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Abstract. Combining data sources from NoSQL and SQL systems leads
to data distribution and complexifies user queries: data is distributed
among different stores having different data models. This data imple-
mentation complexifies the writing of user queries. This work proposes
a querying framework of a polystore with the use of unified models as
a user vision of the polystore. Unified models hides the variety of data
models and data distribution to the user. Our solution uses the Entity-
Relationship model of the polystore to infer unified models and to iden-
tify intermediate required operations to fulfill querying on real polystore.
Using these required transformations, a rewriting framework allows to
automatically rewrite the user query (against the unified model) with
respect to the real data distribution over the polystore. We apply this
framework with one dataset (UniBench benchmark) between a relational,
a document-oriented and a graph-oriented databases. We illustrate in
this work performance and the low impact of our query rewriting solu-
tion when compared to query execution time.

Keywords: Polystore - NoSQL - SQL - Data distribution - Data frag-
mentation - Query rewriting

1 Introduction

With multi-store and polystore systems [1], the combination of schema systems
and schema-less systems have led to distribution and querying issues [2]. One
native language is not sufficient to interrogate data. This system heterogeneity
emphasizes data complexity for polystore interrogation. Some hybrid languages
were proposed in order to query a polystore [3] [4] while others have chosen
to adapt existing native languages with developed complementary functions [5].
The main stake is to create a link between different systems in order to have an
integrated vision of data. Some works focus on adding an external algorithm to
handle heterogeneity of systems [6]. User querying and the vision of the polystore
need to be simplified. Logical views or models of each data system translate the
physical implementation inside the polystore as if it is only stored in one system
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[7]. In this work, we present a framework able to query over heterogeneous poly-
stores with data distribution and fragmentation based on the notion of unified
modeling. It shows all data present in the polystore in a single model: relational,
document or graph and hides the underlying data distribution, data models, and
data fragmentation. This simplified vision is intended to provide transparency
and simplicity for user querying. With the generation of a mapping dictionary,
our solution is able to create links between the polystore and these unified mod-
els. The process may includes the adding of transformation and/or transfer of
data. Our main advantage is the independence of our process despite data or
structure updates on the polystore. This paper is organized as follows: section
2 presents the main challenges with a motivation example on an e-commerce
scenario. Section 3 details the prototype development with the explanation of
the framework modules for querying the polystore. Section 4 shows results of
the query rewriting and execution time using this framework on real data and
over vertical data distribution. Finally we position our work in section 5 and we
conclude and give some perspectives about the future ones in section 6.

2 DMotivating example

Prerequisite A polystore PL is considered as a set of databases {DB;}. Each
database is composed datasets DS; corresponding to the storage of entity
classes and their data values. All datasets of one database are from the same
family system but it is different for the databases of a polystore: data has differ-
ent native forms. A wertical distribution is the distribution of attributes inside
different databases. It can lead to data fragmentation where the distributed at-
tributes belong to the same entity. The information linked to this entity is then
fragmented between different datasets. In our context of polystores, it complex-
ifies data distribution with the diversification of native forms. We consider data
fragmentation where an entity class is distributed in several databases of the
polystore. The entities distributed are linked according to a specific attribute
called distribution key. This key is the unique value defining an instance of the
entity class. It is used to identify all fragments of this entity.

A motivating example. Considering an E-commerce scenario from Unibench,
data is distributed into three systems: relational (DB;,D Bs), document-oriented
(DB3) and graph-oriented (DBy). This example uses Customers, Products,
Orders, Reviews, Persons, Post and Tag entity classes (Figure 1). For vertical
data distribution, the entity class Customers is stored in one dataset DSy
of one database DB; as shown in Figure 1. Data shows fragmentation where
one entity can have its attributes distributed in two databases. For example, the
entity class Products is stored in two dataset DSy, of database DBy and DSg
of database D B3. These databases are respectively from a relational storage sys-
tem and document-oriented system (Figure 1). One key attribute links the two
fragments of Products and is called the attribute of fragmentation, product id.
Data fragmentation is illustrated with the vertical fragmentation of Orders and
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Products between the relational and the document-oriented system. Their pri-
mary key is also the fragmentation key for the distributed entity classes. To hide
the complexity of four databases with three different modeling paradigms to the
user, we introduce a wunified model. It shows all data of the polystore "as if"
it was a mono-store, thus hiding the real data distribution, data models, and
data fragmentation. It is not implemented physically. Figure 2 shows the rela-
tional, document-oriented and graph-oriented unified models of the e-scenario
data model used for this example.

N DB4
> o
W Person .,,.
- is 1 person_id [
W Ds1 firstName N
DS3a 1 lastName

Customers
Orders N . 1 -
order_id customer_id has 0s

Total_price zipcode created post_id

1

Tag
has tag
DB3 comment tag_id

N
Products Reviews DSs

review_id RELATIONAL D51DS2,DS3a
rating DOCUMENT DS2b, DS3b, DS4

title
{D Bg} p_price feedback GRAPHS DSs
DS2b

product_id 1 i N
brand f

Fig. 1. Data model for the adapted e-commerce scenario

Query use case: "Do customers ordering the same products have a link between
each other?" Let’s assume that this use case is formulated in SQL on the Re-
lational Logical model. It implies to access to Person, Customers, Orders
and Products entities stored in different DB systems. Person is stored in a
graph database which is not compatible with the initial query language and sys-
tem interrogated. Detailing entity location complexifies user query. Orders and
Products are both fragmented between a relational database and a document-
oriented database which implies query adaptation and potentially an entity re-
building. In some works [6, 9] attribute location is specified in the user query. It
complexifies the rewriting of the query because the user should be aware of each
system, each language, each database and each dataset of the polystore. Figure
3 shows the difference between a user query in CloudMdSQL and a user query
on our system.
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Relational Unified Model

Document Unified Model

Person [{person_id, firsthame, lastMame}]
Knows [{person_idl, person_id2}]

orders [{order_id, total_price, customer_id}]
order_line [{order_id, product_id, price}]
Products [{product_id, brand, title, p_price}]
Reviews [{review id, customer_id, product_id,
rating, feedback}]

Post [{post_id, post_label, customer_id]}
Has_tag [{post_id, tag id}]

Tag [{tag id, tag label}]

Customers [{customer_id, person_id, name, zipcode}]

Person [{person_id, firstName, lastMame,
knows: [person_id2]}]

Customers [{customer_id, person_id, name,
zipcode}]

Orders [{order_id, total_price, customer_id,
order_line:[product_id, price]l}]

Products [{product_id, brand, title, p_price}]
Reviews [{review id, customer_id, product_id,
rating, feedback}]

Post [{post_id, post_label, customer_id,
has_tag: [tag_id]]}

Graph Unified Model

Tag [{tag_id, tag_label, has_post:[post_id]}]

Person [{person_id, firstName, lastName}]

Products—>[Reviewed |- >Reviews [{product_id, review_id}]
Reviews—>[Reviewed]->Products [{review_id, product_id}]

Person-> [Knows]-»Person [{person_id1, person_1id2}]
Person-» [Knows ]->Person [{person_id2, person_id1}]
Person->[Is]>Customers [{person_id, customer_id}]
Customers>[Is]->Person [{customer_id, person_id}]
Customers [{customer_id, person_id, name, zipcode}]

feedback}]

Orders-> [Command ]->Command [{order_id, customer_id}
Orders [{order_id, total_price, customer_id}]
Orders-> [Order_line ]>Products [{order_id,
product_id, price}]

Products—>[Order line]>0Orders [{product_id,
order_id, price}]

Products [{product_id, brand, title, p_price}]

Reviews [{review id, customer_id, product_id, rating,

Post |{post_id, post_label, customer_id]}
Person->[Has_created]>Post [{person_id, post_id}]
Customers—>[Command ] >0rders [{customer_id, order_id}pOSt_)[Has—c"EﬂtEd]_)pE"SD" [-{pUSt_l.d, person_id}]
1 Post> [Has_tag]>Tag [{post_id, tag_id}]
Tag>[Has_tag]>Post [{tag_id, post_id}]
Tag [{tag_id, tag_label}]

Fig. 2. Unified models of the data model showed in Figure 1

USER QUERY ON CLOUDMDsSQL

Customers{customer_id int, person_id int)@DB1 = (SELECT customer_id
FROM Customers)

Products (product_id string)@DB2 = (SELECT product_id FROM Products)
Orders1(order_id string, customer_id int)@DB2 = (SELECT order_id,
customer_id FROM Orders)

Orders2(order_id string, product_id string)@DB3 =
(db.orders.aggregate({Sproject:{_id:0, order_id:1, product_id:1}}))
Person (person_id1 int, person_id2 int)@DB4 = (MATCH (p1:Person)-
[k:KNOWS]—(p2:Person) RETURN p1.person_id as person_id1,
p2.person_id as person_id2)

SELECT Cl.customer_id, C2.customer_id

FROM Customers C1, Customers C2, Person P1, Person P2, Orders1 011,
Orders1 012, Orders2 021, Orders2 022, Products P

WHERE P.product_id=021.product_id AND P.product_id=022.product_id
AND C1.customer_id = 011.customer_id AND
C2.customer_id=012.customer_id

AND 011.order_id=021.order_id AND 012.order_id=022.order_id

AND (C1.person_id=P1.person_id OR C1.person_id=P2.person_id)

AND (C2.person_id=P1.person_id OR C2.person_id=P2.person_id);

USER QUERY WITH OUR SYSTEM

SELECT Cl.customer_id, C2.customer_id
FROM Customers C1, Customers C2, Knows K,
Orders 01, Orders 02, Products P

WHERE P.product_id = O1.product_id AND
P.product_id=02.product_id

AND Cl.customer_id = Ol.customer_id AND
C2.customer_id = 02.customer_id

AND (Cl.person_id = K.person_id1 OR
Cl.person_id = K.person_id2)

AND (C2.person_id = K.person_id1 OR
C2.person_id = K.person_id1);

Fig. 3. User query comparison between CloudMdsQL and our system for the use case
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3 Our proposed framework

3.1 Problem statement

The scope of our contribution considers a polystore PL with databases DB;
belonging to SQL and NoSQL paradigms. Data is distributed between relational,
document-oriented and graph-oriented databases. Querying this heterogeneous
polystore with a native language L is impossible without L being adapted to all
paradigms. This shows two sub-problems: (i) How to provide a global view of
PL in one of DBMS type ? (ii) How to execute the query written in an arbitrary
chosen language L over PL 7

3.2 An overview of the framework

Our solution aims to provide a transparency querying system over a heteroge-
neous polystore. A simpler representation of the polystore is used by the user to
express his query in one language of his choice. It is analyzed and transformed
part by part to take into account the real data location inside PL and to return
results in the expected form. Our rewriting system considers data transfer and
transformation and favors the use of DBMS operators and performance. Our
solution is composed of two phases: the construction phase and the exploitation
phase (Figure 4).

Construction phase

Exploitation phase

Logical Model Generator Userquery @ mp Leze
unified
Rules-based conversion mo

E/R model
= logical unified model

m
L ]

|

!

e Query analyzer
' w® ®T | Janguage= algebra
ce 8o

™

algebraic tree
.

Mapping Operator rewriting w: ° ot
Logical unified Adding operators e ex
models e em
m Datastore
o * query
¢ . 8 J . o : .. on Polystore rewriting | algebraic tree
@ ) v b, Adding
Polystore g® ew transformations and
Mapping generator Tatr® @T transfers

L,

DBi.DSj.Ak, DBi.DSj.Ak
unified polystore

Mapping
dictionary

ce Polystore query
algebraic tree

Query executor
polyglot translation

Result[{Data}]

Fig. 4. Overview of our framework for the construction and the exploitation phases
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1. Construction phase: composed of a module for logical unified model gen-

eration and a module for mapping dictionary generation:
— Logical Model generator: gives a unified representation of the polystore

for each included system (SQL, NoSQL). It hides the polystore complex-
ity by representing it in a set of databases belonging to the same system
(relational, document-oriented or graph-oriented). There is one Uys per
system of the polystore. The E/R model of the polystore is the input of
this module. It includes all existing attributes of the polystore. It should
be given to the module; the automatic extraction of such model is our of
the scope of this paper. The Ujs generation is based on specific rules: (i)
Each entity class becomes a relation for the relational unified model, a
collection for the document unified model and a category of node for the
graph unified model; (ii) The relationships become two oriented edges
linking their respective entity classes for the graph unified model. In case
of (1,N) cardinality, the foreign key is integrated into the relationship to
N and association properties are new attributes added to this relation
for the relational unified model. For the document unified model, the for-
eign key and relationship attributes become attributes of the collection
on the side 1. The relationship corresponds to a nested attribute for the
collection on the side N and group the foreign key and the relationship
attributes. In case of (N,M) cardinality, the relationship is a nested at-
tribute for both collections grouping the relationship attributes and the
respective foreign key for the document unified model. For the relational
unified model, the relationship becomes a relation where its primary key
is the composition of the primary key of each class of the association.

Algorithm 1 Mapping dictionary generation

1:

input: Uy, PL — unified model, polystore

2: output: Mapp — mapping dictionary
3: Mapp < {'Type’ : Uy .type,’ uv_tables’ : [] }
4: for DS; € Uy do

5: ds_infos < {'name’ : DS;.name,’ stores _infos: ]}
6: for pl_db e PL do

7: stores < {'name’ : pl _db.name,’ type’ : pl _db.type}
8: stores| columns'] < [ ]

9: for pl _ds € pl_db do

10: for attr € pl_ds do

11: column_map < found(attr, PL,UV)

12: stores| columns'] < add(column_map)

13: end for

14: end for

15: ds_infos| stores_infos'] < stores

16: end for

17: Mapp['uv_tables'] <+ ds_infos

18: end for

19: return Mapp
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— Mapping generator: defines links between attributes inside the unified
models and their actual location inside the polystore. It is visually rep-
resented as a table but it is implemented as a JSON file. The algorithm
1 generates these links according to the unified model and the polystore.
For each property of the unified model, its equivalences are found in PL
by browsing each dataset of each database of the polystore. Once, the
correspondences are found with found() function, the result are added
to the final mapping structure (with the function add()). Table 1 shows
an example of the mapping dictionary for the relational unified model.
Because the entity classes Orders and Products are fragmented between
DBy and D Bs this mapping dictionary allows our framework to link the
real position of each attributes of these entity classes with their unified
position presented to the user. Order _line is a relationship with (N, M)
cardinality (Figure 1), it is represented as a table in the Uy g when ap-
plying the Logical Model generator. The attributes of Order line in the
polystore are stored in the Orders table for DSs,.order id and in the
Orders collection for DSsy.order _id for the rest of the attributes.

Table 1. Extract of the dictionary showing the entity/relationship between Orders
and Products for the relational unified model

| Uvr \ DB \ DBs |
Orders.order _id DS3,.0rder _id DS3p.order _id
Orders.total _price D Ssp.total price
Order_line.order id | DSss.order id DS3y.order _id
Order_line.product _id DSsp.product_id
D Ssyp.details.product _id
Order_ line.price DSsp.price

DS3p.details.price
Products.product _id |DS24.product id D Sop.product_id

Products.brand DSs,.brand
Products.title DS5, title
Products.p_ price DSap.p_price

2. Exploitation phase: This phase is composed of a module for query analysis,
a module for operator rewriting, a module for optimization and the final
module for query execution. For the relational unified model, we consider the
operators of selection, projection and join in SQL, for the document unified
model, we consider the operators of selection and projection in MongoDB.

— Query analyzer: translates the user query into a global query algebraic
tree G defined as Gp = {Npode — (Nieft, Nright)} where each node
N is N = (op,[E.A]) and contains information about the associated
operation op, the list of attributes accessed by this operation and the
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corresponding entity E.A. The last nodes are the entities interrogated
and has no children nor operations;

— Operator rewriting: works on the G and specifies data location. The
entity classes are changed into their corresponding datasets. In case of
fragmentation, we introduce a rebuilding operator p to the new algebraic
tree. This step adapts the query to the databases of the polystore and
generates a multi-store query algebraic tree;

— Polyglot rewriting: works on the multi-store query algebraic tree and
generates the final polystore query algebraic tree with the presence of
transfers and transformations operations. These new nodes appear when
there is a change of paradigms identified by the information given in the
previous step;

— Polyglot executor: generates an execution plan according to the poly-
store query algebraic tree and translates the sub-trees of one algebraic
tree into the respective languages (SQL for relational, MongoDB for doc-
ument, Cypher for Graphs). This step follows the paradigms transforma-
tion rules presented in Table 2. The steps of transformation and transfers
of sub-results are included between the execution of those sub-queries.
The algebra for the document-oriented and the graph-oriented systems
are proposed for the purpose of this work and are not a generalization.

Table 2. Operator equivalences for relational, document-oriented and graph-oriented
systems

Operation selection |projection join

System

Relational algebra - SQL o WHERE| 7 SELECT | < FROM + WHERE
Document algebra - MongoDB| o $match | = $project |A + p $lookup + $unwind
Graph algebra - Cypher o WHERE|r RETURN — MATCH

4 Experiments

In this section, we evaluate with our framework according to two problems:
E1 (Adaptability): Mapping dictionary generation time, query rewriting time
and query execution time when there is a change in the polystore entity classes
distribution between systems; E2 (Volume): Query execution time for rewritten
queries according to volume variation.

4.1 Datasets

Benchmarks in the literature consider data that can be stored in multi-model
polystores. Unibench is one of them and considers the following systems: key /value,
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document-oriented, graph-oriented and relational. In our work, we use the re-
lational, the document-oriented and the graph-oriented models. We extracted
data from the University of Helsinki website [8] and we considered data from the
JSON (document), the relational, the graph and the key/value systems. For the
purpose of experimenting our framework, we decided to convert the key/value
data into document-oriented data (because we do not support key/values sys-
tems for the moment). We work with vertical data distribution where one entity
class is stored in one dataset of one database and on data fragmentation where
one entity class is distributed in multiple datasets (in the same or in different
databases).

4.2 Developed framework modules

The scope of our theoretical solution considers queries in SQL, MongoDB and
Cypher corresponding respectively to relational, document-oriented and graph-
oriented systems. We have developed the rewriting module that takes as an
input a relational user query (with o, 7, operators) or a document user query
(with o, 7w operators). It generates its algebraic tree which is then rewritten with
new operators. The graph user query is manually analyzed into its polystore
algebraic tree. The unified model generation and the execution plan are manually
produced. The obtained plan is manually rewritten into a python program to
allow its execution over the databases. Their automation is a work perspective.

4.3 Experimental setup and protocol

The experiments were performed on a machine working with Intel i7 2.30GHz
and with 64 GB RAM. The polystore data is stored following the distribu-
tion scenarios in a version 5.1.1 of MySQL, in MongoDB 5.0.6-rc1 Enterprise of
MongoDB Compass and in the version 1.5.9 Neo4J desktop. Our framework is
implemented with Python 3.10.2 (jupyter lab) for the construction phase and
the creation of the execution plan; and on IDE Netbeans 18 with JAVA 20 and
Maven 3.9.2 for the query rewriting phase. We have implemented python files in
order to generate relations, collections, type of nodes and type of relationships
corresponding to data distribution for the experiments. They use Unibench files
to generate new instances to increase the data volume. All new instances are
then inserted into the different databases to fulfill the presented experiments.
The considered use cases answer the following queries: (i) Q1 All products from
the brand ’54° with a price below 508, (ii) Qo Fvery person that shares a rating of
3 on a product’s review, (iii) Qs All orders for customers coming from the same
geographical area. With our framework, we have tested these queries expressed
in SQL, MongoDB and Cypher applied on their respective unified views.

4.4 Evaluation of our framework adaptability

We focus our experiments on our framework ability to adapt according to poly-
store dataset distribution. dd; is the reference distribution, dds is a distribution
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without data fragmentation and dds presents fragmentation in two datasets of
the same database. These distributions are shown in Table 3. Unified models are
based on the E/R model of data stored in the polystore, they are not impacted
by the change of dataset distribution inside the polystore. Papping dictionaries
depend on properties location inside polystore and they are regenerated following
the new implementation. For each distribution, the time for mapping dictionary
generation does not exceed 0.01 seconds.

Table 3. Data distribution scenarios for the E1

System | Relational Relational Document Graph
DB DB, DB, DBs DB,
Distribution
dd Customers|Products, Orders| Products, Orders Person, Post
Reviews Tag
dda Customers|Products, Orders Reviews Person, Post, Tag
dds Customers Reviews, Orders: Person, Post
Productsi, Orderss Tag
Productss

Each query (Q1, Q2, Q3) is tested using our framework to generate the final
algebraic tree according to the polystore configuration. In these scenarios, the
initial query was rewritten three times in order to get the average time of alge-
braic tree rewriting in our exploitation phase. Tables 4 and 5 show the average
rewriting time for each dataset distribution and for each query when executed
on the relational unified model and on the document unified model. It does not
exceed 3 seconds. Depending on the distribution, the operators included can be
different for the same query. )1 has one join, one transfer and one transforma-
tion when rewritten in dd; and does not have these operators when rewritten
in ddy for the relational Ujy;. In comparison, for the document unified model,
the operators of 1 in dd; are the same but in dd, the query has one transfer
and one transformation. Q2 works with two entities that keep the same place in
the polystore whatever the considered distribution is, but they are in different
systems.

Based on the algebraic trees, execution plans of each query are obtained and
their execution time was compared. We focus on )1 expressed on the relational
unified model and over the three polystore configuration considered. The results
returned show that the transfers and transformations from a paradigm to another
are the more important factors for execution time increase. Using results of Table
4, the presence of transfer and transformation operators influence the execution
time of the initial query. The high number of sub-results that will be converted
and transferred in a specific distribution is the reason why the execution time is
higher than for another distribution scenario.
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Table 4. Results of algebraic tree generation for each query for each data distribution
inside the polystore for the SQL interrogation of the relational unified model

Query Q1| Q1| Q1| Q2|Qz| Q2| W3|Qs| s
Distribution ddy | dds | dds | ddy | dds | dds | dd1 | dd2 | dds
|Average rewriting time (seconds)|0.76]/0.86]0.73|2.36]2.28|2.32(0.88/0.86/0.87|
Number of joins 1 0 1 2 2 2 2 1 2
Number of transfers 1 0 1 2 2 2 2 1 2
Number of transformations 1 0 1 2 2 2 1 0 2

Table 5. Results of algebraic tree generation for each query for each data distribution
inside the polystore for the MongoDB interrogation of the document unified model

Query Q1| Q1| Q1| Q2|Q2| Q2| 3| Qs|Ws
Distribution ddy | dds | dds | ddy | dds | dds | dd1 | dd2 | dds
|Average rewriting time (seconds)|1.28[1.46]1.32|1.58]1.55|1.82[1.54/1.57|1.62|
Number of joins 1 0 1 2 2 2 1 1 1
Number of transfers 1 1 0 2 2 2 2 2 1
Number of transformations 1 1 0 2 2 2 1 1 1

For each query, comparison of their
rewriting and execution time for dd1

11,53

-
[}

@ 10
E
g ® 3,59
8 ° '
o 4
E , 0,75
= 0 o 2,36 0,88
a1 Q2 Q3
Queries
For each query, comparison of their
rewriting and execution time for dd3
11,19 11,12
12
z 10
&
S &
_5,_’_ s 3,59
]
E ¢
L
o 0,73 2,32 0,87
a1 Q2 Q3
Queries

For each query, comparison of their rewriting

Time (seconds)

and execution time for dd2
11,53

3,59
- l
[ 0,36 2,28 0,86
a1 Q2 a3

Queries

H Rewriting time (seconds)

M Execution time (seconds)

Fig. 5. Experiment result for query rewriting time and query execution time for the
three polystore distribution considered in this paper considering the execution over the

relational unified model
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Figure 5 shows execution results and rewriting results for each query on each
distribution inside the polystore. )2 presents the maximum of transfers and
transformation needed to address data inside the polystore properly, whereas
@1 only presents one transfer and one transformation and Q3 is composed of
two operations of transfer and only one of transformation. For @)1, the change of
distribution for the polystore impacts its execution time when the entity class
is fragmented between two paradigms (0.75 s), is not fragmented (0.16 s), and
fragmented in a different paradigm than the one interrogated (11.19 s). The two
entity classes considered by @2 are in two different paradigms. One of the sub-
results needs to be transformed and transferred into the relational one, which
explains the execution time (3.59 s). Q3 execution time (11.53 s) is not impacted
by the change of ddy with dds. In these scenarios, the entity classes considered
belong to the same paradigm even if they are found in two databases. In dds, one
entity class changes its paradigm and needs a transformation operation before
the transfer one. The execution time is still close to the one for dd; and dds
(11.12 ).

4.5 Evaluation of our framework with data volume

This experiment is based on the dd; dataset distribution where we added more
instances to double the initial data volume as shown in Table 6.

Table 6. Data volumes and detail of instances for each DB; of PL

[ Volume | DB: | DB; | DBs | DBy |
Vi (103.09 Mb)[0.46 Mb[12.4 Mb][3.23 Mb| 87 Mb
Vo (200 Mb) | 15 Mb [ 55 Mb | 15 Mb [115 Mb

New instances in V5 are randomly generated from the initial Unibench dataset
using a python algorithm and dependencies between entities are respected. We
experiment how data volume impacts query execution. These modifications are
linked to the number of instances, logical unified models and the mapping dictio-
nary are not impacted. The rewriting time of each query is the same than in the
previous experiment for dd; however the execution time is different. Q; shows
a rewriting variation and the location of all attributes of Products is searched
using the mapping dictionary. Depending on the original system chosen, the
transfer and transformation operations are added to the algebraic tree. The in-
crease of volume is expected to impact the number of lines returned for each
sub-result and hence, the execution time. (01 is composed of two sub-queries: ¢;
corresponding to the first selection on the brand attribute and go correspond-
ing to the second selection on the price attribute. The results obtained for @,
execution time comparing Vi and V5 are presented in Figure 6. This experi-
ment is based on an execution plan manually generated for each unified model
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interrogated. We expected an execution time twice higher for V5 compared to
V1. We obtained an increase of execution time for V5 that is almost 1,5 times
higher than V;. Q1 considers Products entity which is fragmented between the
relational database and the document-oriented database as considered in dd;
data distribution. The execution time for the document-oriented unified model
is explained by the low number of lines transformed and transferred from the re-
lational database into the document database when compared to the execution
time for the relational-oriented database which needs the transformation and
transfer of thousands of lines. Finally for the graph oriented model, there are
more transfers and transformations from the relational and document databases
which explain the high value in Figure 6.

Q1 execution time over the different systems

according to data volume
381,53
350
o 300
-]
c 250
Q
2 200
“
< 150
£ 100
[=
50
0

283,23

0,91 1,5
V1 100Mo V2 200 Mo

M Relational Unified Model Volume of data
B Document Unified Model
B Graph Unified Model

Fig. 6. Experiment result for query execution time for the two data volumes V4 and V2
considering the execution over the relational, document-oriented and graph oriented
unified models for Q1

5 Related Work

The appearance of polystores with the combination of SQL and NoSQL systems
leads to different level of complexity: data distribution, different models and
query language.

Data distribution. The association of several systems leads to data distribution.
Existing works focus on vertical distribution where one entity class is found in
one dataset of one database of the polystore. Accessing data of each system
is complicated when crossing systems. Operations are executed outside DBMS
with an external function [6] [14]. HydRa [5], a framework proposing physical
possible models according to a specific conceptual model, mentions this type of
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vertical distribution for one entity but do not explain how to considerate it for
querying purposes. Some solution [6] might apply to data fragmentation. Their
approach uses an algorithm executing the join operation between datasets of
different databases, we suppose they can handle this specific case of vertical
data distribution but they do not experiment this in their work.

Data Model. Some works try to find a universal representation for a polystore
to hide the complexity into one model. This schema inference helps to define the
multiple systems as a simplified one [10]. It can be a graph representation [11]
[12] [13] or a u-schema model [14] illustrating structural variations. Because "one
size does not fit all" [15], it is question to transfer all data into this new model.
Changing data representation impacts users and modifies the initial paradigm
presented to them. They must adapt to one fixed vision of the polystore.

Query language. Having different data storage systems brings the question of the
user query language. Some works choose to rewrite the initial query according
to user specifications or to one system of the polystore [16] [17]. Some works [1§]
use parallel query methods outside data stores (map/reduce/filter). It is helpful
to execute operators outside DBMS and to not consider paradigms conversion
and they use specific languages limited to relational operators (CloudMdsQL
language [6]). BigDAWG [9] uses the principle of islands which communicates
with adapters. To query this polystore, the user needs to specifies the system
interrogated (for example RELATIONAL( SELECT * FROM...)). This adds
information to the user query. In this paper, we choose to provide unified models
to allow the user to query with transparency because our systems deals with the
sub-queries generated from the mono-language user query.

Overview. Table 7 illustrates the differences between our works and others work-
ing on vertical data distribution inside polystores. The comparison is for the re-
lational R, document-oriented D, column-oriented C and graph G systems, the
query language(s) considered and if it is question of entity class distribution in
one or several system (fragmentation). In our work, the user has the choice of
the unified model he wants to query without thinking about the distribution and
possible fragmentation inside the polystore interrogated.

6 Conclusion

In this paper, we focus on polystore systems with relational, document-oriented
and graph-oriented systems. Data is distributed vertically. We define a frame-
work composed of unified models intended to hide the polystore complexity to
users. A mapping dictionary is generated to link these representations and the
real data distribution. The user can query with a single query one unified model
of his choice (relational, document, graph) whereas data is kept in its native
form and in its specific location inside the polystore. Experiments were con-
ducted on a Unibench dataset, showing the low impact of data distribution on
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Table 7. A comparison of existing solutions on polystores

Entity class
Authors RD|C|G Query fragmentation
El Ahdab et al [@/®[O]@®[SQL - MongoDB - Cypher] [ J \
Barret et al [12] o0 e SparkQL O
Candel et al [14] e SQL O
Ben Hamadou et al [13]|@|@[@®O SQL - MongoDB O
Hai et al [16] oo e SQL - JSONiq O
Papakonstantinou [17] |@|/@]O]O SQL O
Duggan et al [9] [ J)©) Declarative O

the rewriting solution and the more important impact on the execution time.
Unified models depend only of data structures, they need to be rebuilt only when
some data structures change in the polystore (documents or graphs). Existing
works on data model extraction may help to automatically produce E/R model.
The execution plan optimization and automation will be a prospect of develop-
ment. This part has an important cost due to data transfers and transformation.
Considering our future work on polystore systems, we will expend our operators
for each considered model (aggregation), data models (key-value) and we will
experiment graph queries on graph unified model.
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