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Abstract. In this article, we show how to extend the multi-view stereo (MVS) technique when the object to be
reconstructed is inside a transparent – but refractive – medium, which causes distortions in the images. We provide a
theoretical formulation of the problem accounting for a general, non-planar shape of the refractive interface, and then
a discrete solving method. We also present a pipeline to recover precisely the geometry of the refractive interface,
considered as a convex polyhedral object. It is based on the extraction of visible polyhedron vertices from silhouette
images and matching across a sequence of images acquired under circular camera motion. These contributions are
validated by tests on synthetic and real data.
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1 Introduction

Natural History Museums often house valuable specimens in transparent mediums, like insects in

amber or animals in formaldehyde (see Figure 1). These specimens are crucial for evolutionary

studies but challenging to digitise due to the need for 3D see-through techniques. CT scans are a

standard method but are costly and not feasible for large collections. Photogrammetric 3D scanning

presents a viable alternative, though it faces challenges due to refraction effects and the shape of

the interface between air and the medium. We propose a 3D reconstruction method for objects in

a homogeneous refractive medium. Building on previous works,1, 2 this paper contributes a revised

algorithm for calculating the shortest optical path between a 3D point and its projection in the

target image, for interfaces of any shape. Its main contribution, however, is a comprehensive 3D

reconstruction pipeline for objects in refractive media.
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Figure 1 Left: prehistoric beetle trapped in amber (seen under a microscope). Right: reptiles specimens in jars.
Images: A. Solodovnikov (left) and A. D. Jordan (right), courtesy of the Natural History Museum of Denmark.

Assumptions This paper introduces a novel 3D reconstruction method for objects within a re-

fractive medium under the following assumptions: we assume homogeneous refractive media and

smooth interfaces, a given index of refraction (or a range), binary masks of the object and of the

interface, known camera parameters and triangular mesh representing the interface. In practice,

assuming multiple views at fixed rotations on a turntable and visible edges of the medium, camera

extrinsics and a convex polyhedron representing the interface can automatically be recovered.

Paper organisation We start by reviewing existing studies on refraction in Section 2. Section 3

details the adaptation of the multi-view stereo technique in the presence of an interface, focusing on

predicting the image projection of a 3D point in the refractive medium, a computationally difficult

part. Synthetic image tests in Section 4 validate this method. Validation with real data, shown in

Section 5, involves developing a robust 3D reconstruction method for polyhedral interfaces and an

innovative technique for estimating index of refraction without specialised equipment. The paper

concludes in Section 6, suggesting further extensions.
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2 Related work

Refraction in computer vision varies in treatment: as a bias to correct in classic vision techniques,

an element in active systems, or a feature in refractive 3D reconstruction pipelines.

Refraction compensation in classic vision. Lenses converge light rays from point sources at an

image point, essential in optical instruments. Precise lens alignment minimises aberrations, or

undesired refraction effects. Transparent objects in a scene can distort the appearance of opaque

objects behind them. Studies have addressed these distortions, particularly with transparent ob-

jects like window panes attached to cameras, allowing calibration for standard 3D reconstruction

pipelines. Maas in3 showed how refraction through aquarium glass improves photogrammetry

measurements. Łuczyński et al. in4 corrected images from underwater cameras to restore epipolar

geometry. Image pre-correction has been explored in5, 6, with neural network-based correction in7.

Light field cameras for refraction correction are discussed in8, 9.

Active refraction techniques. Studies termed active refraction use refraction for single-view 3D

reconstruction, duplicating images using bi-prisms10, 11 or rotating glass plates12, 13.

Estimation of a refractive interface. Morris utilised refracted patterns on water surfaces14, and

with Kutulakos, mapped points seen through transparency15. Ben-Ezra and Nayar16 fit surface

models to distorted images of known geometries. Neural network advancements for 3D recon-

struction of transparent objects are noted in17, 18.

Bathymetry. Refraction correction is essential in remote-sensing bathymetry, and is exemplified

by Murase,19 Woodget,20 and Cao.21

Classical framework with refraction adaptation. 3D vision systems have adapted to refractive

interfaces, covering calibration, camera pose estimation, and techniques like refractive structure-
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from-motion, refractive multi-view stereo, and refractive photometric stereo. Sturm22 discussed

camera models for structure-from-motion, including refractive axial cameras. Chari and Sturm23

extended epipolar geometry for planar interfaces. Łuczyński et al.4 proposed a pinhole/axial cam-

era model with calibration, and Chen et al.24 studied fringe projection systems. Challenges in

underwater camera use and implications are detailed in works by Jordt et al.25–27 and others. Pose

optimisation under flat refractive interfaces is discussed in28, with validations primarily on under-

water images29. Scenarios like viewing aerial objects from underwater are covered in30, 31, and

air to water transitions in32. Underwater photometric stereo extensions are investigated in studies

like33–36.

Inverse rendering and novel views. Differentiable rasterisers37–39 and ray tracing inverse render-

ers40–42 are emerging in inverse rendering, alongside NeRF adaptations for refraction43, 44. NeuS45

and its updated version46 combine neural SDF (signed distance function) and radiance fields for

3D reconstructions. A framework for objects in cuboid refractive mediums47 incorporates ambient

lighting and ray tracing with Snell-Descartes and Fresnel laws, yet its results are not available for

comparison.

We focus on 3D reconstruction by multi-view stereo in refractive media, building upon previous

works like patch-based MVS,48 Kang et al.,49 and Agrawal,50 targeting also non-planar interfaces,

a gap in current research.

3 From multi-view stereo to refracted multi-view stereo

3.1 Multi-view stereo

Multi-view stereo (MVS) aims to maximise photometric coherence across different images in a

3D scene for dense 3D reconstruction, as summarised in51. Given t + 1 images and their camera
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poses, the image of the first pose is chosen as the reference image. Let P denote a 3D point visible

in all images, p = π(P) its projection in the reference image and pj = πj(P), j ∈ {1, . . . , t}, its

projections in the t other images, called control images. The Lambertian assumption is written:

Ij ◦ πj ◦ π−1
z (p)︸ ︷︷ ︸

pj

= I(p), j ∈ {1, . . . , t} (1)

where Ij and I denote the grey level functions of the j-th control and reference images. The index

z in π−1
z is necessary as the point P = π−1

z (p) is defined only if its depth z is known.

The MVS technique consists in searching for the point P = π−1
z (p), conjugate of p, satisfying

the system of Equations (1), by solving, for instance, the least squares problem:

min
z ∈R

t∑
j=1

[
Ij ◦ πj ◦ π−1

z (p)− I(p)
]2 (2)

In practice, the comparison between the grey levels Ij and I is performed between neighbourhoods

of pj and of p, the use of a robust estimator is recommended (see the overview presented in51).

When the medium is homogeneous, the π−1
z transformation from the reference view to the 3D

scene consists in inverting the central projection. Denoting by K the camera’s calibration matrix,

this transformation is written:

π−1
z (p) = z K−1

p
1

 (3)

The reprojection on the j-th control image is also obtained by central projection, considering

the camera pose change as a known rigid transformation between the reference pose and the j-th

with rotation matrix Rj and translation vector tj . With the projection operator f
(
[a, b, c]⊤

)
=
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[a/c, b/c]⊤, this second transformation is written:

πj(P) = f (K (Rj P+ tj)) (4)

Carrying over (3) and (4) into (2), the problem of 3D reconstruction by MVS is rewritten:

min
z ∈R

t∑
j=1

Ij ◦ f
K (z Rj K

−1

p
1

+ tj)

− I(p)


2

(5)

The objective in (5) is nonlinear, non-differentiable and/or non-convex, making optimisation po-

tentially difficult. Solving (5) is thus usually done by an exhaustive search (brute-force) in a pre-

defined list of values of depth z (see Figure 2-a). This simplistic strategy has shown to be very

effective for the 3D reconstruction of scenes with sufficiently textured surfaces52. As Figure 2-b

indicates, the scenario is more complex when the 3D scene is immersed in a refractive medium.

(a) (b)
Figure 2 (a) MVS in a homogeneous medium: the different proposals for the point P, which are materialised by red
dots, are reprojected in the control images. (b) MVS with refraction: the reprojection of P in the control images is
more difficult to compute, due to refraction.

6



3.2 Refractive multi-view stereo

The image of an object in a refractive medium, with an index of refraction (IoR) over 1, becomes

distorted, altering its epipolar geometry. In this context, a point in one image correlates to a curve

whose form is influenced by the IoR and the interface shape between the medium and air. Chari and

Sturm’s work in23 generalises epipolar geometry’s matrix formalism with a 12 × 12 fundamental

matrix, important for camera pose estimation in structure-from-motion. Since refraction adaptation

in this field is covered in27, 53, our paper focuses on adapting the MVS technique for 3D scenes in

refractive mediums. This new challenge, refractive multi-view stereo (RMVS), involves addressing

(2) at each point p in the reference image, with necessary adjustments. In the context of refraction:

• Back-projection of image point p: The back-projection of p in refractive conditions involves

tracing a broken line from C through p (see Figure 2-b). The back-projection formula is

more complex than (3), expressed as:

π−1
z̄ (p) = P+ z̄ v (6)

Here, P is the point of incidence at the interface, the unit director vector v of the refracted ray

follows Snell-Descartes refraction law (see Section 3.3), and z̄ ≥ 0 is the distance between

P and P along the refracted ray (see Figure 2-b). Determining P varies in complexity with

the interface’s shape, while computing v is straightforward if interface normals are accu-

rately known. Tests on synthetic images (with known normals) and real images (assuming a

polyhedral interface) are conducted, leaving generalisation to any interface shape and effects

of normal estimation inaccuracies for future exploration.
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• Reprojection of 3D point P: Computing the reprojection pj = πj(P) with refraction is more

complex than (4), involving solving a shortest optical path problem (see Section 3.3).

• Image multiplication: Refraction can cause a single 3D point P to project to multiple image

points, as shown in Figure 6. Each projection is equally viable for solving (2).

Compared to the MVS technique, the main difficulty of RMVS is the reprojection pj = πj(P),

j ∈ {1, . . . , t}, of a 3D point P into the different control images. Let us first consider the case of

a planar interface, before tackling the case of an interface of any shape.

3.3 Planar interface

The first Snell-Descartes law asserts that the refracted ray lies in the plane of incidence, spanned

by the incident ray, and the interface normal in Pj: the phenomenon is planar (see Figure 3-a).

Figure 3 (a) Second Snell-Descartes law on refraction. (b) The back-projected ray, which has two breaks as it crosses
the refractive cube, does not project into the control camera along the red epipolar line. For reasons of clarity, this
graphical representation does not perfectly conform to the Snell-Descartes laws.

Let i1 be the angle between the interface normal and the ray in IoR n1 medium, and i2 be the

angle between the normal and the ray in IoR n2 medium. The second Snell-Descartes law asserts
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that:

n1 sin i1 = n2 sin i2 (7)

For a planar interface, squaring both sides of (7) and using notations from Figure 3-a, we get:

n2
1

(u1 − u)2

(u1 − u)2 + v21
= n2

2

(u2 − u)2

(u2 − u)2 + v22
(8)

To find the point of incidence Pj on the u-axis, we need to solve a quartic equation in ū:

a4 u
4 + a3 u

3 + a2 u
2 + a1 u+ a0 = 0 (9)

whose coefficients are based on u1, v1, u2, v2, and α = n2/n1
50. For planar interfaces, (9) typically

has one real solution, found using methods like Newton-Raphson. To compute pj = πj(P), first

solve (9) for Pj , then project it into the j-th control image as per (4).

3.4 Interface of any shape

The Huygens-Fresnel principle predicts wave surfaces orthogonal to light rays. Dijkstra’s algo-

rithm54 offers a discrete method to calculate these wave surfaces, enabling the shortest path iden-

tification between graph vertices. For tracing light rays, the scene can be divided into voxels,

serving as the vertices of an undirected graph. The process simplifies in a homogeneous refractive

medium, where light propagates straight, similar to air.

The path of a light ray from a 3D point P to the center of projection Cj of a control camera,

j ∈ {1, . . . , n}, forms a broken line with a single break at the interface, as illustrated in Figure 2-b.

As previously discussed, locating the shortest optical path between P and Cj boils down to finding
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the incidence point Pj . Solving this for a planar interface equates to solving a quartic equation (see

Section 3.3), but it becomes analytically challenging with more complex interface shapes.

One might wonder if the πj transformation preserves point alignment, specifically if the πj

image of a refracted light ray remains straight in the j-th control image. Figure 3-b shows that this

can be the case with a planar interface, however, with a continuous interface as in Figure 17, the

ray image in no more straight.

For general cases, finding the incidence point Pj involves discretising the interface and min-

imising the optical path of the ray (Cj, P̂,P) through potential points P̂ on the discretised inter-

face, via a potentially heavy exhaustive search on “eligible points” P̂:

Pj = argmin
P̂

{
n1 d(Cj, P̂) + n2 d(P̂,P)

}
(10)

Here, d(·, ·) denotes the Euclidean distance in R3.

Practically, the interface is discretised into a 3D mesh with triangular faces. The eligible points

P̂ for incidence point search are the barycenters of the mesh triangles visible from the projection

center Cj , as depicted in Figure 4. The solution of Problem (10) corresponds to the blue-coloured

triangle in Figure 5. To refine this result, Pj is then sought in the plane of this triangle, following

the method in Section 3.3. The solution is accepted if it is inside the triangle. If not, a similar search

is conducted on all adjacent triangles (coloured purple in Figure 5). In the absence of a solution

within the triangles, the initial solution of Problem (10) is chosen as the incidence point. A more

precise search involving optimisation under linear constraints defining the triangle is possible but

significantly increases computation time. Therefore, despite testing this approach, it has been

omitted from our current methodology.
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Figure 4 The point of incidence Pj between a 3D point and the center of projection Cj of the j-th control camera
is determined by testing the set of barycenters P̂ of the triangles of the 3D mesh of the interface that are seen by this
camera.

Figure 5 Once the triangle corresponding to the solution of Problem (10) has been identified (triangle indicated in
blue), the search for the point of incidence Pj is refined using the method described in Section 3.3. In the case
where the solution of this second problem is outside the triangle, a search is performed on the set of adjacent triangles
(triangles indicated in purple).

4 Validation on synthetic images

4.1 Cubic interface

We begin by validating our method on a scene featuring a graphosoma insect, approximately

30mm in size, immersed in a refractive cube with an IoR matching that of epoxy resin (n2 = 1.56).

The focal length of the camera is 50 mm, with an average distance of about 180 mm from the

scene. Figure 6 displays two synthetic images (out of a total of 18) of this scene, generated using

the ray tracing capabilities of Blender software.
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Figure 6 Two synthetic images (among 18) of a graphosoma immersed in a cube of epoxy resin. In both cases, the
insect is visible through three faces of the cube (only partially, regarding the top face). Due to reflection phenomena,
fragments of the object are visible at the boarders of the immersion medium. These image fragments have not been
used by our solving method. Source of the 3D model: Digital Archive of Natural History55.

Figure 7 presents three views of the coloured 3D point cloud reconstructed using our RMVS

method. Figure 8 displays this point cloud post-processing, where it has been “cleaned” using the

Connected-component labelling tool in the Cloud Compare software.

Figure 7 3D reconstruction of a graphosoma immersed in a cube of epoxy resin, seen from three angles, obtained by
our RMVS solving method from 18 synthetic images such as those in Figure 6.

Figure 9 compares results obtained without considering refraction, utilising three different al-

gorithms: a basic MVS from Equation (5), the Meshroom-proposed MVS pipeline56 aligned with

state-of-the-art algorithms, and neural reconstruction with NeuS246. These methods, not account-

ing for refraction, fail to interpret the distortions and image duplications of the graphosoma, lead-
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Figure 8 Result of Figure 7 after “cleaning” the 3D point cloud by the Connected-component labelling tool of the
Cloud Compare software.

ing to poorly reconstructed scenes1. Table 1 confirms these shortcomings with high RMSE scores.

Conversely, our RMVS solving method, tailored for refraction, demands significantly more com-

putational time: from 5-16 minutes for Figure 9’s results to 24 hours for Figure 7’s reconstruction

(using CPU Intel Xeon Silver 4110 2.10 GHz with all 32 threads for parallel computing), for

roughly 500,000 3D points in each instance. Notably, the computation time has been reduced

since only those barycenters P̂ of the mesh triangles (see Figure 4) that project within the insect’s

silhouette in all the control images are considered.

Figure 9 3D reconstruction results without considering refraction. From left to right : a basic MVS derived from
Equation (5); the MVS approach by Meshroom56; the neural 3D surface reconstruction method NeuS246. The dupli-
cation of the graphosoma caused by refraction leads to inaccurate reconstructions.

1A comparison with ReNeuS47, a refraction-inclusive extension of NeuS, would be ideal, but its code is unavailable.
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Method Basic MVS Meshroom NeuS2 Ours
RMSE (mm) 6.12 5.44 6.44 0.57

Table 1 Root mean square error (RMSE, in mm) comparison between our method and three other methods which do
not take refraction into account.

This first example provides insights into our solving method. The 3D reconstruction in Figure 7

is derived from merging eight coloured 3D point clouds, each generated as follows:

• One image is selected as the reference image. Five others serve as control images: in four,

the main image of the insect is viewed through the same cube face as in the reference image;

in the fifth, it is through an adjacent face.

• For each pixel p in the reference image, we consider each point P on the refracted ray from

the back-projection of p, for each control image, and for each cube face visible in the control

image (up to three per control image). A quartic equation of type (9) is then solved using the

Newton-Raphson method.

• After finding a solution, if its projection pj in the j-th control image falls inside the insect’s

silhouette on the relevant face, the similarity between the neighbourhoods of p and pj is

computed using a robust estimator, here sum of absolute deviations (SAD). If the SAD is

calculable for multiple faces in the j-th control image (up to three), only the smallest value

is kept. If no SAD can be calculated, another point P is tested from a predefined list of 3D

points. The chosen point P is the one that minimises the SAD, it is assigned the colour of

the pixel p in the reference image. If no SAD can be calculated, no 3D point is associated

with pixel p.

Since all the graphosoma images are synthetic, we can measure the deviations from the ground

truth for each of the eight 3D point clouds whose fusion yields the result in Figure 7. Table 2
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lists the square root of both the mean and median of these squared deviations. These values are

considerably low relative to the scale of the reference 3D model and its distance from the camera,

providing quantitative validation for our RMVS solving method.

Face Front Front-right Right Back-right Back Back-left Left Front-left All
RMSE (mm) 0.25 0.48 0.85 0.98 0.40 0.73 0.60 0.65 0.57
RMedSE (mm) 0.15 0.30 0.40 0.40 0.25 0.33 0.33 0.40 0.30

Table 2 Second line: root mean square error (RMSE, in mm) of the eight 3D point clouds whose fusion provides the
result of Figure 7. Third line: root median square error (RMedSE, in mm). The last column gives these estimates for
all eight 3D point clouds.

Figure 10-a illustrates that the image of a point P within a refractive medium can produce mul-

tiple images, each representing a local minimum of the optical path between P and the projection

center (Fermat principle). Thus, it is feasible to match this image of the insect, effectively applying

our RMVS solving method with a single view, as demonstrated in10, 11. The result, shown in Fig-

ures 10-b and 10-c, is rough and incomplete, comprising just a single point cloud. However, this

technique differs from other single-view 3D reconstruction methods like shape-from-shading57, as

it relies on the principle of triangulation.

(a) (b) (c)
Figure 10 (a) Example demonstrating the tripling of the graphosoma’s image. A 3D point cloud is derived from this
single image, selecting the “main” image (right face) as the reference. (b-c) Two perspectives of the 3D point cloud
reconstructed by our RMVS solving method, using just this single image.
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4.2 Spherical interface

The second experiment involves a graphosoma immersed in an epoxy resin sphere. Figure 11

presents two synthetic images of this setup, alongside images of the graphosoma from identical

angles but outside the refractive medium. The notable differences between these image pairs,

apart from the magnification effect of the resin sphere acting like a convex lens, are visible in the

deformed appearance of the insect’s legs and antennae due to refraction. Unlike the images in

Figure 6, the images in Figures 11-a and 11-b are not multiplied. They are rendered using ray

tracing, approximating the sphere with a triangular mesh of 327,000 faces, generated in Blender

from an icosphere with applied subdivisions.

Figure 11 (a-b) Two synthetic images of the graphosoma immersed in an epoxy resin sphere. (c-d) Synthetic images
of the graphosoma from the same angles but outside the refractive medium. Along with the magnification effect from
the resin’s convex shape, the insect’s legs and antennae appear deformed.
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Figure 12 presents the coloured 3D point cloud from three angles, reconstructed using our

RMVS method from 18 images like those in Figures 11-a and 11-b. This cloud is formed by merg-

ing eight 3D point clouds. Notably, the legs and antennae of the insect align perfectly across these

clouds, and even very fine details are captured. It is important to note that these 3D point clouds

are merged with no post-processing, except for cleaning by the Cloud Compare’s Connected-

component labelling tool. However, the high number of faces on the sphere significantly increases

the computation time, from 24 hours for the result of Figure 7 to one week for that of Figure 12.

Figure 12 3D reconstruction of the graphosoma immersed in an epoxy resin sphere, viewed from three angles,
obtained with our RMVS solving method with 18 images such as those in Figures 11-a and 11-b. The reconstruction
was refined using the Connected-component labelling tool of the Cloud Compare software.

For comparison, Figure 13 shows that when refraction is not considered, MVS struggles to

accurately reconstruct the 3D shape, resulting in ghosted legs and antennae. This issue highlights

the inconsistency among the eight 3D point clouds.

The choice of interface discretisation scale balances precision with computing time. Table 3

demonstrates the impact of reducing the number of triangular faces in the sphere’s 3D mesh (using

Cloud Compare’s decimation tool), which implies a less precise interface representation. This is

assessed through the same two estimators introduced in Section 4.1 (RMSE and RMedSE), along

with the percentage of 3D points successfully reconstructed, and the required CPU time.
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Figure 13 3D reconstruction using MVS from 18 images such as those in Figures 11-a and 11-b, results in ghostly
legs and antennae due to inconsistencies among the eight 3D point clouds.

Percentage of faces 100% (327k) 50% (164k) 25% (82k) 10% (33k) 5% (16k) 1% (1.6k) 0.5% (820)
RMSE (mm) 1.77 1.82 1.90 2.03 2.25 3.72 4.32
RMedSE (mm) 0.30 0.33 0.35 0.45 0.57 2.10 3.05
Reconstructed 3D points 98.0% 97.4% 96.2% 93.9% 91.6% 77.8% 69.4%
CPU time (minutes) 498 272 147 49 37 28 23

Table 3 Impact of reducing the number of triangular faces in the sphere’s 3D mesh on the 3D reconstruction of the
graphosoma using our RMVS solving method (the number of faces used to approximate the sphere is indicated in
parentheses).

Figure 14 shows the 3D reconstructions corresponding to Table 3. As anticipated, the first

3D points to “disappear” – those conjugated with pixels p for which no SAD similarity value is

calculable – are on the thinnest parts of the 3D model, specifically the legs and antennae.

4.3 Other interfaces

Figure 15 presents two synthetic images of the graphosoma inside a regular dodecahedron made

of the same epoxy resin. Our RMVS 3D reconstruction is shown in Figure 16. The deviations

from the ground truth are only marginally higher than those in Table 2, despite the images being

more challenging for 3D interpretation compared to those in Figure 6. While the RMSE for the

entire point cloud increases from 0.57 mm to 1.10 mm, the RMedSE rises less significantly, from

0.30 mm to 0.35 mm. This higher RMSE value is likely due to substantial image deformation,

potentially skewing the SAD estimator’s similarity measurement.
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Figure 14 Six 3D reconstructions of the graphosoma immersed in an epoxy resin sphere, illustrating the effect of
reducing the percentage of triangular faces of the sphere used in our RMVS solving method (refer to Table 3). Figure
12 displays the outcome when all 327,000 faces are utilised.

Figure 15 Two images of the graphosoma immersed in an epoxy resin regular dodecahedron.

Figure 17 shows that images can undergo even more distortion with a block of any convex

shape. The 3D reconstruction achieved by our RMVS solving method, as shown in Figure 18,

remains true to the original form but is slightly less precise than the reconstruction in Figure 7.

This reduced precision is due to some grazing rays, where the angle i2 in the Snell-Descartes law

(7) approaches π/2. Consequently, since the derivative of the arcsin function tends towards infinity
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Figure 16 3D reconstruction of the graphosoma immersed in an epoxy resin regular dodecahedron, viewed from three
angles. This was created using our RMVS solving method from 18 images such as those in Figure 15, followed by
refinement using the Connected-component labelling tool of the Cloud Compare software.

at 1, this results in calculation inaccuracies for the angle i1 in Equation (7). In contrast, Figure

19 illustrates that neglecting refraction in the reconstruction process yields a result resembling a

random 3D point cloud.

Figure 17 Two images of the graphosoma immersed in a convex block of epoxy resin.

Figure 18 3D reconstruction of the graphosoma immersed in a convex block of epoxy resin, seen from three angles,
using our RMVS solving method from 18 images such as those in Figure 17.
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Figure 19 3D reconstruction by MVS, from 18 images such as those in Figure 17: the result resembles a random 3D
point cloud.

In this section, we validated our RMVS solving method only on synthetic images, but pur-

posely. Indeed, to be able to process real images, several additional data are necessary, in addition

to the images themselves and the intrinsic parameters of the camera: the shape of the interface

(with more or less precision, see Table 3), the poses of the camera and the IoR of the transparent

medium.

5 Implementation on real images

The primary challenge in applying our 3D reconstruction method to real images lies in estimating

camera poses. While the refractive structure-from-motion method suggested in53 is an option, it

requires prior knowledge of the medium’s IoR, which is one of the unknown factors. Additionally,

since recovering the 3D shape of the interface is essential, we propose in Section 5.1 a simultaneous

estimation method for both camera poses and the interface 3D shape. This approach relies on

multi-view matching of polyhedron vertices detected in the images and does not rely on the IoR.

Consequently, the IoR can be determined a posteriori, as we will discuss in Section 5.2.
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5.1 Estimating the camera poses and the interface 3D shape

In this subsection, we detail a method for acquiring the camera poses and the 3D shape of the

interface in a shared 3D frame. This involves fixing the camera opposite the object positioned on

a rotating table, simulating camera movement around the object. Figures 20-a and 21-a illustrate

this setup.

Figure 20 (a) The acquisition setup involves placing a polyhedron on a turntable and capturing views with a static
camera. The origin tref is at the intersection of the table and its rotation axis. The rotation matrix Rref, having columns
r1, r2, and r3, defines the turntable’s pose relative to the camera frame. (b) In consecutive images j and j+1, a vertex
at a distance ρi from the rotation axis, oriented along di

j and di
j+1, belongs to an ellipse of equation x⊤Aix = 0 in the

image plane. The imaged center ci of this ellipse satisfies the pole-polar relation ci = [Ai]−1l∞.

Figure 21 (a) One of 40 images depicting a parcel on a turntable. In all views, the silhouettes of the parcel, treated as
a convex polyhedron, are extracted. (b) The collection V of all silhouette vertices is shown in red.
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We could have concurrently estimated the camera poses and the 3D shape of the interface using

shape-from-silhouettes, a technique independent of the IoR of the medium. However, this method

struggles with arbitrary shapes, as it computes an enclosing volume by intersecting silhouette back-

projections. For satisfactory accuracy, an infinite number of poses are ideal, unless we limit to

polyhedral interfaces with a few vertices. For insects in amber, as mentioned in Section 1, this is

feasible by shaping the amber into a polyhedron with multiple planar faces.

We thus consider a scene with a convex polyhedron of q vertices on a turntable. The vertices’

coordinates Xi ∈ R3, i ∈ {1, . . . , q}, are in a 3D frame Rref affixed to the turntable. The origin

of Rref lies at the table’s supporting plane and rotation axis intersection, with its first two axes

defining the plane and the third as an upward normal vector. A static camera with known intrinsics

captures r views of this scene. The homogeneous coordinate vector xi
j ∈ R3 of the j-th image,

j ∈ {1, . . . , r}, of vertex Xi satisfies the equation:

xi
j ∼ Pj

Xi

1

 (11)

with the perspective projection matrix Pj corresponding to the j-th view defined as:

Pj = K [Rref Rj | tref ] (12)

In (12), K represents the calibration matrix. The transformation from Rref to the camera frame is

23



specified by (Rref, tref). The matrix Rj indicates the table’s rotation by an angle θj around its axis:

Rj =


cos θj − sin θj 0

sin θj cos θj 0

0 0 1

 (13)

In homogeneous Cartesian coordinates x = [x, y, 1]⊤, an ellipse is represented as x⊤Ax = 0,

where A is a symmetric 3× 3 matrix under suitable conditions on its coefficients.

The first step is to create a polygonal silhouette for each view and is obtained by simple oper-

ations: background subtraction from a reference image, thresholding, morphological processing,

extraction, and simplification of the convex hull to get the silhouette vertices. We then assemble

the collection V of all these vertices. An example of extracted silhouette vertices V , highlighted

in red, is shown in Figure 21-b.

The second step requires robustly partitioning V into subsets on common ellipses, representing

parallel circular trajectories in 3D space. The partition size, corresponding to the polyhedron’s

vertices, is unknown. A partitioning solution is detailed in2, utilising the parallelism of vertices’

trajectories. The images of circular points (ICP)58 of the turntable, two complex conjugate vectors

in C3 denoted as h1 ± ih2, are estimated along with correspondences. Details can be found in2.

With the ICP h1 ± ih2, correspondences {xi
j}, and calibration matrix K known, the problem is

to determine the vertices’ positions and the polyhedron’s poses in the camera frame. Specifically,

this includes calculating the rotation matrix Rref, the translation vector tref, the 3D coordinates of

the vertices {Xi}i∈{1,...,q}, and the angles {θj}j∈{1,...,r}. Matrix Rref and vector tref are computed

using the method from59.
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The rotation angle θj of the turntable in view number j is measured from a reference position

θ1 as follows:

θj =

j−1∑
k=1

θ k,k+1 (14)

where θk,k+1 represents the rotation angle between two consecutive acquisitions k and k + 1. Its

value is determined as the median cosine of the estimated angles from the visible vertices:

θ k,k+1 = acos

(
median
i∈Dk

{
di
k

⊤
di
k+1

})
(15)

where Dk ⊂ {1, . . . , q} represents the set of vertex indices detected in both the kth and (k + 1)th

images. The unit vectors di
k and di

k+1 point towards the images by H−1 of the corresponding points

xi
k and xi

k+1, where H = [h1 h2 ∗], in the sequential views k and k + 1, specifically:

di
k =

f(H−1xi
k)− f(H−1ci)

∥f(H−1xi
k)− f(H−1ci)∥

(16)

and likewise for di
k+1. In (16), f([u, v, w]⊤) = [u/w, v/w]⊤, and ci is the homogeneous coordinate

vector of the image of the trajectory’s center, assumed circular, of the vertex number i, and derived

from the pole-polar relation ci = [Ai]−1l∞. Here l∞ is the vanishing line vector of the table

plane, and is the cross-product l∞ = h1 × h2, and Ai the matrix of the ellipse image of vertex

number i’s trajectory (see Figure 20-b). The table rotation during acquisition is assumed to be

counterclockwise. The θ k,k+1 values are supposed to be between 0 and 180 degrees.

At this point, all camera poses are known, and the 3D coordinates of the vertices {Xi} are

obtained by triangulating the correspondences {xi
j}. Both are further refined through a bundle ad-

justment minimising the Euclidean distances between the correspondences and their reprojections.
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5.2 Validation on real images

Estimating the index of refraction can typically be done using a dedicated instrument known as a

refractometer. However, we suggest an alternative estimation method in this subsection, leveraging

the joint estimation of camera poses and the 3D shape of the interface, as outlined in the previous

subsection. Specifically, our RMVS solving method, detailed in Section 3 and tested on synthetic

images in Section 4, can be applied with varying IoR values, ideally within a range close to its

“plausible” value. The challenge lies in identifying a sufficiently discriminating criterion for this

estimation. As illustrated in Figures 22 and 23, the number of effectively reconstructed 3D points

serves as such a criterion, since it shows the maximum number of points for the exact IoR and the

lowest Chamfer distance score for the associated reconstruction.

Figure 22 Percentage of reconstructed 3D points (red) and Chamfer distance (blue) variation with the index of
refraction (IoR) of the refractive medium surrounding the graphosoma. When simulating the images, the IoR used
(n2 = 1.56) aligns exactly with the peak of the red curve and the lowest CD, validating our proposed criterion.

We can now apply the complete RMVS solving pipeline to real data, provided the interface is

polyhedral. Figures 24 and 25 display tests conducted on two epoxy-resin parallelepipeds, con-

taining a beetle and a grasshopper, respectively.
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Figure 23 Evolution of the percentage of reconstructed 3D points, in function on the IoR of the refractive medium in
which the real beetle from Figure 25 is immersed. The maximum of this curve gives us an estimate of the IoR equal
to n2 = 1.50.

Figure 24 Two real images of a beetle immersed in a parallelepipedic block of resin, placed on a turntable, and zooms
on the block.

The 3D reconstructions of these two insects, shown in Figures 26 and 27, reveal a noticeably

better reconstruction of the beetle compared to the grasshopper. This disparity primarily stems

from the resin block containing the grasshopper, which fails to fully meet the assumptions under-

lying our RMVS solving method. Firstly, one of the block’s faces is not as planar as required.

Secondly, the resin exhibits layered structure visible to the naked eye, indicating that light rays
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Figure 25 Two real images of a grasshopper immersed in a parallelepipedic block of resin, placed on a turntable, and
zooms on the block.

within the refractive medium may not travel in perfectly straight lines. Additionally, a significant

distinction between the results in Figures 26 and 27 lies in the insects themselves. Certain parts

of the grasshopper’s body appear somewhat translucent, challenging a fundamental premise of

the MVS technique and its variants, which is the assumption that the surface being reconstructed

should be opaque and Lambertian.

Figure 26 3D reconstruction of the beetle from 24 images such as those in Figure 24, using our RMVS method.
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Figure 27 3D reconstruction of the grasshopper from 24 images such as those in Figure 25, using our RMVS method.

A final experiment with the beetle images aimed to qualitatively assess how using an incorrect

IoR value affects the reconstruction outcome. Figure 28 displays two 3D reconstructions of the

beetle, each derived using different IoR values: the right image, produced with a slightly overval-

ued IoR (n′
2 = 1.56), is noticeably less accurate than the left image, where the IoR (n2 = 1.50)

was determined using the previously described method (refer to Figure 23).

Figure 28 Comparison of our RMVS method, tested on the same 24 real images of the beetle (see Figure 24). We
used either the IoR value estimated by the method illustrated in Figure 23 (n2 = 1.50), or a slightly overvalued IoR
(n′

2 = 1.56). The first result is obviously more accurate.
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6 Conclusion and perspectives

In this paper, we adapted the MVS technique for objects immersed in a refractive medium. Given

that refraction distorts images, it is crucial to model light ray paths accordingly. We introduced

a fully discrete RMVS solving method, with promising initial results on real data, despite several

challenges before it becomes a practical tool for entomologists.

A future direction involves assessing the RMVS method’s robustness against imperfect knowl-

edge of interface geometry, such as non-planar polyhedron faces. The use of UV, IR and po-

larized lights could also help us to constrain the interface geometry and to reduce some refrac-

tion/reflection effects. Another area for development is automating the detection of silhouettes

within the refractive medium. Neural methods, as suggested by60, could be a solution.

Furthermore, methods using differentiable rendering, like ReNeuS, are increasingly important.

We were unfortunately unable to test ReNeuS as its code is not publicly available (and it does con-

sider only boxed-shaped media). However, such approaches remain a short-term goal, whether to

solve the RMVS problem addressed in this paper or to solve photometric stereo under refraction36.

A longer-term goal is to develop a pipeline for acquiring and processing data, particularly

prehistoric insects trapped in amber. Overcoming numerous challenges is necessary, as the poor

result in Figure 27 is due to both the resin block and the contained object not fully meeting our

RMVS method’s assumptions. The pipeline needs to be robust against predictable flaws, par-

ticularly when the index of refraction is not uniform. Additionally, even under the Lambertian

assumption, colouration in the refractive medium can alter a 3D point’s appearance across images

due to varying light travel distances. Focus blur, a small-scale challenge we have overlooked also

needs consideration. Addressing these factors should enhance the quality of our results.
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