ ]-‘t‘|
t t

P (/t G(l — (T = s) - %gl(T =) +92(T — 8)) 95 (5)p*(X)ds

T
+/ pgl(T - S)QO(S)p(XS)dWs> ‘ ]:t‘| .
t
By applying Lemma A.1 and choosing h(t) = pg1(T — t)go(t), we can rewrite the following:
T T
[ (@ = n(op(X)dW = [ hora(X) = K (o)ra(Xo)ds + hT)ra(Xr)  hit)ra(X0),
t t

Next, define us (5) = (3(1 — p)g3(T — ) — 31 (T —5) + ga(T — 5))g3(5), pr = p?, ua(s) = h(s), pa =
r1,u3(s) = h'(s),p3 = —ra,v(s) = h(s),q = r2. Since p is negligible to double factorial, go, g1, go
are continuously differentiable, and R(g1) = I(go) = 0,R(g92) < 0, we deduce that u;,v are
continuous in [0,77], R(u1) < 0,R(uz), R(uz), R(v) = 0, p1 = p?, pi,q are negligible to double
factorial by Lemma 6.3, and

F(t,z) =E

T 3
exp (/t Zui(s)Pi(Xs)ds +o(T)q(Xr) — v(t)q(Xt)> ‘ X, - x} .

B A small remark on the complex logarithm

For complex-valued functions, such as F' in (3.1), the definition of log F' is not trivial, especially if
the range of F' is not simply connected. We use the lifting property in Algebraic Topology.

Lemma B.1. If f : I x R — C\ {0} is a continuous function where I is an interval of R. Then,
there exists a continuous function g : I x R — C such that exp(g) = f. And if the value of g at
one point is specified, then g is entirely specified, i.e. there exists only one g that satisfies these
conditions in this case.

Proof. Notice that p = exp(z) is a covering projection from C to C\{0}, i.e. a local homeomorphism.
And I x R is path-connected, locally path-connected, and with a trivial fundamental group. Then
by Proposition 1.33 of [23], the lifting criterion, f as a continuous function from I x R to C\ {0},
can be lifted to a continuous function g from I xR to C, i.e. f = pog = exp(g). And by Proposition
of [23, 1.34], the unique lifting property, and the fact that I x R is connected, if the value of g at
one point is given, then g is specified. O

Lemma B.2. Let f : I x R — C\ {0} be a continuous function, where I is an interval of R.
Assume that f is C in the first variable t and C™ in the second variable x. Then, the function g
as defined in Lemma B.1 is also C* int and C™ in x.

Proof. Suppose that we define g as in the Lemma B.1. We need only to prove that for all fixed point
(to,z0) € I xR, gis C* in t, C* in x in neighborhood of (¢, z). Since f(to,zq) # 0, there exists a
d > 0, for all (¢,z) € I xR such that [t—to|+|z—x0|< J, we have that | f(¢, x)— f(to, x0)|< | f(to, zo)|-
Therefore, for all (¢,z) € I x R such that |t — to|+|z — zo|< 0, f(¢, ) is contained in an open ball
B, with center f(to,xo) and radius |f(to,xo)|. Particularly, B is simply connected and does not
contain 0.
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between 0 and z. We aim to prove that g(t,x) = h(f(t,x)) for all (t,x) € I x R such that
[t — to|+]z — zo|< 0.

We define h from B to C as h(z flm e w dw + g(to, zo), where lf( 2,),. is the line segment

By the definition of h, #'(z) = 1, thus (ZREENY — o 50 @R 5 5 constant on B. What is

more, exp(fh((tﬁffcf;’)wo)) = EX%((sigi(;,(;rr)o)) = 1. So exp(h(z)) = z, and thus exp(h(f(t,z))) = f(t,z) =
exp(g(t,x)) for all (t,z) € I x R such that |t — to|+|x — zo|< 6. Thus h(f(t,x)) — g(t,z) €
{2kmi,k € Z}. Notice again that h(f(to,x0)) — g(to, o) = 0, and by continuity, we have that
g(t,x) = h(f(t,z)) for all (t,x) € I x R such that [t — to|+|z — z¢|< §. Notice that h'(z) = 1, so
h is holomorphic on B. Therefore h is C°° on B when regarding B as a subset of R2. Then since
g is a composition of f and h, g is also C! in t, C*° in z. O

Lemma B.3. Let f : R — C\ {0} be an entire function on R and g : R — C a continuous function
such that exp(g(x)) = f(x). Then, g is entire on R if and only if the extension f. of f to the
complex plane, as defined in Definition 3.11, does not vanish on C.

Proof. < Assume that f. : C — C does not vanish. Then, for z € C, we can define h(z)

flo ;cgzj) dw + g(0), where [ . is the line segment between 0 and z. It follows that h/(z) =

showing that h is holomorphic on C. What is more, consider the function F(z) = f.(z) exp(—h(2)),
we know that F(0) = f.(0) exp(—h(0)) = f(0)exp(—g(0)) = 1, F'(z) = 0, thus F(z) = 1, for all
z € C. Thus exp(g(z) — h(z)) = exp(g(z)) exp(—h(x)) = f(z)exp(—h(z)) = F(x) = 1 for all
z € R. Thus there exists a k € Z, such that g(z) — h(z) = 2kmi. And notice that h(0) = g(0), we
have that g(x) = h(z) for z € R. Particularly, h is holomorphic on C, so it is entire on C and thus
on R, then so is g.

= Assume g : R — C is entire on R. Then, it can be written in the form g(z) = Y7 apa™,
which is a power series with infinite radius of convergence. Then g¢.(z) = ZZO:O anz™ is entire on
C, and so is exp(g.(z)). Notice that exp(g.(z)) and f.(z) are both entire on C, and exp(g.(x)) =
exp(g(x)) = f(z) = fe(x) for all z € R. Since the zeros of an entire function are isolated, except
for the zero function, we have that f.(z) = exp(g.(z)), and hence f.(z) # 0 for all z € C.

O

Remark B.4. We point out that for a real entire function f : R — C that does not vanish
on R, there exists a continuous function log f : R — C such that exp(log f) = f, (choosing
I =10,0] = {0} in Lemma B.1). However log f is not necessarily entire on R. For instance the
function f(z) = 1+ iz, is entire on R and does not vanish on R. However, log f = %log(l +2%) +
arctan(z)i + 2kwi, k € Z is no longer entire on R. In fact, the Taylor series at x = 0 for both
log(1+ 22) and arctan(x) have a finite convergence radius of 1 (can easily be checked) and not co.

Definition B.5. If the joint characteristic functional F(t,x) is continuous on [0,T] x R and
F(t,x) #0, for all (t,x) € [0,T] X R, we define log F' by Lemma B.1, as the function g such that
exp(g) = F and ¢g(T,0) = 0.

Remark B.6. Notice that by the definition of F in 3.1, F(T,x) =1, so the condition g(T,0) =0
18 satisfied.
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C Another example of model calibration via Fourier
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Figure 7: Quintic OU model (green lines) jointly calibrated to the SPX and VIX smiles (bid/ask
in blue/red) on 9 November 2021 via Fourier using the Nelder-Mead optimization algorithm. The
truncation level of the Riccati solver is set at M = 32, with calibrated parameters p = —0.6838, a =
—0.3914, (po, p1, 3, p5) = (0.0062,0.4964,0.0939,0.0654). ¢ is fixed upfront at 1/52 without cali-
bration.
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Figure 8: One-factor Bergomi model (green lines) calibrated to the SPX smiles (bid/ask in
blue/red) on 9 November 2021 via Fourier using the Nelder-Mead optimization algorithm. The
truncation level of the Riccati solver is set at M = 32, with calibrated parameters n = 1.6002, p =
—0.7214, « = —0.5992. ¢ is fixed upfront at 1/52 without calibration.
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