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Abstract

The dynamic behaviour of three hydrophilic probes (two dyes and one fluorescently-labelled
protein) inserted in the water layers of lyotropic lamellar phases has been studied by confo-
cal fluorescence recovery experiments. Two different, ionic (AOT/NaCl/H2O) and non-ionic
(C12E5/hexanol/H2O) host systems were studied. The confinement effect has been carefully moni-
tored using the swelling properties of the lamellar phases. In all cases, we measure the evolution of
the probe diffusion coefficient in the layer plane D⊥ versus the separation between the membranes
dw. Depending on the composition of the lamellar phase, this distance can be continuously ad-
justed from 500 Å to about 20 Å. For all systems, we observe a first regime, called dilute regime,
where the diffusion coefficient decreases almost linearly with 1/dw. In this regime, the Faxén
theory for the friction coefficient of a spherical particle symmetrically dragged between two rigid
walls can largely explain our results. More unexpectedly, when the membranes are non ionic, and
also quite flexible (C12E5/hexanol in water), we observe the existence of a second, concentrated
(or confined) regime, where the diffusion coefficient is nearly constant and different from zero
for membrane separations smaller than the particle size. This new regime can be heuristically
explained by simple arguments taking into account the membrane fluidity.

PACS. 82.70.-y Disperse systems; complex fluids – 87.16.Dg Membranes, bilayers, and vesicles –
87.64.Tt Confocal microscopy – 82.56.Lz Diffusion

1 Introduction

Self-assembled fluids such as oil-water-surfactant mixtures have attracted considerable interest
over the past two decades [1]. These systems can generate mesoscopic fluctuating surfaces such
as membranes, leading to interesting static and dynamic properties. Among the large variety
of structures observed, the lamellar phase is of fundamental interest. In this phase, membranes
are piled up to form a regular smectic structure, constituting a unique model system to study
membrane properties. It is then not surprising that many studies have been devoted to the
experimental characterisation of these lamellar phases [2].

Since the pioneering investigations by Kékicheff et al. [3], there has been in recent years a
growing interest in surfactant-based lamellar systems mixed with polymers [4–8] and colloidal
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particles [9,10]. The influence of nanometre-size inclusions on self-assembled amphiphilic systems is
quite complex. For instance, inclusions can stabilise vesicles or liposomes, or destabilise a lamellar
phase, leading to vesicles. A considerable amount of work deals with the insertion of biological
molecules (DNA, proteins) in lipid host phases [11], having as a main goal drug delivery [12] or
protein crystallisation [13, 14]. The insertion of synthetic nanoparticles with specific catalytic,
optical or magnetic properties within compartmentalised host phases (formed by copolymers,
polyelectrolytes or surfactants) is also a very active field.

Although the first investigations concerning confined Brownian motion in lyotropic phases were
performed a long time ago [15,16], some aspects of this problem remain a subject of discussions [17–
19]. The importance of understanding the motion of spheres or anisotropic particles in confined
geometries lies in its applicability to the description of particles migrating in porous media or near
fluid-solid or fluid-fluid boundaries [20], membranes [21,22], and cells interacting with surfaces [23].

In this paper, we focus on the experimental study of the dynamic properties of oriented, doped
lamellar phases and we will in particular show the effect of the confinement on the evolution of
the probe diffusion coefficient when changing the lamellar periodicity. The confinement we are
referring to originates from the finite height of the solvent layers and does not occur, except in
some limiting cases, within the surfactant membranes. Such a confinement is easily varied using
the swelling properties of the lamellar phase by changing the amount of solvent (water): The
distance between adjacent membranes can thus be continuously adjusted.

The formulation and characterisation of our experimental systems are specified in Section 2.1
and we detail in the following Section 2.2 the general method for analysing fluorescence recovery
after photo bleaching (FRAP) experiments. Section 3 presents the results obtained using FRAP.
We emphasise in particular the evolution of the diffusion coefficient with increasing confinement.
In the last part, Section 4, we propose simple heuristic arguments accounting for the role of
membrane fluidity on the mobility of a particle confined between two fluid walls.

2 Materials and methods

2.1 Formulation and characterisation of the systems

Three different probes were inserted inside two distinct lamellar phases. The fluorescently-labelled
protein (rhodamin-conjugated Bovine Serum Albumin protein: BSA*) was purchased from Sigma
and used without further purification. The hydrodynamic radius RH of the BSA monomers is
known to be close to 40 Å at room temperature [24]. The other two dyes, fluorescein (λexc = 4940 Å
and λem = 5200 Å) and rhodamin (λexc = 5410 Å and λem = 5720 Å)–purchased from Aldrich and
Invitrogen-Molecular Probes respectively–were also used as received. Their hydrodynamic radii
have both been found close to 10 Å.

The first lamellar system was made with the well-known non-ionic n-pentaethyleneglycol mon-
ododecylether surfactant C12E5 (from Nikko Ltd), hexanol and water [25,26]. The bilayers in this
system have a rather small bending elasticity at room temperature (κ = 0.8kBT ) [26] and the
lamellar structure is known to be stabilised by the Helfrich mechanism of steric repulsion (“un-
dulation interaction”) [27]. The repeat distance d of the smectic structure can vary continuously
from 30 Å to more than 103 Å depending upon the membrane volume fraction.

The second lamellar system was made with the anionic surfactant sodium bis(2-ethylhexyl)
sulfosuccinate (AOT), NaCl and water [28, 29]. Without added salt, the system is stabilised by
electrostatic interactions. When salt is added (1 wt%) the long-range electrostatic interactions
are screened and the lamellar phase is stabilised by the undulation interaction [29].

Even though the phase diagram with no added particle is well established in both cases [26,28,
29] when particles are added the phase limits may change. Elaborating the phase diagrams with
inserted probes (protein or fluorescent dye) is a long but necessary process in order to identify
unambiguously a homogeneous lamellar phase. For added BSA* (0.1 wt% in water, corresponding
to 15 µM), we present in Fig. 1 two cuts of the phase diagram: One representing the phase
boundaries in the salt concentration–surfactant volume fraction (φm) plane and the other one in
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(a) (b)

Figure 1: Cuts of the phase diagram for systems doped with 15 µM of the fluorescent protein
(BSA*) I: Isotropic phase, L3: Sponge phase, Lα: Fluid lamellar phase. In (a), the cut of the
phase diagram represents the phase boundaries in the salt concentration [NaCl] and surfactant
volume fraction φm plane for the AOT / NaCl / water system. In (b), the cut of the phase diagram
for the hexanol / C12E5 / water system represents the phase boundaries in the ρ ≡hexanol/C12E5

ratio and φm plane

the ρ ≡hexanol/C12E5 mass ratio–φm plane.
One-phase (isotropic: I, sponge phase: L3 or lamellar phase: Lα) or two-phase (isotropic–

lamellar, or micellar–lamellar domains) regions of the phase diagram have been characterised.
The most important result is that the one-phase, BSA* doped lamellar phase is conserved for a
large range of dilutions in both systems.

The systems formulated with and without doping particles have been characterised by polaris-
ing optical microscopy, fluorescence microscopy and x-ray scattering. X-ray scattering experiments
were realised in order to describe the host phase nature (data not shown) and measure the lamellar
spacing of Lα systems. We used polarising and fluorescence microscopy in order to confirm the
localisation of the dye inside the lamellar phase. The optical observations were made using sealed
flat capillaries of thickness 50 µm. As shown in Fig. 2, the typical texture of defects of the lamel-
lar structure (oily streaks) appears. The fluorescence intensity is homogeneous in homeotropic
domains.

Depending on the membrane volume fraction, these defects are more or less present and the

(a) (b)

Figure 2: Images obtained with the confocal fluorescent optical microscope. (a)
AOT/NaCl/water/BSA* lamellar phase for two different membrane volume fractions (φm = 10%
and φm = 18%). (b) C12E5 / hexanol / water / BSA* lamellar phase for two different membrane
volume fractions (φm = 10% and φm = 30%)
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Figure 3: Schematic representation of the homeotropic orientation of the doped lamellar system
inside a flat capillary. For FRAP experiments, the laser beam is parallel to the optical axis

orientation of the system can be disturbed. At high membrane concentrations, the dye can be
expelled from the lamellar phase and the texture looses its homogeneity. In that case, the fluo-
rescence intensity shows very bright fluorescent spots (aggregates) situated in the vicinity of the
lamellar phase grain boundaries.

2.2 Diffusion coefficients: FRAP measurement

Within the last 30 years, fluorescence recovery after photo bleaching has become an important and
versatile technique to study the dynamics in various systems [30], such as living cells, membranes
and other biological environments. In polymer physics, the photo bleaching methods are employed
to investigate diffusion in macromolecular systems, particularly in networks. The general principle
of the FRAP technique [31] is to irreversibly photo bleach a certain region within a fluorescently
labelled sample by irradiation with a short intense light pulse. Immediately after bleaching, a
highly attenuated light beam is used to measure the recovery of fluorescence inside the bleached
area as a result of the diffusion exchange of bleached fluorophores by unbleached molecules from
the surroundings. Performing the experiment in a confocal laser scanning microscope (CLSM)
gives high spatial resolution [32] and allows surgical bleaching.

In order to measure the translational diffusion coefficient parallel to the layers (D⊥, i.e. per-
pendicular to the optical axis), we worked with homeotropically oriented lamellar phases. The flat
capillary (thickness e = 50 µm) is filled by capillarity with the lamellar sample and is carefully
sealed. The lamellar phase will naturally choose homeotropic anchoring (stacking axis perpendicu-
lar to the walls) and well oriented monodomains of millimetre sizes are obtained. The homeotropic
orientation is checked using the optical polarising microscopy technique. As shown in Fig. 3, the
laser beam is parallel to the normal of the layers.

The bleaching and imaging were performed on a Leica SP2 confocal microscope with an oil
immersion 63× objective lens (numerical aperture 1.4). We bleach a spot area about R ≈ 2 µm in
radius during a bleaching time τ (in the range 1 to 10 seconds, depending on the dye bleached).
The image acquisition is made by scanning the field with a confocal photomultiplier (acquisition
time in the order of a few seconds) after a time t has elapsed.

In a first approximation, the lateral width of the laser beam spot can be neglected. Then,
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Figure 4: Example of an image obtained after bleaching (dark zone in the centre). The black dots
correspond to the fluorescence profile along the dashed line and the black line to the interpolation
by eq. (3)

assuming permeation through the bilayers to be negligible, the concentration of bleached dyes
c(r, t) versus space and time, initially non-zero only within the point-like laser spot, is found by
integrating Fick’s law in the 2D-space perpendicular to the optical axis, which leads to:

c(r, t) =
c0

4πD⊥t
exp

[

− r2

4D⊥t

]

(1)

when the bleaching duration is extremely short. In eq. (1), r is the distance from the centre of the
bleach point, t the time, D⊥ the diffusion coefficient in the layer plane, and c0 is a normalisation
constant depending on dye concentration, power of the bleaching radiation, etc.

For the sake of simplicity, the depletion in fluorescence intensity at time t after a photo bleaching
of finite duration τ is represented as the superimposition of time-translated expressions similar to
eq. (1), namely:

I(r, t, τ) =

∫ τ

0

I0

t − τ1

exp

[

− r2

4D⊥(t − τ1)

]

dτ1 (2)

with, of course, t > τ , and I0 a normalising constant. Using this scheme, the fluorescence intensity
can therefore be described by the equation:

I(r, t, τ) = I0

(

E1

[

r2

4D⊥t

]

− E1

[

r2

4D⊥(t − τ)

])

(3)

with E1 the exponential integral function of order 1. The diffusion coefficient D⊥ is deduced from
the recorded images by a numerical fitting using eq. (3), with only two fitting parameters, namely
I0 as an arbitrary intensity scale and σ2 ≡ 4D⊥t, since the bleaching duration τ is known. Figure 4
gives an example of the image obtained after bleaching. The dots correspond to the fluorescence
profile along the dashed line, and the black line to the interpolation by eq. (3).

We have checked the validity of our description in terms of a Brownian dynamics for the
particles by measuring the parameter σ2 as a function of time: The Gaussian broadening should
be a simple linear function of the elapsed time t, which is indeed observed.

Figure 5 shows the evolution of σ2 versus time for the BSA* protein inserted in the AOT
(Fig. 5a) and C12E5 (Fig. 5b) systems, respectively. From the observed linear behaviour, unam-
biguous values for the diffusion coefficient can be deduced. Similar results have been obtained
with the other two fluorophores (data not shown).
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(a) (b)

Figure 5: Gaussian broadening σ2 versus time t resulting from fits to eq. (3). The lines correspond
to simple linear fits; (a) AOT / NaCl / water / BSA* system–membrane volume fraction φm =
15%; (b) C12E5 / hexanol / water / BSA* system for two different membrane volume fractions
(φm = 15% and φm = 40%)

Table 1: Free-diffusion coefficient D0 and associated hydrodynamic radius RH for the fluorescently-
labelled protein (BSA*), the fluorescein and rhodamin dyes. For the hydrophobic probe (DHPE-
FITC), the diffusion coefficient values refer to measurements in the lamellar phases, and RH is
computed from an estimate of the interfacial area of the DHPE lipid, see Section 4.5

Fluorescein Rhodamin BSA* DHPE-FITC

D0 [10−12m2s−1] 230 ± 22 193 ± 21 59 ± 3 C12E5: 7.9 ± 1 AOT: 18.3 ± 2.4

RH [Å] 9 ± 1 11 ± 1 36 ± 3 4

3 Results

We prepared samples with various water contents and, therefore, various water layer thicknesses
(dw). The quantity dw is easily deduced from the swelling behaviour established with x-ray
experiments: The stacking period d of the lamellar phase is first obtained from the value qmax of the
first order Bragg peak as d = 2π/qmax. Repeating the measurement for different concentrations,
the bilayer thickness δ is extracted from the swelling law d = δ/φm. The water layer thickness
is then easily deduced using the relation dw = d − δ. For systems without inserted particles, the
swelling behaviour has been reported in previous studies [26, 29]. It turns out that the stacking
periods are not appreciably modified after addition of either protein or probes. The membrane
thickness δ is found to be equal to 28.7 Å, and 19.5 Å respectively, for the C12E5 and AOT systems.

Using FRAP experiments, we have measured for each probe the free-diffusion (D0) coefficient
in water (see Table 1). The experiment allows determining the associated hydrodynamic RH radii
with eq. (5), see below Section 4. As a reference for the confined limit, we also measured the
diffusion coefficient of fluorescein 1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (DHPE-
FITC, from Invitrogen – Molecular Probes), when this fluorescent, hydrophobic lipid is inserted
into the membranes of homeotropically-oriented lamellar phases.

The effect of confinement is deduced from the measured self-diffusion coefficient D⊥ of our
probes or protein inserted in the lamellar phase. For each system, we plot–using semi-logarithmic
scales–D⊥ as a function of the water layer thickness dw. The results obtained for the two probes
(fluorescein and rhodamin) inside the C12E5 / hexanol / water lamellar phase are displayed in
Fig. 6a. Figure 6b shows the results obtained for the protein (BSA*) in the two different lamellar
systems (C12E5 and AOT).
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Figure 6: Diffusion coefficient D⊥ obtained from FRAP experiments vs. the water layer thickness
dw. The constant value of the free-diffusion coefficient is plotted as horizontal solid (fluorescein)
or dash-dotted (rhodamin, BSA*) lines. (a) Fluorescein (filled lozenges �) or rhodamin (empty
squares �) dyes inserted in the lamellar phase of the C12E5 / hexanol / water system. Vertical
solid line drawn at dw = 20 Å. (b) Fluorescently-labelled protein (BSA*) inserted in the lamellar
phase of the C12E5 / hexanol / water system (empty circle ◦) and of the AOT / NaCl / water
system (filled triangles N). Vertical dotted (respectively, solid) line drawn at dw = 50 Å (resp.
dw = 72 Å).

We observe (from large to small dw) the following regimes: Values of D⊥ close to the free-
diffusion coefficient measured in bulk water are first obtained, then the diffusion coefficient sig-
nificantly and steadily decreases, and third, a quasi-plateau where D⊥ exhibits little or even no
variations with dw is reached. The fact that, at large dw, the D⊥ values asymptotically approach
the diffusion coefficient for the probes in bulk water indicates that the probes do not interact with
the surfactant. It appears in particular that, at contrast to what is sometimes observed with ionic
surfactants [33], there is no significant unfolding of the protein. Moreover, the dyes do not adsorb
onto the surfactant bilayers. If adsorption were an important effect, the diffusion coefficient would
be mostly independent on swelling, as indeed observed for amphiphilic probes diffusing along the
bilayers. As mentioned above, the diffusion coefficients of DHPE-FITC inserted into the same
membranes have been measured. The values are very small and do not vary with the confinement,
see data in Table 1.

The decrease of D⊥ with decreasing dw is due to the geometric confinement of the probe
between the surfactant bilayers and will be more quantitatively interpreted later on. Interestingly,
for very small membrane separations, we observe (except for the BSA*–AOT system, the protein
being expelled from the lamellar phase) a regime where the diffusion coefficient does not go to
negligible values at the point where the water layer thickness becomes equal to the particle diameter
(vertical full lines in Fig. 6). The diffusion coefficient reaches a small, roughly constant value
instead. This value is in the order of the diffusion coefficient for an amphiphilic dye inserted inside
the same membrane. As mentioned above, this new (or confined) regime only appears for the
C12E5 / hexanol / water system. It is also better defined in our experimental data with rhodamin
or BSA* than with fluorescein. Though somehow arbitrarily defined, the boundary of the confined
regime is not associated to a given value of dw. For rhodamin, the transition may be considered
to occur when the membrane separation becomes equal to the probe hydrodynamic diameter
(2RH = 22 Å). For BSA* at contrast, it is interesting to note that the transition apparently
occurs for a dw value (50 Å, vertical dotted line in Fig. 6b)) smaller than the hydrodynamic
diameter of the protein (ca. 70 Å).
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4 Discussion

As an explanation for the experimentally-observed transition between the dilute and confined
regimes, associated with the fact that the diffusion coefficient does not reach a zero value when
the confinement is equal to the particle size, “liquid” walls have to be considered. Theories
available in the literature often describe confinement between rigid walls – [34–36], for instance–
following the classical approach [37], the case of a particle near a fluid wall being considered, e.g.,
in Ref. [20, 38].

Here, we shall not attempt to tackle the complete hydrodynamic problem, as it cannot be
solved, in particular for particle and walls in near contact, without sophisticated and numerical
methods [20]. We use heuristic arguments, instead. These non rigorous but simple arguments
lead to representative limiting cases (including the confinement between rigid walls), as well as to
an estimate the confinement between two liquid walls. The resulting description is found in good
quantitative agreement with experimental data, see below Section 4.5.

4.1 3D diffusion

A hard sphere with radius RH , moving with the constant velocity ~v0 in an unbound quiescent
Newtonian fluid of viscosity η0, experiences a hydrodynamic drag force ~F0 opposite to its direction
of motion. This drag force is given in the small-velocity limit by the well-known Stokes law:

~F0 = −6πη0RH~v0 (4)

which defines the drag coefficient ζ ≡ 6πη0RH .
For sizes RH in the colloidal range, the sphere is subject to Brownian motion. Classically, the

self-diffusion coefficient D0 of such a sphere suspended in a fluid at absolute temperature T is
related to the drag coefficient as expressed in the Stokes-Einstein equation [39]:

D0 =
kBT

ζ
=

kBT

6πη0RH

(5)

where kB is the Boltzmann constant.

4.2 Confined diffusion of a hard sphere

The experimental and theoretical study of the diffusion behaviour of a sphere close to a rigid
wall, or confined between two parallel rigid walls, has been the object of an important number of
works. Experimentally, the Brownian motion has been followed (in 3-dimensional geometries) both
parallel to the walls [40–43], and perpendicular to them [42,44–46] and also in quasi-2-dimensional
geometries [47], this latter case allowing to work with anisotropic colloids [48].

On the theoretical side, even simple geometries lead to rather difficult problems. In one of its
simplest–and oldest–version, the theoretical approach considers a rigid sphere moving near and
parallel to a solid surface. In particular, Faxén [37] was able to express the drag coefficient for
such a spherical particle located at an equal distance between two rigid walls. After conversion
into a diffusion coefficient by means of the Stokes-Einstein relation, his expression reads, to lowest
order:

D⊥ ≈ D0

[

1 − 2
RH

dw

]

(6)

where D0 is the value of the 3D diffusion coefficient of the particle, as given by eq. (5), RH

the hydrodynamics radius of the particle, and dw the thickness of the fluid layer separating the
two walls. Note that we keep naming axes, conventionally, with respect the optical axis of the
lamellar phase: D⊥ is actually associated to a motion parallel to the walls. Interestingly, eq. (6)
results in D⊥ ≈ 0 at the maximum possible confinement for sphere and walls that are both
solid, namely dw → 2RH . This limit appears physically to be quite natural, even though it is
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Figure 7: Schematic representation of the flow field in the vicinity of a hard sphere moving close
to a rigid wall. RH is the hydrodynamic radius of the particle, h is the distance separating the
particle from the wall and ~v0 (respectively, ~v1) is the velocity of the particle in the fluid (resp. at
the wall surface)

not a rigorous consequence of the calculation, originally performed as an expansion in the small
parameter RH/dw.

The drag force experienced by a particle owing to its motion parallel to the wall and at a
distance h from it (Fig. 7) can be pictorially seen as resulting, in part, from the shear of the fluid
layer separating the particle from the wall surface. With the help of this simple picture, it appears
reasonable to expect that the shear becomes extremely large for h ≡ −RH +dw/2 going to 0. This
divergence of the drag coefficient will, in turn, yields a diffusion coefficient D⊥ going to 0 in this
limit. This idea can be expressed by heuristically modifying eq. (4), adding a wall-induced drag
to the conventional Stokes term as

~F0 = −6πη0RH

[

~v0 +
RH

h
(~v0 − ~v1)

]

(7)

where ~v1 is equal to zero for rigid walls and RH/h is a dimensionless parameter characterising
the confinement. Using such a scheme, Faxén’s lowest order expression for the diffusion coefficient
D⊥, eq. (6), is indeed recovered. This will prove useful in Section 4.4 below, when the picture of
Fig. 7 is extended to the case of fluid walls, releasing the constraint v1 = 0.

4.3 2D diffusion in a 3D space

A solid particle inserted into a liquid membrane freely diffuses in a space restricted to almost two
dimensions, but coupled to the 3D solvent surrounding the membrane. Such a system was studied
quantitatively by Saffman and Delbrück [21] and Hughes et al. [22]. A limiting expression for the
diffusion coefficient reads:

D ≈ kBT

4π

ln
(

ηmδ
η0RH

)

− γ

ηmδ
(8)

with γ ≈ 0.577 the Euler constant, δ the thickness of the membrane, ηm the viscosity of the fluid
membrane and η0 the viscosity of the solvent on both sides of the membrane. For eq. (8) to be valid,
ηmδ should be much larger than η0RH [22]. Obviously, it leads then to a diffusion coefficient in
the membrane significantly smaller than would result from eq. (5) for the same particle embedded
in the solvent.

It results from eq. (8) that the diffusion coefficient depends, for this particular two-dimensional
problem, only logarithmically, that is to say weakly, on the particle size RH . Note that this very
property, investigated in numerous experimental studies [18, 49–51], has been recently contested,
with a 1/RH dependence shown to be sometimes more appropriate than the logarithmic relation,
even in the small RH limit [17, 19]. We shall nevertheless use eq. (8) in the present discussion, as
it predicts a kind of “baseline” value for the diffusion coefficient D. In any case, the range here
available for RH variations is experimentally quite restricted.
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4.4 Confined diffusion between fluid walls

The diffusion of a particle confined in a lamellar phase is a problem much more complex than
those alluded to above. Altogether disregarding the role of elastic distortions in the lamellar
stack–distortions altering not only the geometry of the water channels but also the distribution
of the particles across them [52]–, we only consider here the effect of a finite bilayer viscosity:
Contrarily to the case where walls are rigid, the velocity of the fluid dragged by the motion of
the particle is no longer expected to fall to zero at the membrane surface. Then, in the simple
picture of Fig. 7, v1 6= 0 but we shall not attempt to solve in any way the actual hydrodynamic
problem. We simply consider, instead, that the particle immersed in the solvent channel, diffusing
in a direction parallel to the membranes, will symmetrically drag part of the two surrounding
bilayers. Furthermore, we consider the dragged part of the bilayer itself as a 2D-diffusing particle.
In Section 4.3, the diffusion coefficient of the solid particle was not a strong function of the particle
size. We therefore assume the 2D fluid particle twinned with the actual one to be also of size RH .

In order to relate the yet unknown velocity ~v1 to the velocity ~v0 of the actual particle, we
postulate an equality between the drag force acting on the bilayer-embedded particle and the
wall-induced drag force acting on the actual particle, namely:

4πηmδβ(RH)~v1 =
6πη0R

2

H

h
(~v0 − ~v1) (9)

with β(RH) =
[

ln
(

ηmδ
η0RH

)

− γ
]−1

taken from the classical Saffman and Delbrück expression. The

velocity of the bilayer-embedded particle, ~v1, can therefore be expressed as a function of the
particle velocity:

~v1 =
~v0

1 + [2αδβ(RH)h/(3R2

H)]
(10)

with α denoting the viscosity ratio ηm/η0. The physical content of eqs. (9) and (10) appears to
be satisfactory in both the large and small confinement limits: In the former case, there is little
hydrodynamic coupling between the solvent and the fluid wall. The rigid wall situation where
v1 = 0 is recovered. In the latter case, the drag on the actual particle is dominated (for α large
enough) by the drag on the bilayer-embedded particle.

Equation (7) may then be rewritten in a form now accounting for eq. (10), i.e. v1 6= 0:

~F0 = −6πη0RH~v0

[

1 +
2αδβ(RH)RH

3R2

H + 2αδβ(RH)h

]

(11)

Eventually, the Einstein relation yields an expression for the diffusion coefficient of a particle
symmetrically confined between two liquid walls:

D⊥ = D0/

[

1 +
2αδβ(RH)RH

3R2

H + 2αδβ(RH)h

]

(12)

with D0 the free-diffusion coefficient of the particle in the 3D solvent.
The above-described simple argument is designed for a Brownian particle diffusing in the

solvent channel between the membranes and, therefore, cannot be applied “as is” when the width
dw of the solvent channel becomes less than the hydrodynamic diameter 2RH of the particle, or
h ≤ 0. It should be noted, however, that the value of D⊥ for h small (and positive) is, especially
for a large viscosity ratio α, numerically close to the value for the diffusion coefficient of a particle
actually inserted into the membrane, see eq. (8). This is, of course, not a fortuitous coincidence
but a consequence of our self-consistent assumption, eq. (9), relative to the drag force acting on
the membrane-embedded particle twinned with the actual particle when h > 0. As we have shown
in Section 3 that there are experimental evidences for a still significant–though slow–Brownian
dynamics in the concentrated regime, we tentatively propose to extend our description of the
diffusion coefficient D⊥ in the following way:

D⊥ =

{

D⊥(h) if h > 0
D⊥(h = 0) if h ≤ 0

(13)
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where the function D⊥(h) is defined in eq. (12). Such a scheme amounts to saying that, when the
thickness of the water layer becomes less than the particle size and whatever the actual particle
location, the particle diffuses essentially like a hydrophobic probe located within an (isolated)
membrane. For the ideal spherical shape chosen here, the transition between the two regimes
happens for 2RH/dw = 1, or h = 0.

For diffusing particles which are not spherical but, for instance, of an either prolate or oblate
ellipsoidal shape, two parameters–the lengths of, respectively, the long 2R> and short 2R< axes,
for instance–have to be introduced in order to characterise the particle geometry. In the case
of moderately anisotropic particles, the hydrodynamic radius associated to the self-diffusion in a
three-dimensional and unconfined medium is experimentally found to be numerically close to the
value of the long-axis parameter, i.e. RH ≈ R>. When such particles are confined in a lamellar
phase, we expect their diffusive behaviour to be comparable to the one of spherical particles as
long as their rotational motion remains unhindered, that is to say for dw large enough compared to
2R>. In the case where dw is smaller than 2R>, at least one among the three possible rotational
degrees of freedom becomes plainly geometrically hindered, and the long axis of the particle has
to lie essentially perpendicular to the optical axis. Such a situation is also expected to occur, even
for dw slightly greater than 2R>, when the confining walls are solid or fairly viscous because the
oriented particles will then experience a reduced drag.

These considerations suggest that in eq. (8) and, therefore, in eq. (9) the dimensionless ratio
RH/h that expresses the coupling between the dragged solvent and the bilayers should be now
replaced by R</(dw/2 − R<). In the intermediate situation, namely dw & 2R> and for viscous
bilayers, though the rotational motion of the particle is not geometrically hindered yet, it seems
quite permissible to consider configurations with the long axis of the particle parallel to the
optical axis of the lamellar phase dynamically much less favourable, as far as Brownian motion
perpendicular to the optical axis is concerned, than those appropriately rotated by 90 degrees.
In order to estimate the drag enhancement due to confinement, the replacement of RH/h by
R</(dw/2−R<) (with thus h ≡ dw/2−R>) appears to be a reasonable hypothesis. A generalised
form of eq. (12), to be used in eq. (13) with anisotropic particles and viscous bilayers, becomes
then:

D⊥ =
kBT

6πη0R>

[

1 +
2αδβ(R>)R<

3R>R< + 2αδβ(R>)(dw/2 − R<)

]−1

(14)

4.5 Comparison with experiment

Figure 8 shows again the experimental data, already presented in Section 3, but we now plot
D⊥/D0 as a function of the reduced variable 2RH/dw, following the above-described analysis.

Note that D0 and RH correspond to the free (no confinement) Brownian motion of the re-
spective particles in water and have been measured independently (see Table 1). Besides, the
geometric parameters dw and δ of the lamellar phases are known from x-ray measurements.

In order to compare the data with our analysis, a value for the viscosity ratio α ≡ ηm/η0 must
be chosen. Our estimate of ηm proceeds as follows: With eq. (8) as a relation between the diffusion
coefficient D, the hydrodynamic radius RH and the bilayer viscosity, the latter is obtained from
the measured D (see Table 1) when RH is known. In the present case of DHPE-FITC embedded
into surfactant membranes, we consider RH to be equal to one half the square root of the area
per (unlabelled) DHPE lipid in the fluid bilayer state at full hydration. Even though the DHPE–
water system is known to be in the gel phase at room temperature [53], the alkyl chains are indeed
unlikely to be in their ordered state when surrounded by a large amount of surfactant molecules.
From the known increase of area per lipid across the gel-to-fluid transition of a rather similar lipid,
namely the di-C16-phosphatidylcholine lipid DPPC, we thus take RH ≈

√
64/2 [54], or RH = 4 Å

as a reference value, which yields ηm = 84 mPa.s for the C12E5 system, and ηm = 30 mPa.s for
AOT 1.

1Even though the values obtained for ηm may not be absolute ones, the use of eq. (8) is self-consistent since
ηmδ ≫ η0RH is found in both cases
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Figure 8: Same data as in Fig. 6, now plotted in the (D⊥/D0) versus (2RH/dw) representation.
The vertical dotted line corresponds to 2RH/dw = 1. The oblique dashed line corresponds to
eq. (6). (a) Fluorescein (filled lozenges �) or rhodamin (empty squares �) dyes inserted in the
C12E5 / hexanol / water system. The solid (respectively, dash-dotted) line corresponds to eq. (13),
without any adjustable parameters and RH appropriate for fluorescein (resp. rhodamin). The
transition between dilute and concentrated regimes happens for a water layer thickness (dw) strictly
equal to the hydrodynamic diameter of the particle: 2RH/dw = 1 (b) Fluorescent protein (BSA*)
inserted in the lamellar phase of the C12E5 / hexanol / water system (empty circle ◦) and of the
AOT/NaCl/water system (full triangles N). The solid lines correspond to either eq. (13)–AOT
system–or eq. (14)–C12E5 system, without any adjustable parameters

In Fig. 8a, the two (nearly superimposed) solid and dash-dotted lines correspond the predictions
of eq. (12) with the appropriate values for the parameters δ, RH and α. The fluid character of
the bilayers has little influence on the drag coefficient and the simple model, eq. (6) or dashed
line in Fig. 8, altogether neglecting fluidity, is quite satisfactory as long as 2RH/dw is less than 1.
Though not very sensitive to α, the complete model is to be preferred, however, in that it predicts
the cross-over from the dilute to the confined regime.

For BSA*, as noted previously, the confined regime is not observed with the AOT / NaCl /
water system because the protein is expelled from the lamellar phase when 2RH/dw approaches 1.
Describing the data in this restricted range with eq. (13), i.e. not considering the anisotropy of the
protein to be relevant here owing to the low value of the membrane viscosity, appears successful,
see Fig. 8b, and the deviation from the simple model, eq. (6), is rather conspicuous.

With BSA* inserted inside the C12E5 / hexanol / water lamellar phase, it is obvious from
the representation chosen in Fig. 8 that the transition to the confined regime occurs beyond
2RH/dw = 1. This result can be interpreted by taking into account the anisotropy of the protein,
associated with a coupling between orientations and Brownian motion as expressed in eq. (14).
Fig. 8b shows the prediction obtained using this latter model, once again without any adjustable
parameters–the value for R<, namely R< = 24 Å or RH/R< = 3/2, being taken from small-angle
neutron scattering data for BSA [55]. It is rewarding to observe that the proposed model accounts
remarkably well for the experimental variation of the diffusion coefficient.

As final comments, one may wonder why the same protein, BSA*, is considered to be an
isotropic particle when inserted in the AOT system, but as an anisotropic one in C12E5, and also
why anisotropy is not considered for the other two dyes. In the latter case, the data is definitely
not precise enough to capture meaningfully the anisotropy, if any, of the diffusing particles. With
BSA* in AOT, we have tried the anisotropic description resulting from eq. (14)–dynamically-
oriented proteins even at moderate confinement–, keeping the anisotropy ratio RH/R< fixed to
its known value. Only a poor description of the data is obtained. This probably means that
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the bilayer viscosity is not high enough to induce a significant particle orientation, an orientation
which cannot be reached geometrically either, since the protein is expelled from the lamellar phase
at high confinement. Generally speaking, it is also worth remembering that many other important
dynamical features of lamellar phases, primarily the layer displacement fluctuations, have been
altogether left out of the heuristically-built considerations leading to eqs. (13) and (14). In this
respect, a more detailed analysis, supported by more data, would be desirable.

5 Conclusions

We have measured in two distinct lamellar phases the in-plane self-diffusion coefficient D⊥ of three
fluorescent probes–two dyes, fluorescein and rhodamin; one fluorescently-labelled protein BSA*–
as a function of the confinement dw. All the probes display a first (dilute) regime with a quasi-
linear relation between D⊥ and 1/dw. This behaviour can be qualitatively, and even sometimes
quantitatively, explained by Faxén’s model for self-diffusion of a colloidal particle symmetrically
confined between two rigid walls. We also observe a second (concentrated or confined) regime
when the probes are inserted inside the C12E5 / hexanol / water lamellar phase. For the three
probes, the self-diffusion coefficient does not go to zero but remains nearly constant for membrane
separations dw smaller than the particle size. In order to describe the existence of this confined
regime, we develop simple heuristic arguments taking into account the fluidity of the membranes.
The finite viscosity of the lipid bilayers is accounted for and modifies the diffusion properties of a
hydrophilic probe moving parallel to the membranes. With this new model, we show the possible
existence of a concentrated regime, i.e. for distances between membranes smaller than the size of
the particles. We were able to establish experimentally that the limit between the two regimes
is directly correlated to the diameter of the particle. For an anisotropic particle, like BSA*, our
results suggest that the long axis of the ellipsoid is oriented parallel to the membranes. The
transition between regimes appears at an intermembrane separation, corresponding to the smaller
diameter of the ellipsoid (R<). In favourable cases, similar experiments could thus testify the
anisotropy of a probe inserted inside a lyotropic lamellar phase.
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