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Fig. 1. Several instances of our material model rendered in Mitsuba [Jakob et al. 2022] (base surface materials shown in the bo�om right corner): (a) Anisotropic
aluminum micrograins on top of an isotropic rough gold conductor base; (b) Grey di�use micrograins on top of a di�use wood texture, conveying a dusty
appearance; (c) Green di�use+specular micrograins, mimicking bacterial deposit on top of a rough dielectric surface; (d) Height-correlated colored di�use
micrograins on a rough aluminium conductor base; (e) Gray di�use micrograins located in small cavities of white plastic weaves to portray a dirty material.

We introduce an improved version of the micrograin BSDF model [Lucas
et al. 2023] for the rendering of anisotropic porous layers. Our approach
leverages the properties of micrograins to take into account the correlation
between their height and normal, as well as the correlation between the light
and view directions. This allows us to derive an exact analytical expression
for the Geometrical Attenuation Factor (GAF), summarizing shadowing and
masking inside the porous layer. This fully-correlated GAF is then used
to de�ne appropriate mixing weights to blend the BSDFs of the porous
and base layers. Furthermore, by generalizing the micrograins shape to
anisotropy, combined with their fully-correlated GAF, our improved BSDF
model produces e�ects speci�c to porous layers such as retro-re�ection
visible on dust layers at grazing angles or height and color correlation that
can be found on rusty materials. Finally, we demonstrate very close matches
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between our BSDF model and light transport simulations realized with
explicit instances of micrograins, thus validating our model.
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1 INTRODUCTION

The microfacet theory [Cook and Torrance 1982; Torrance and Spar-
row 1967] has been used for more than �ve decades in the construc-
tion of surfacic material models, or Bidirectional Scattering Distribu-
tion Functions (BSDF). As recalled in Section 2, a variety of e�ects
has been reproduced, including anisotropy, glints, iridescence, sheen
or hazy gloss. However, the vast majority of microfacet-based mod-
els relies on a common assumption, �rst introduced by Smith [1967]:
the height of a given microfacet is uncorrelated from its normal.
Even though this might be a valid assumption for random micro-
surfaces, it cannot accommodate more structured con�gurations
where a surface is covered with repetitions of similar microscopic
elements, such as found in dusty or dirty surfaces.
Recent work (e.g., [d’Eon et al. 2023; Lucas et al. 2023]) has ex-

tended microfacet theory to deal with the mixing of multiple mi-
crofacet Normal Distribution Functions (NDF), which provides for
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a way to model structured con�gurations as commonly found in
porous layers. Such layered structures are di�erent from standard
layered materials, where several (potentially rough) interfaces are
stacked upon each others. Indeed, porous layers come with new
visibility e�ects at grazing angles. Even though it is likely that
height-normal correlations should play an important role in such
orientation-dependent visibility e�ects, to the best of our knowledge
there is no existing work that breaks free of the Smith assumption.
Our goal is thus to explore the new appearance e�ects that may

be obtained by explicitly handling the height-normal correlation
arising from distributions of (potentially anisotropic) similar micro-
scopic elements. To this end, we rely on the micrograin formalism
introduced by Lucas et al. [2023] and recalled in Section 3. How-
ever, instead of modeling the Geometric Attenuation Factor (GAF)
using Smith’s assumption, we leverage the micrograin structure to
explicitly consider the bijection between heights and normals.
As explained in Section 4, our method is based on a fundamen-

tal property of random distributions of identical micrograins: the
visibility of the whole distribution from an arbitrary direction is
determined by the projected area of a single micrograin. We rely
on this property to derive all the terms of our new BSDF model,
making the following contributions:

• We extend the NDF in the model of Lucas et al. [2023] to
deal with anisotropic micrograins (half-ellipsoids) using their
projected area at normal incidence (Section 4.1);

• We derive an exact height-dependent GAF by relying on the
projected area of micrograins at a given height, which we
extend to a fully-correlated GAF by considering correlation
among incoming and outgoing directions (Section 4.2);

• We rely on the newly introduced GAF to derive accurate
mixing weights between the porous and base layers, and a
new di�use micrograin component (Section 4.3).

Our new model is thoroughly validated against reference simu-
lations on explicit micrograin distributions, and compared to ex-
isting models for porous layers in Section 5. Validations show an
excellent (near-perfect) �t to simulated BSDFs when the latters are
restricted to single-scattering light paths. We showcase in Section 6
the new optical e�ects made possible by our fully-correlated micro-
facet model, some of which are shown in Figure 1. In particular, we
demonstrate grazing-angle changes in visibility, retro-re�ection ef-
fects and height-color correlation results. We discuss the limitations
of our model (notably multiple scattering) in Section 7, and argue
for the micrograin formalism as a promising fundation for future
research in the development of material models.

2 PREVIOUS WORK

Microfacet theory. Microfacet theory [Torrance and Sparrow 1967]
was �rst introduced to the Computer Graphics community by Cook
and Torrance [1982] in order to model roughmicrosurfaces. Most mi-
crofacet models consider mirror-like microfacets distributed stochas-
tically on the surface, according to their Normal Distribution Func-
tion (NDF). Existing models may di�er depending on the nature of
the NDF (e.g., [Dong et al. 2016; Ribardière et al. 2017; Walter et al.
2007]) and whether they handle its anisotropy (e.g., [Heitz 2014]).
The theory has also been applied to di�use (Lambertian) microfacets

(e.g., [Heitz and Dupuy 2015; Oren and Nayar 1994]), has been cou-
pled with wave optics theories to render complex color e�ects such
as iridescence [Belcour and Barla 2017] or di�raction [Holzschuch
and Pacanowski 2017], and has been used empirically to reproduce
sheen e�ects as found in fabric (e.g. [Estevez and Kulla 2017; Zeltner
et al. 2022]). Closer to our approach, speci�c regular microstruc-
tures have been used to de�ne microfacet distributions in previous
work (e.g., cloth �bers [Sadeghi et al. 2013], feathers [Huang et al.
2022]), and explicit micro-geometries have been used to instanti-
ate BRDF models in a bi-scale fashion [Wu et al. 2011]. Multiple
scattering among microfacets has been addressed in di�erent ways
(e.g., [Bitterli and d’Eon 2022; Heitz et al. 2016a]).

Shadowing and masking. In microfacet theory, single-scattering
refers to the set of light paths that intersect a single microfacet.
From a statistical point of view, this represents the probability that
a microfacet is visible from both the view (no masking) and light
directions (no shadowing). This is modeled through the so-called
Geometrical Attenuation Factor (GAF), which is an essential ingredi-
ent of physically-plausible BRDFs based on microfacet theory [Heitz
2014]. In the work of Cook and Torrance [1982], microfacets are
considered to form V-groove cavity pro�les [Torrance and Spar-
row 1967]. Even if V-cavity masking functions are mathematically
well-de�ned, they do not represent realistic microsurfaces.

A more realistic treatment is provided by Smith’s model [Smith
1967], which is equivalent to the formulation of Ashikhmin et
al. [2000]. Since surfaces are represented with statistical distribu-
tions, masking is derived by exploiting two fundamental assump-
tions of the model: a microfacet orientation is not correlated to its
position or height, and microfacets have all the same area [Heitz
et al. 2016b]. The Smith GAF has been the subject of several studies
in the �eld of computer graphics. It was �rst used in a separable
form, where masking and shadowing are considered as directionally-
independent [Walter et al. 2007]. Ross et al. [2005] partially ad-
dressed this limitation and introduced the joint masking-shadowing
function that is commonly used today, taking into account the cor-
relation between masking and shadowing due to the height of the
microsurface. Another source of correlation lies in the incoming
and outgoing directions as they get closer to each other. Existing
solutions to handle it [Ashikhmin et al. 2000; Heitz et al. 2013a; van
Ginneken et al. 1998] remain limited, as they are either based on
empirical terms or limited to isotropic Gaussian statistics.

Material mixtures. Mixing microfacet-based models with other
models is commonplace. For instance, laying dielectric microfacets
onto a di�use Lambertian base models plastic materials faithfully.
However, it is important to take energy conservation considerations
into account when doing so (e.g., [Kelemen and Szirmay-Kalos 2001;
Meneveaux et al. 2018]). More complex appearancemay be produced
by layering several rough interfaces on top of each other, each
interface potentially modeled by microfacet theory (e.g., [Guo et al.
2018; Jakob et al. 2014; Weidlich and Wilkie 2007]).
Instead of mixing materials vertically, some methods have pro-

posed to use lateral mixtures, which are well adapted to the mod-
eling of porous microsurfaces. Merillou et al. [2000] were the �rst
to propose an empirical modi�cation to microfacet models to han-
dle porosity. They model pores as cylindrical holes with a di�use
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(Lambertian) re�ectance, and provide an approximation for multiple
scattering inside them. More importantly, they mix the base surface
and the pores using an empirical weight factor based on the GAF and
on the porosity parameter. Barla et al. [2018] proposed to use a mix-
ture of two microfacet distributions, along with a reparametrization
that provides intuitive control over hazy gloss e�ects. They suggest
using a modi�ed GAF to handle the masking and shadowing of the
combined distributions. d’Eon et al. [2023] extend this approach to
asymmetric mixtures of distributions based on height, exhibiting
visibility e�ects at grazing angles. Interestingly, very similar results
are obtained when considering that the microsurface consists of a
distribution of elliptical micrograins onto a base surface, as demon-
strated by Lucas et al. [2023]. A last approach relies on volumetric
descriptions of the material, whereby microfacets are replaced by
micro�akes (e.g., [Dupuy et al. 2016; Wang et al. 2022]). However,
they do not seem to produce grazing-angle visibility e�ects as is the
case of surfacic models.

In contrast to previous methods that all rely on Smith’s assump-
tion, we explicitly consider height-normal dependencies at the mi-
croscopic level. This is done by extending the micrograin framework
of Lucas et al. [2023], which we recall in the next section.

3 BACKGROUND

In the model of Lucas et al. [2023], the microsurface is assumed
to consist of a uniform random distribution of identical opaque
micrograins, which may potentially intersect (see Figure 2a,b). Mi-
crograins are half-ellipsoids compressed vertically by a factor V .
Lucas et al. model the BSDF of such a microstructure as:

5 (i, o) = F+ (i, o) 5 ( (i, o) + (1 −F+ (i, o)) 5 � (i, o), (1)

where i and o are the ingoing and outgoing directions respectively,
andF+ is a weight factor used to balance between the contributions
of the surfacic (micrograin) material 5 ( and the bulk material 5 � .
While 5 � is arbitrary, 5 ( is based on microfacet theory with the
addition of a coupled Lambertian component, to accomodate for
di�use, di�use+specular, or conductor micrograins:

5 ( (i, o) =
 3
c
)̄ (i, o) +

� (h)� (i, o, h)� (i · h)

4|i · n| |o · n|
, (2)

with )̄ an average transmission term used for coupling, h =
i+o
∥i+o∥

the halfway vector, n the geometric normal,� and� the micrograin-
based Normal Distribution Function (NDF) and Geometric Attenua-
tion Factor (GAF) terms, and � the Fresnel term.
Lucas et al. rely on �rst-order statistics to derive a probability

distribution function (PDF) of closest micrograins, from which they
compute the new terms involved in their model. They �rst show that
the corresponding cumulative distribution function (CDF) yields the
�lling factor g0, which characterizes the relative area of micrograins
when projected at normal incidence:

g0 = 1 − 4−cdA
2
B , (3)

where d is the density of micrograins and AB is their radius. It is ex-
tended to model the visible �lling factor g+

V
(lll), which characterizes

the relative area of micrograins vertically compressed by a factor

V and projected along an arbitrary directionlll . This is used in the
de�nition of the weight factor of Equation 1:

F+ (i, o) = 1 −
(1 − g+

V
(i)) (1 − g+

V
(o))

1 − g0
(4)

Lucas et al. derive the NDF of the micrograin surface from the
PDF of closest micrograins using a change of variable, yielding:

� (\<) = −
V2 ln(1 − g0) (1 − g0)

tan2 \<
V2+tan2 \<

g0 (V2 + tan2 \<)2 cos4 \<
, (5)

where m is a microfacet normal, and \< = arccos(m · n). They
derive and invert the following CDF for importance sampling:

� (\<) =
1 − (1 − g0)

tan2 \<
V2+tan2 \<

g0
. (6)

The analytical GAF term � is then derived following Smith’s
uncorrelated height-normal assumption [Smith 1967].

4 METHOD

Our BSDF model relies on a microstructure similar to the one of Lu-
cas et al.: a random distribution of identical opaque micrograins. We
have found that such a microstructure has a fundamental property,
which we rely on throughout this section: the visible �lling factor g
(from an arbitrary direction) of the whole distribution derives from
the projected area f of a single micrograin (of arbitrary shape) onto
the surface plane. Formally, we write:

g = 1 − 4−df . (7)

Proof. For a random distribution of identical micrograins, as
shown in Figure 2, the visible �lling factor g of the microstructure
from an arbitrary direction is given by the relative area of projected
micrograins. In the �nite case where we have a random distribu-
tion of # micrograins, the probability of a point on the projected
surface to be outside of one projected micrograin is p>DC = 1 −

df
# ,

with d the distribution density and f the projected area of a single
micrograin. The visible �lling factor in the �nite case g# is then
equal to the probability of a surface point to be inside at least one
micrograin, which happens when that point is not outside of all #
projected micrograins: g# = 1 − p#>DC . The visible �lling factor is
�nally obtained by taking the limit of g# as # tends toward in�nity:

g = lim
#→∞

1 −
(

1 −
df

#

)#
= 1 − 4−df .

□

For instance, the �lling factor g0 in the model of Lucas et al.
(Equation 3) is obtained by using the projected area of a disc at
normal incidence f0 = cA2B in Equation 7.
We �rst use this �nding in Section 4.1 to handle anisotropic

micrograins, and derive an anisotropic NDF by demonstrating that
Equation 5 is shape-invariant. We then consider projected areas
of micrograins at oblique incidences in Section 4.2, which permits
the derivation of a height- and direction-correlated GAF, exhibiting
retro-re�ection e�ects. We �nally tie all components of our BSDF
model together in Section 4.3, where we use the GAF to derive both
the exact di�use microgain component and pore visibility.
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β
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1

βy
1

βx
1

(a) Micrograin distribution (b) Micrograins in [Lucas et al. 2023] (c) Our anisotropic micrograins

Fig. 2. The surface microstructure is assumed to consist of a distribution of micrograins, as shown in a) for the isotropic case using a top view, where the
relative area of the union of micrograin bases corresponds to the filling factor g0. In the work of Lucas et al. [2023], b) micrograins are half-ellipsoids compressed
vertically by a factor V . In contrast, c) we use half-ellipsoids stretched horizontally in the lateral directions by a pair of factors 1

VG
and 1

V~
.

4.1 Anisotropic NDF

A �rst di�erence with the model of Lucas et al. [2023] lies in the way
we model elliptical micrograins: instead of compressing spherical
micrograins vertically, we stretch them laterally (see Figure 2c). This
allows for di�erent amounts of stretching 1

VG
and 1

V~
in di�erent

directions (with VG ∈ R+ and V~ ∈ R+).
The formula of the �lling factor g0 needs to be modi�ed to ac-

count for this anisotropic micrograin geometry. Using Equation 7
in conjunction with the projected area of elliptical micrograins at

normal incidence f0 =
cA 2B
VG V~

, we obtain:

g0 = 1 − 4
−d

cA2B
VG V~ . (8)

Compared to Equation 3, the �lling factor is now dependent on the
stretching factors 1

VG
and 1

V~
. Intuitively, when stretching increases,

the micrograin density and/or radius must decrease to leave the
�lling factor unchanged. Formally, inverting Equation 8 yields:

dA2B = −
ln(1 − g0)VG V~

c
. (9)

Since the density d and squared radius A2B are always multiplied
together, we consider without loss of generality that AB = 1 in the
rest of the paper, which simpli�es mathematical derivations.
In the isotropic case (i.e., VG = V~ = V), the NDF of stretched

micrograins is identical to that of Lucas et al. who use compressed
micrograins (due to NDF normalization). Using Equation 9, we ex-
plicity re-write Equation 5 in a shape-invariant form [Heitz 2014]:

� (m) =
1

2>B4\<

1

V2
5 (C (m)), (10)

5 (C (m)) = −
ln(1 − g0) (1 − g0)

C (m)2

1+C (m)2

g0c (1 + C (m)2)2
, (11)

where C (m) =
tan\<
V

in the isotropic case. The extension to an

anisotropic NDF (see Supplemental material) is obtained by setting

C (m) = tan\<

√

cos2 q<
V2G

+
sin2 q<
V2~

in Equation 10.

As in themodel of Lucas et al., the resultingNDFmay be expressed
in terms of the anisotropic Trowbridge-Reitz (GGX) NDF:

� (m) = −
ln(1 − g0) (1 − g0)

C (m)2

1+C (m)2

g0
�aniso
66G (m) . (12)

Importance sampling. We �rst rewrite the CDF in the isotropic

case (Equation 6, where VG = V~ = V) using C (m) =
tan\<
V

:

� (m) =
1 − (1 − g0)

C (m)2

1+C (m)2

g0
. (13)

As before, this is trivially extented to the anisotropic case by using

C2 (m) = tan2 \<6(q<) where6(q<) =
cos2 q<
V2G

+
sin2 q<
V2~

. The angles

(\<, q<) of the microsurface normal m are then given by:

\< = arctan

(
√

−
1

6(q<)

ln(1 − b\g0)

ln(1 − b\g0) − ln(1 − g0)

)

, (14)

q< = arctan

(

V~ sin(2cbq )

VG cos(2cbq )

)

, (15)

where b\ and bq are univariate random variables. Here, q< is ob-
tained by inverting the CDF corresponding to the marginal density
function as commonly done for GGX1, whereas \< is obtained by
inverting the CDF corresponding to the conditional density function
(i.e., by inverting Equation 13).

4.2 Correlated GAF

We now turn to the derivation of the GAF, �rst restricted to the
case of unit spherical micrograins (i.e., VG = V~ = 1 and AB = 1). A
second di�erence with the model of Lucas et al. is that we do not
rely on Smith’s uncorrelated height-normal assumption, but instead
couple heights and microfacet normals through micrograins.

Unidirectional GAF. We start by deriving the unidirectional GAF
for a direction i, using a classical separation between local and dis-

tant terms [Heitz 2014]:�1 (i,m) = � local
1 (i,m)�dist

1 (i,m). The local
term accounts for visibility masking by a single, local micrograin:

� local
1 (i,m) = j+ (i ·m). Once accounted for, the local micrograin

may be considered as "removed" from the distribution: we are thus

1E.g., see https://agraphicsguynotes.com/posts/sample_anisotropic_microfacet_brdf/
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x

y
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qi-

π-ϕq

σs

σe

σt

σc

h

Fig. 3. The unidirectional GAF�1 (here for spherical micrograins) is com-
posed of a local and a distant term. Top: once the local term has been
accounted for, the local micrograin (do�ed) may be removed and we are
le� with a point of normal m inside a pore at height ℎ = m · n. The distant
term�dist

1 characterizes the proportion of such points that are visible from

a direction i (i.e., points outside shadows). Middle: to characterize�dist
1 , we

intersect the micrograin and the cylinder tangent to it and oriented along
i with H, the plane at height ℎ, yielding a circle Cℎ and an ellipse Eℎ (i)

(of center e) respectively. Bo�om: the shadow lies in the plane H. Its area
is given by fB = f4 − f2 − fC , with the component areas shown in red
(outlined), purple and yellow respectively. As detailed in Appendix A, their
computation relies on the points q8±, where Cℎ is tangent to Eℎ (i) .

left with a point at height ℎ = n · m, which makes the coupling
between height and microfacet normals explicit. By construction,
this point lies inside a pore at height ℎ (see Figure 3-top).
Yet, throwing a ray from that point in direction i might still

intersect another micrograin. The distant term �dist
1 characterizes

the probability of such a ray leaving out the surface. Formally, we
de�ne it as the relative area of pores at height ℎ visible from the
direction i, with respect to pores at height ℎ (i.e., visible at normal
incidence). Since porosity is the complement of the �lling factor, we
rely on Equation 7 to derive the height-dependent distant term:

�dist
1 (i, ℎ) =

4−df (i,ℎ)

4−df (n,ℎ)
= 4−dfB (i,ℎ) , (16)

where f (i, ℎ) is the projected area in direction i of a spherical cap
onto the plane at height ℎ, and fB (i, ℎ) = f (i, ℎ) − f (n, ℎ) is the

qi+

qo+

qo-

qi-

qi+

qo+

qo-

qi-

Case 1) No overlap Case 2) Maximal overlap

qi+

qo+

qo-

qi-

p+ qi+

qo+

o ct

p+

i

= -

Case 3) Partial overlap

Fig. 4. Directional correlation in the bidirectional GAF requires to compute
the area f∩ of the overlap (dark gray) between shadows from direction i

(light gray, outlined in red) and direction o (light gray, outlined in green).
Three cases must be distinguished, depending on the position of silhoue�e
points q8± and q>± with respect to the line Lℎ , as detailed in Appendix B.
Case 1): q8± and q>± are on di�erent sides of Lℎ and there is no overlap.
Case 2): q8± and q>± are on the same side of Lℎ and the overlap is maximal.
Case 3): Lℎ separates q8+ from q8− and q>+ from q>− , yielding a partial
overlap with shadow boundaries intersecting at p+. The shadow overlap
area is then given by f∩ = f∩C + f∩8 + f∩> − f∩2 , with the component
areas shown in yellow, red, green and purple respectively. As detailed in
Appendix B, their computation relies on the points p+, q8+ and q>+.

area of the spherical cap shadow. As illustrated in Figure 3-bottom
and detailed in Appendix A, fB is obtained through the geometric
decomposition: fB = f4 − f2 − fC , where f4 is the area of an ellipse
sector (outlined in red),f2 is the area of a circle sector (in purple), and
fC is the area of a triangle pair (in yellow). When i = n, or ℎ = 1 (i.e.,
m = n), there is no shadow (fB = 0); hence �1 (n, ℎ) = �1 (i, 1) = 1.

Bidirectional GAF. The bidirectional GAF is also separated into

local and distant terms: � (i, o,m) = � local (i, o,m)�dist (i, o,m),
with the local term given by � local (i, o,m) = j+ (i · m)j+ (o · m).
One may directly rely on the unidirectional GAF (Equation 16) to
de�ne the distant term of the bidirectional GAF:

�dist (i, o, ℎ) = �dist
1 (i, ℎ)�dist

1 (o, ℎ) = 4−d [fB (i,ℎ)+fB (o,ℎ) ] . (17)

Note that contrary to Smith’s model, such a GAF is height-correlated

by construction since �dist
1 is height-dependent. However, it does

not account for potential retro-re�ection e�ects that might occur as
i and o get in alignment.

In order to take such directional correlation into account in�dist,
we must consider the potential overlap between the shadows due
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to i and o (see Figure 4). In terms of projected areas, we have:

�dist (i, o, ℎ) = 4−d [fB (i,ℎ)+fB (o,ℎ)−f∩ (i,o,ℎ) ] , (18)

where f∩ (i, o, ℎ) is the area of the intersection of spherical cap
shadows corresponding to directions i and o.

We distinguish three cases (see Figure 4): 1)f∩ (i, o, ℎ) = 0when ei-
ther of the shadows is absent, or if they do not overlap; 2)f∩ (i, o, ℎ) =
min(fB (i, ℎ), fB (o, ℎ)) when one of the shadows fully overlaps the
other; 3) f∩ = f∩C + f∩8 + f∩> − f∩2 when the shadows partially
overlap. As illustrated in the inset of Figure 4 and detailed in Ap-
pendix B, f∩C is the area of a triangle (in yellow), f∩8 and f∩> are
areas of elliptic segments (in red and green respectively), and f∩2 is
the area of a circle segment (in purple). When i = o = n, or ℎ = 1

(i.e., m = n), both shadows vanish, hence � (n, n, ℎ) = � (i, o, 1) = 1.

Anisotropic GAF. Up until now we have only considered the case
of spherical micrograins. In order to accommodate for elliptical
micrograins, we transform the microstructure through a scaling ma-
trix � = diag(VG , V~, 1) that turns them into spherical micrograins.
In such a transformed space, the ingoing and outgoing directions
are given by i′ =

�i
∥�i∥

and o′ =
�o
∥�o∥

, whereas the transformed

microfacet normal is classically given by m′
=

�-1m
∥�-1m∥

with the cor-

responding height ℎ′ = n ·m′. Any projected area computed on this
scaled microstructure must then be multiplied by det�-1 = 1

VG V~
.

The distant term of the bidirectional GAF is now given by:

�dist (i, o, ℎ′) = 4−d [fB (i
′,ℎ′ )+fB (o

′,ℎ′ ) )−f∩ (i
′,o′,ℎ′ ) ) ]det�-1 ,

Using Equation 9 (with AB = 1) for d , we obtain the �nal formula for

the distant term of the anisotropic GAF (� local remains unchanged):

�dist (i, o, ℎ′) = 4
ln(1−g0 )

c [fB (i
′,ℎ′ )+fB (o

′,ℎ′ )−f∩ (i
′,o′,ℎ′ ) ] . (19)

4.3 Our BSDF model

The third and last di�erence between our model and the one of Lucas
et al. lies in the combination of the di�erent BSDF components. We
use the following formula, which has a form similar to Equation 1:

5 (i, o) = g0 5
( (i, o) ++? (i, o) 5

� (i, o), (20)

where +? denotes the visibility of pores between micrograins.
We directly use g0 to weight the surfacic micrograin compo-

nent. This is valid for its specular component, since the height-
and direction-correlated GAF already exactly accounts for all at-
tenuation e�ects due to visibility. However, we need to modify the
di�use micrograin component to integrate the visibility of points
over micrograins. This is very much similar to the case of rough
di�use microfacets studied by Heitz [2014]. In our case, we obtain:

5 (,3 (i, o) =

∫

Ω

 3 (m)

c

|i ·m| |o ·m|

|i · n| |o · n|
� (m)� (i, o,m)) (i, o,m)3m.

(21)
with) (i, o,m) = (1−� (i ·m)) (1−� (o ·m)). Compared to the model
of Lucas et al., we explicitly consider the visibility of (anisotropic)
micrograins, we use a more accurate transmittance instead of the
approximation )̄ (i, o), and a di�use albedo  3 that may optionally
vary as a function of the microfacet normal m (i.e., the position
on the micrograin). Unfortunately, Equation 21 has no closed form,

hence we resort to a stochastic evaluation. This is similar to the
work of Heitz and Dupuy [2015], except that we use our � and �
terms and sample the NDF instead of the visible NDF (see Section 7).

The surfacic micrograin component is now given by:

5 ( (i, o) = 5 (,3 (i, o) +
� (h)� (i, o, h)� (i · h, h)

4|i · n| |o · n|
, (22)

where we use our new NDF � and GAF � . As with  3 , we let the
refractive index in the Fresnel term � optionally vary as a function
of h, which allows for micrograins with locally varying re�ectance.

The bulk material is only visible for light paths that reach pores
between micrograins from directions i and o, as modeled by+? (i, o).
At normal incidence (i = o = n), it is simply given by (1 − g0). In
other con�gurations, part of the pores may not be visible from either
the ingoing or outgoing direction. Such an attenuation is directly
given by the distant term of the anisotropic GAF (Equation 19),
using ℎ′ = 0 since pores are located on the surface:

+? (i, o) = (1 − g0)�
dist (i, o, 0). (23)

We show in Appendix C that�dist (i, o, 0) has a simple formula that
leads to a slightly more e�cient implementation for +? .

Using the visible �lling factor notation of Lucas et al., we observe
that in the isotropic case, Equation 16 may be rewritten as:

�dist
1 (i, 0) =

1−g+
V
(i)

1−g0
. (24)

Hence we may rewrite their bulk weight factor as (see Equation 4):

1 −F+ (i, o) = (1 − g0)�
dist
1 (i, 0)�dist

1 (o, 0) . (25)

In other words, compared to our model, the weighting factor of
the bulk component in the model of Lucas et al. (Equation 1) is not
direction-correlated and limited to the isotropic case.

Importance Sampling. The sampling of the BSDF of Equation 20
according to an ingoing direction i �rst requires the sampling of a
BRDF component. We know that the visibility of the bulk compo-
nent from direction i corresponds to the complement of the visible
�lling factor. Using Equation 24, we de�ne the probability p� (i) of
sampling the bulk material by:

p� (i) =
(1 − g0)�

dist
1 (i, 0)

g0 + (1 − g0)�
dist
1 (i, 0)

, (26)

where�dist
1 (i, ℎ′) = 4

ln(1−g0 )

c fB (i
′,ℎ′ ) is the anisotropic unidirectional

GAF (the derivation is similar to that of Equation 19). Note that at
normal incidence we have p� (n) = 1 − g0 as expected.

The surfacic component, which is sampled with a probability 1 −

p� (i), is itself made of a pair of di�use and specular sub-components.
We de�ne the probability p(,3 (i) of sampling the di�use micrograin
sub-component as:

p(,3 (i) =
 3 (n)

 3 (n) + � (i · n, n)
, (27)

where we use the di�use albedo (resp. refractive index) at the tip
of the micrograin (i.e., with normal n), since this is the part of the
micrograin surface that is always visible.
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Fig. 5. The azimuthal angle dependence of�1 (green solid lines) for fixed
\< = 50◦ and \8 = 64.5◦ is only due to� local

1 , which equals 1 for a subset
of angles q< (blue simulation samples), and is equal to 0 for most of the
other angles (red simulation samples). Outliers (in red) are due to numerical
innaccuracies in simulations at points where i · m ≈ 0.

We �nally rely on cosine sampling to sample 5 (,3 , and on the
methodology of Walter et al. [2007] in conjunction with Equa-
tions 14-15 to sample the microfacet component.

5 VALIDATIONS AND COMPARISONS

We �rst provide several validations of our model using light trans-
port simulations on explicit micrograin distributions in Section 5.1.
We then compare our BSDF to other methods and highlight the
di�erences brought by explicitly considering height-normal depen-
dencies in Section 5.2. We only present a subset of our comparison
results here and refer the interested reader to supplemental material
for a more in-depth evaluation.

5.1 Validations against simulations

We build an explicit microstructure by randomly distributing micro-
grains onto a plane, using ray-tracing to obtain simulated references.

Comparison with simulated GAF. We start by evaluating our uni-
directional GAF, which is separated into local and distant terms.
This separation is validated in Figure 5 by simulations on spherical
micrograins. For each con�guration, we inspect the values of �1

as a function of q< for �xed elevation angle \< (i.e., ℎ = cos\<)
and incoming elevation angle \8 . As expected, �1 is constant (up to
simulation noise) except for azimuthal angles where � local

1 is zero.

We next compare the distant term of the unidirectional GAF�dist
1

to a simulation where the contributions of all visible micrograin
surface points at a given height (blue samples in Figure 5) are aver-
aged to reduce variance. This is shown in Figure 6 for several �lling
factors g0 and micrograin elevation angles \< , with �dist

1 plotted
as a function of the incident angle \8 . Our model exactly matches
simulations, validating our approach based on projected areas of
spherical caps (or micrograin shadow areas).

Comparison with simulated BRDF. Lastly, we validate our full ma-
terial model against simulations, obtained by forward path tracing
on the explicit micrograin surface followed by collection of outgoing
rays in a distant hemisphere. In these comparisons, we restrict simu-
lations to single-scattering light paths, in order to precisely evaluate
the potential errors of our model, which neglects multiple-scattering
(but see Section 7 for comparisons with full simulations).

g0 \< = 20◦ \< = 50◦ \< = 80◦
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Fig. 6. Validation of �38BC
1 (solid curves) against simulations (dots) as a

function of the incident angle \8 for several (g0, \> ) configurations.
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Fig. 7. Validation of BRDF slices (\8 = 86◦) for conductor micrograins
(of index [ + 8^ = 1.0152 + 86.6273) distributed onto an absorbing base
surface. Our direction-correlated model (right columns) exhibits very high
accuracy w.r.t the reference (center). Without direction correlation (le�
columns), a retro-reflection peak is absent. The green isoline separates
angular configurations where the BRDF is below 0.00001, in which case
simulation noise prevails and the relative error is nor relevant anymore.

We show in Figures 7 and 8 two di�erent con�gurations using
conductor and di�use micrograins respectively, both on a fully
absorbing bulk surface and for di�erent con�gurations of material
parameters (g0, VG , V~). In each case, we compare our model with
or without direction correlation (Equations 17 and 18 respectively)
at grazing angles to better exhibit retro-re�ection e�ects. Many
more such comparisons are given in supplemental materials; they
all show near-perfect matches of our full model with the reference.

ϕo=-90○ 0
○

θo=0○
90
○

90
○

45
○

180
○

270
○

Each image represents a BRDF slice
parametrized according to zenital and az-
imuthal outgoing angles as shown in the
inset image. The relative errors are com-
puted by taking the di�erence between
the model and the reference, and normal-
izing by the reference. A gray color (rel-
ative error of 0) means a perfect match.
We have not found necessary to separately validate the bidirec-

tional GAF. Indeed, our NDF in the isotropic case is identical to the
one of Lucas et al. [2023], which has already been validated in their
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Fig. 8. Validation of BRDF slices (\8 = 86◦) for di�use micrograins (of
albedo  3 = 0.5) distributed onto an absorbing base surface. Once again,
our direction-correlated model (right columns) exhibits very high accuracy
with respect to the reference (center). The retro-reflection peak due to
direction correlation (absent from the two le� columns), remains thin even
with di�use micrograin configurations as it is mainly due to visibility.

work; hence the only potential source of error for our BRDF model
when considering an absorbing bulk lies in the bidirectional GAF.
Since we have obtained excellent comparisons of our full model com-
pared to the reference, it seems reasonable to assume that this is due
to a correct bidirectional GAF. The numerous additional validations
presented in supplemental material con�rm this assumption.

5.2 Comparisons between models

We provide comparisons to a few other BRDF models that handle
the mixing of multiple microfacet distributions: the empirical model
of Merillou et al. [2000] that assumes cylindrical micropores “drilled”
in a rough surface; the model of d’Eon et al. [2023] based on di�erent
microfacet distributions combined based on depth; and the micro-
grain model of Lucas at al. [2023]. As discussed in the latter, the
parameters of all three models may be made to coincide to obtain
similar results at normal incidence. We compare all four models
(including ours) to a reference simulation in the single-scattering
case, with conductor micrograins and an absorbing bulk surface,
on various combinations of material parameters (g0, VG , V~). We
believe these result in fair comparisons since all models provide
analytic formula in such con�gurations.

One of those comparisons is shown in Figure 9, where it is clear
that only our model accurately reproduces the reference simula-
tion. This is con�rmed by all the other comparisons provided in
supplemental material. In this case, the other three models seem to
produce similar results relative to each others, but this is not the
case in general, in particular for the model of Merillou et al. We do
not take these comparisons to suggest that our model is better, since
the other models assume di�erent microstructures. Instead it shows
that an explicit modeling of height-normal dependencies yields dif-
ferent BRDF slices compared to previous work. Di�erences in terms
of appearance are shown in Figure 10, where we omit the model
of Lucas et al. [2023] since its results are very similar to those of
the model of d’Eon et al. [2023]. The model of Merillou et al. [2000]
markedly di�ers from ours, while the model of d’Eon et al. [2023]
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Fig. 9. Comparison of di�erent BSDF models with parameters reproducing
a distribution of spherical conductor micrograins (g0 = 0.5, VG = V~ = 1,
[ + 8^ = 1.0152 + 86.6273) on an absorbing base.

g 0
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.1

g 0
=
0
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(a) Ours (b) Mérillou et al. (c) d’Eon et al.

Fig. 10. Comparisons between global illumination renderings using our
specular micrograin model (a), the model of Mérillou et al. [2000] (b) and
the one d’Eon et al [2023] (c), for a pair of filling factors (rows). We use a
gold porous layer on top of an absorbing base. We set V = 1 and compute an
equivalent roughness for (b) and (c) using Equation 28. FLIP images show
visual di�erences with our model.

is visually closer, with remaining di�erences mostly visible toward
grazing angles due to our GAF.

In Figure 11, we further compare our model (Equations 17 and 18)
and the one of Lucas et al. [2023] in a retro-re�ection con�guration.
This shows the in�uence of height-normal dependencies at grazing
angles. The e�ect becomes more noticeable at higher V values, as
shown by FLIP di�erences [Andersson et al. 2020].
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Fig. 11. Comparisons in a retro-reflection configuration (i.e., i = o) between
our model (using Equation 17 or 18) and the model of Lucas et al. [2023]. We
use a distribution of conductor micrograins (g0 = 0.2) with increasing values
for V on a Lambertian base surface (of albedo 0.5). The renderings (top
row) di�er more for increasing values of V when visibility e�ects become
prominent, as shown by FLIP di�erences with our full model (bo�om row).

6 RESULTS

We have implemented our model in Mitsuba [Jakob et al. 2022] to
generate results with global illumination. All conductor refractive
indices are taken from the IOR database used in Mitsuba.
Our preliminary implementation in GLSL inside BRDFExplorer

shows that our model introduces a 3.7% overhead when using
the version without directional correlation and an overhead of
7.6% when using the fully-correlated GAF, compared to a standard
anisotropic GGX BRDFmodel implemented with a height-correlated
Smith GAF. These timings were performed on a PC equipped with
a Nvidia RTX 2080 graphics card.

Material parameters. One key parameter that controls the ap-
pearance of our BSDF model is the �lling factor g0, which acts as
a mixture weight between the appearance of micrograins and the
appearance of the bulk surface (see Equation 20). This is illustrated
in Figure 12 where we show two di�erent types of micrograins
(dielectrics and conductors) on top of a Lambertian base material,
for several values of g0. Our model thus provides an alternative
solution to existing work on material mixtures (e.g., [d’Eon et al.
2023; Kelemen and Szirmay-Kalos 2001; Meneveaux et al. 2018]).
The other parameters of our model are the micrograin compres-

sion/stretching factors (VG , V~) and micrograin re�ectance prop-
erties. As already mentioned by Lucas et al. [2023], the compres-
sion/stretching factors may be related to equivalent roughness pa-
rameters by the following equation, which also applies to anisotropy:

(ŨG , Ũ~) =

√

−
g0

ln(1 − g0)
(VG , V~) (28)

We show in Figure 1 di�erent combinations of all material param-
eters on a 3D Buddha model. The golden material of Figure 1a is
obtained by laying anisotropic aluminummicrograins ((g0, VG , V~) =
(0.2, 0.05, 2)) onto an isotropic rough gold conductor base (U = 0.2).
This shows another example of material mixture, this time between
conductor material components. The dusty wooden Buddha of Fig-
ure 1b is obtained by applying gray di�use micrograins ( 3 = 0.2,

g 0
=
0
.1

g 0
=
0
.5

g 0
=
0
.9

(a) Dielectric micrograins (b) Conductor micrograins

Fig. 12. Material mixtures. We use the filling factor parameter to control
the mixture of micrograins (V = 0.1) and bulk surface. (a) Dielectric micro-
grains ([ = 1.6,  3 = [0.3, 0.2, 0.1]) on top of a beige di�use bulk (same
 3 ). (b) Gold micrograins on top of a gray di�use bulk (of albedo 0.4).

V = 1) on top of a textured di�use wood bulk material. We vary
the �lling factor according to the upward component of the surface
normal to produce plausible dust deposition. Similarly, a moldy
glass Buddha is shown in Figure 1c, this time using green di�use +
dielectric ( 3 = [0.2, 0.5, 0.05], [ = 1.5) micrograins onto a rough
dielectric surface (U = 0.2 with an index of 1.5), illustrating the abil-
ity of our model to use a transparent material for the base surface.
A subtle example of color correlation is given in Figure 1d: we use
di�use micrograins ((g0, V) = (0.4, 3)) with albedos varying from
green to red as a function of height, distributed on top of a rough
aluminum conductor base (U = 0.2). The e�ect may be observed
at extremely grazing angles where the micrograin color takes on
a reddish tint. Lastly, in Figure 1e, we use a di�use white plastic
weave texture for the base surface, which is completely transpar-
ent in some locations. We apply a distribution of grayish di�use
micrograins (V = 1,  3 = [0.1, 0.05, 0]) on top of it, with a �lling
factor that varies spatially in order to mimic the accumulation of
dirt around locations where the weaves intersect.

In the supplemental video, we show an interactive manipulation
of material parameters using our BRDFExplorer implementation. In
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Fig. 13. Di�use anisotropy.We compare the appearance of isotropic (top)
and anisotropic (bo�om) di�use materials, with filling factors varying per
object: from back to front, g0 = {0.05, 0.15, 0.3}. As shown in zoom insets,
grazing-angle visibility e�ects vary in intensity with the filling factor, and
in orientation according to anisotropy (see also the FLIP di�erence inset).

particular, we demonstrate normal-correlated complex refractive
indices, using Gulbrandsen’s remapping [Gulbrandsen 2014] for
simpler control as described in supplemental material.

Anisotropic materials. Our anisotropic model produces interesting
view-dependent e�ects. We �rst show the case of anisotropic di�use
micrograins on a di�use base in Figure 13. For all objects in the scene,
we use a red di�use albedo ( 3 = [0.6, 0, 0]) for the micrograin and
a gray di�use albedo for the bulk component ( 3 = 0.4). However,
we vary the �lling factors per object, and we compare isotropic
and anisotropic con�gurations. The reddish grazing angle visibility
e�ects di�er in terms of distribution in each case (see zoom insets).
Equation 20 may also be used to mix two layers of anisotropic

micrograins by using a micrograin layer for the bulk component.
This is shown in Figure 14 (top) for anisotropic dielectric micrograins
distributed on another layer of anisotropic dielectric micrograins
oriented perpendicularly. Both layers use the same refractive index
for micrograins, but two di�erent colors for the di�use albedo. Note
that the material is partially transparent in this case. As a result,
the material appearance changes with rotations of the camera, as
shown in zoom insets. A similar con�guration is used in Figure 14
(bottom), except that we use aluminun micrograins and add a third
aluminum bulk component in this case to make the material opaque.

Note that even though we have used a thin surface that appears
folded on a sphere, our intent is not to convey a fabric appearance.
Indeed, as discussed in Section 7, the structural assumptions made

by our model are not adapted to such materials. The images in
Figure 14 thus resemble more trompe l’oeil sculptures2.

Retro-re�ection e�ects. We have shown the impact of accounting
for directional correlation in Figure 11 in simple retro-re�ection
con�gurations. We illustrate this e�ect on a more complex object
in an environment lighting with an additional strong directional
light. When the key light comes from the side (Figure 15a), the dif-
ference between versions of our model with or without directional
correlation (left and right halves respectively) remains subtle (as
shown by FLIP di�erences), especially for conductor micrograins.
In contrast, when the light and view directions are aligned (Fig-
ure 15b), the di�erence is much more pronounced: the material with
di�use micrograins conveys a softer look, whereas the one with the
conductor micrograins exhibits more intense grazing angle e�ects.

Correlated color e�ects. A last feature of our model is the abil-
ity to make re�ectance vary locally on each micrograin. This is
shown in Figure 16, where we use two types of correlation: based
on height, and based on microfacet normal orientations, both on
dielectric+di�use and conductor micrograins. This bears some simi-
larities to the �ltering of color-mapped textures and surfaces [Heitz
et al. 2013b], except that in our case, all the �ltering occurs at the
microscopic scale and is handled by our fully-correlated GAF. The
e�ect on appearance varies depending on micrograin re�ectance.
Materials based on dielectric+di�use micrograins exhibit color vari-
ations that are expected from local variations of the di�use albedo
on a micrograin. The appearance of materials based on conductor
micrograins where the complex refractive index is made to vary
locally (through variations of its imaginary term) is more subtle.
In such cases, one should pay particular attention to color fringes
around highlights (see zoom insets).

Additional results and comparisons. In supplemental material, we
further compare our fully correlated GAF against the micrograin
Smith GAF from Lucas et al. [2023] (with and without height corre-
lation). We provide an analysis of convergence of our micrograin
model for both specular and di�use micrograins against the model
of Lucas et al. [2023].

7 DISCUSSION

We have introduced a new approach to explicitly model height-
normal dependencies in structured microsurfaces, based on the
micrograin model of Lucas et al. [2023]. We extend its NDF to deal
with anisotropy, and introduce a new fully-correlated GAF that is
used in micrograin BSDF components, as well as in the de�nition of
pore visibility. Our model is validated against reference simulations,
andwe show how its parameters a�ect material appearance, through
retro-re�ection, grazing angle visibility and correlated colors.

Limitations. Our model currently only handles single scattering,
which is its main limitation. As shown in Figure 17, white furnace
tests performed on perfect conductor micrograins on a white dif-
fuse base exhibit losses of energy, as expected. The relevance of
the single-scattering approximation depends on all three param-
eters g0, VG and V~ , and varies with the incoming direction. This

2See for instance the sculpture "Draped chair" by Marina Karella.
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Fig. 14. Specular anisotropy. We use a pair of orthogonal anisotropic micrograin layers to create a complex specular anisotropic material appearance. From
le� to right, we rotate the camera to exhibit view-dependent e�ects. Top: using dielectric+di�use micrograins (with [ = 1.5, (g0, VG , V~ ) = (0.3, 0.05, 0.8) for
the top layer and (g0, VG , V~ ) = (0.3, 0.7, 0.1) for the bo�om one) of di�erent albedo colors – respectively red ( 3 = [0.5, 0, 0]) and green ( 3 = [0, 0.5, 0])–
conveys the appearance of a corrugated plastic sheet. Bo�om: using a pair of aluminum micrograin layers with parameters identical to the dielectric case for
(g0, VG , V~ ) conveys the appearance of a trompe l’oeil sculpture.
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(a) Side lighting (b) Retro-re�ection

Fig. 15. Retro-reflection e�ects. Our model with and without direc-
tional correlation (le� and right halves respectively), in two di�erent ori-
entations (a,b). Top: di�use micrograins (with  3 = [0.1, 0.2, 0.4] and
(g0, V ) = (0.4, 1)) on top of a di�use base of same albedo. Bo�om: gold
micrograins (with (g0, V ) = (0.3, 2)) on top of a gray di�use base (of albedo
0.2). Inset images show FLIP di�erences, which are much more pronounced
in retro-reflection configurations as expected.

is shown in Figure 18 where we compare our model to a full sim-
ulation (i.e., including multiple scattering light paths), this time
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(a) Height correlation (b) Normal correlation

Fig. 16. Correlated color e�ects. Our model allows for local variations of
micrograin reflectances (top le� insets, seen from top), for instance based
on (a) the micrograin height or (b) the orientation of its normal. Top: using
di�use micrograins (with g0 = 0.4, V = 3) on top of a rough aluminium bulk
(U = 0.2). Bo�om: using conductor micrograins (with g0 = 0.8, V = 0.4 in (a)
and g0 = 0.4, V = 0.1 in (b)) onto a di�use bulk (of albedo 0.01 in (a) and 0.2

in (b)).

using conductor micrograins on a di�use base of albedo 0.5. We
compute directional albedos for both our model and simulation and
display ratios between them: the closer the ratio is to 1, the better
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g0 V = 0.5 V = 1 V = 3

0.1

0.5

Fig. 17. White furnace tests for di�erent values of g0 and V , using perfect
conductor isotropic micrograins on a white di�use base.

βx=1

βy=1

βx=3

βy=3

βx=12

βy=12

0.5

0.1

𝜏0 θi=0○ θi=28.6○ θi=57.3○ θi=86○

Fig. 18. Ratios of directional albedos between our model and the full ref-
erence simulation, for varying incidence angles \8 and a fixed q8 = 0. The
contribution of multiple sca�ering increases with increasing filling factor
g0, increasing V and increasing incidence angle \8 .

the single-scattering approximation. These matrices are not sym-
metric, since we vary \8 but use a �xed q8 = 0. The proportion of
multiple-scattering paths increases with higher values of g0 and V
since incoming rays have less probability of directly being re�ected
outside of the micro-surface in these cases. However, at extremely
grazing angles, the single-scattering approximation yields better
results since only micrograin tips become visible.
Extending our model to handle multiple-scattering requires the

derivation of the Visible Normal Distribution Function (VNDF),
whichwould also help reduce variance in importance sampling. Note
that for simplicity, we have used a direct transmission term) (i, o,m)

in the de�nition of the di�use microgain component 5 (,3 in Equa-
tion 21, which neglects inter-re�ections inside a dielectric+di�use
micrograin. This could be corrected by using a more complex trans-
mission term, such as the one used in the interfaced Lambertian
model [Simonot 2009]. Our BSDF model could also be optimized by
providing analytical approximations for 5 (,3 .

Future work. The shape of micrograins could be made more gen-
eral than half-ellipsoids. Indeed, as long as we keep considering a

uniform random distribution of identical micrograins, Equation 7
will remain valid. The only constraint on micrograin shape in the
micrograin framework is the existence of a bijection between the
height ℎ and the microfacet normal m for a point on a micrograin.

Variations in micrograin radii or densities would be more complex
to handle inside the BSDF model, but would be particularly interest-
ing for multi-scale rendering. A more challenging direction of future
work would be to consider other types of micrograin distributions.
For instance, blue noise distributions of micrograins could be used
to model the appearance of microscopic Voronoi patterns (e.g., cells
in leaves), but this remains an open problem. In its current form, our
model should be mainly considered for artistic use. However, the
interesting appearance e�ects it produces might be replicated on
real-world examples through fabrication, taking inspiration from
previous work (e.g., [Luongo et al. 2019; Rouiller et al. 2013]).

Finally, we believe the micrograin framework could be extended
to model a volumetric bulk, as an alternative to methods based on
the di�usion approximation (e.g., [Hapke 1986]). This would require
the extension of micrograins to full spheres, and an accurate account
of the interplay between surfacic and volumetric components.
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A SPHERICAL CAP SHADOW

As illustrated in Figure 3, we want to compute the area fB of the
shadow cast by a unit spherical micrograin from a direction i =

(sin\8 , 0, cos\8 ) onto a plane H parallel to the surface and at a
height ℎ above it. This is the area of a spherical cap shadow.
The cast shadow (gray region in Figure 3-bottom) lies inside

an ellipse Eℎ (i) and outside of a circle Cℎ . Eℎ (i) is obtained by
intersecting the cylinder of radius 1 and direction i tangent to the
unit sphere with H . Eℎ (i) has a unit minor axis, a major axis of
cos−1 \8 , and a center e = (4G , 0, ℎ) where 4G = tan\8 cos\< is
obtained by intersectingH with a ray of direction i starting from
the origin (see Figure 3-middle). Intersecting the unit sphere withH
yields the circle Cℎ , of radius sin\< since ℎ = cos\< . The projected
area of the cast shadow is then computed as fB = f4 −f2 −fC , where
f4 , f2 and fC are the projected areas of the ellipse sector, the circle
sector and the triangle pair, shown in Figure 3-bottom with a red
outline, a purple region and a yellow region respectively.

In order to compute these areas, we �rst locate the pair of points
q8± = (@G ,±@~, ℎ) = (sin\< cosq@,± sin\< sinq@, cos\<) where
Cℎ is tangent to Eℎ . By construction, we have i · q8± = 0, yielding:

cosq@ = −
1

tan\< tan\8
.

Note that q8± exists i� cos\< ≤ sin\8 , otherwise there is no shadow
(i.e., fB = 0) as the spherical cap is fully visible from direction i.

The areas of the triangle pair and circle sector are then given by:

fC = |4G@~ | and f2 = (c − q@) sin
2 \< .

To compute f4 , we �rst apply a transformation that maps Eℎ to
the unit circle, which is achieved by a scaling of cos\8 along the -
axis. The area of the ellipse sector is then given by the area of a unit
circle sector corrected by the Jacobian cos−1 \8 of the scaling:

f4 =
arccos (−(@G − 4G ) cos\8 )

cos\8
.

B OVERLAPPING SPHERICAL CAP SHADOWS

When a micrograin casts two shadows from directions i and o at
a height ℎ (i.e., when fB (i, ℎ) ≠ 0 and fB (o, ℎ) ≠ 0), there is the
possibility that these shadows overlap. We then want to compute
the corresponding overlapping area f∩ (i, o, ℎ) to properly account
for retro-re�ection e�ects (as done in Equation 18).
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Fig. 19. Geometry of the shadow overlap region. (a) The cylinders oriented
along i and o (in red and green respectively) and tangent to the unit spherical
micrograin (not shown) intersect in an ellipse E∩ (i, o) , which lies in a plane
P. (b) We then compute several intersections with the plane H at height
ℎ: with P to get the line Lℎ , with the unit sphere to get Cℎ , and with the
cylinders from (a) to get Eℎ (i) and Eℎ (o) . The shadow overlap region (in
gray) is then found by using points where Eℎ (i) and Eℎ (o) are tangent to
Cℎ , and the point p+ at the intersection of Lℎ and E∩ (i, o) .

In order to identify whether there is an overlap, we introduce the
ellipse E∩ (i, o), which results from the intersection of the cylinders
of radius 1 and direction i and o, both tangent to the unit sphere
(see Figure 19a). E∩ (i, o) lies on the plane P = span(h, b) where h
is the halfway vector and b =

i×o
∥i×o∥

. Intuitively, this leads to three

cases: 1) if spherical cap shadows lie on di�erent sides of P, they do
not overlap; 2) if they lie on the same side of P, one fully overlaps
the other; and 3) if they both cross P, they partially overlap.

Formally, we rely on the lineLℎ = P∩H and on silhouette points
q8± and q>± (computed as inAppendixA) to test for these three cases,
as illustrated in Figure 4. Case 1) occurs when q8± and q>± are on
di�erent sides of Lℎ , yielding f∩ (i, o, ℎ) = 0. Case 2) happens when
q8± and q>± are on the same side of Lℎ , resulting in f∩ (i, o, ℎ) =
min(fB (i, ℎ), fB (o, ℎ)). In case 3), the shadow boundaries intersect
at a point p+ ∈ P, which lies at the intersection of Lℎ and E∩ (i, o)

by construction (see Figure 19b). Writing p+ = ?ℎh + ?1b, we have:

ℎ = ?ℎ (h · n) + ?1 (b · n),

1 = ?2
ℎ
+ [1 − (h · o)2]?2

1
,

where the �rst line derives from n · p+ = ℎ since Lℎ ⊂ H , and
the second line is the equation of E∩ (i, o) in P. Solving for both
equations yields a pair of intersection points, and we denote by p+
the one on the shadows side (i.e., with ?ℎ < 0). Similarly, we enforce
q8+ and q>+ to be always on the shadow overlap region.
The area of the shadow overlap region is then decomposed as

f∩ = f∩C +f∩8 +f∩> −f∩2 , with the component areas illustrated in
the inset of Figure 4. The area f∩C of the triangle formed by points
{p+, q>+, q8+} (in yellow) is given by:

f∩C =
1

2
| | (q8+ − p+) × (q>+ − p+) | |.

The area f∩2 of the circle segment (in purple) is obtained by
subtracting the area of the triangle formed by points {0, q>+, q8+}

from the area of the circle sector formed by the same points, yielding:

f∩2 = arccos

(

q8+ · q>+

sin(\<)2

)

sin(\<)2 −
||q8+ × q>+ | |

2
.

.
The areas f∩8 and f∩> (in red and green respectively) correspond

to ellipse segment areas. To compute them,we �rst apply a transform
matrix" that turns a unit circle into an ellipse with the same axes.

Taking the example of f∩8 , we write " =

[

cosq8
cos\8

− sinq8
sinq8
cos\8

cosq8

]

with

det" =
1

cos(\8 )
, yielding the sought-for area:

f∩8 = det"

(

arccos (q" · p" ) −
||q" × p" | |

2

)

,

where q" = "−1 (q8+ − 'q8 e) and p" = "−1 (p+ − 'q8 e), with 'q8
the rotation of angle q8 in the planeH , and e the ellipse center.

C PORE VISIBILITY

The de�nition of the pore visibility term +? in Equation 23 involves

evaluating �dist at ℎ′ = 0, which itself relies on shadow areas and
their overlap (see Equation 19) evaluated at surface level.

The shadow areafB at a zero height has a simpler form. Indeed, the
ellipse E0 (i) is centered at the origin and the circle C0 has a radius
of 1. As a result, q8± = (0,±1, 0), yielding fC (i, 0) = 0, f2 (i, 0) =

c
2

and f4 (i, 0) =
c

2 cos\8
, hence fB (i, 0) =

c
2

(

1
cos\8

− 1
)

. We observe

that f (i, 0) = f (n, 0) + fB (i, 0) =
c
2 (1 +

1
cos\8

) corresponds to the

area of an elliptical lune, as de�ned in the Ellipsoid NDF model of
Dong et al. [2016].
The area of shadow overlap f∩ also has a slightly simpler form,

since the line L0 now goes through the origin.
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