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ABSTRACT
In this work, I present a straightforward approach for computing surface free energy γF based on the assessment of surface internal energy
(γU), avoiding the difficulty connected to the determination of the elastic contribution in the case of a solid surface. This methodology has
thus been extended to the calculation of γF for the interface between the liquid–vapor phase of water, the solid–vapor interface of aluminum,
the aluminum–water interface, rigid graphene–water solid–liquid interfaces, and the n-dodecane–water liquid–liquid interface.

© 2024 Author(s). All article content, except where otherwise noted, is licensed under a Creative Commons Attribution (CC BY) license
(https://creativecommons.org/licenses/by/4.0/). https://doi.org/10.1063/5.0188578

I. INTRODUCTION

Understanding the distinctions among surface tension, interfa-
cial energy, interfacial tension, surface energy, surface free energy,
and surface stress often leads to confusion. Surface stress, also
referred to as interfacial tension or surface tension (τ), denotes
the reversible work per unit area required to elastically stretch an
existing surface, inherently involving elasticity concepts.1 It is rep-
resented as a tensor (τij) and is associated with the resistance
against surface deformation, originating from forces acting at the
material’s surface. In contrast, surface free energy, interfacial energy,
or simply surface energy (γ) can be defined as the useable work
attainable from an isothermal, isobaric thermodynamic, or closed
system, respectively.2,3 These quantities are scalar. (γ) quantifies the
disruption of intermolecular bonds occurring upon the creation of
a surface, whereas (τij) only considers elastic deformation without
involving bond breakage.

While surface tension (ST) and surface free energy (SFE)
(the terms used in this work to denote both contributions) are com-
monly mistaken for being identical, they are not precisely the same.
In the case of liquids, the interfacial energy remains constant even as
the surface is stretched, which results in similarities between surface
tension and interfacial energy. However, for solids, these two contri-
butions diverge due to alterations in the atomic structure of the solid
surface during elastic deformation.

The calculation of liquid–vapor surface free energy is now well-
established and can be determined through both mechanical and
thermodynamic approaches utilizing the tensor pressure4 and the
energy response resulting from surface perturbation,5–7 respectively.
Over the past three decades, extensive theoretical and numerical
efforts have been dedicated to its assessment, and Ref. 8 offers
a pertinent review of its computation. In contrast, evaluating the
surface free energy for solid–liquid and solid–vapor interfaces is
more challenging due to the elastic contribution, as highlighted by
Shuttleworth’s relation9 [Eq. (1)]. Here, γ, τij, and ϵij represent the
surface free energy, surface stress along the i and j directions, and
deformation along the i and j axes, respectively,

τij = γ +
∂γ
∂ϵij

. (1)

In the normal direction of the solid surface (z axis), the sur-
face stress (τzz) is zero while the constraint (σzz) is constant due
to mechanical equilibrium, while τxx = τyy owing to the symme-
try of the surface in a tetragonal reference. Here, τ = (τxx + τyy)/2
corresponds to the surface tension. Under these conditions, the
Shuttleworth relation can be reformulated as follows:

τ = γ +
∂γ
∂ϵ

. (2)

AIP Advances 14, 045116 (2024); doi: 10.1063/5.0188578 14, 045116-1

© Author(s) 2024

 03 M
ay 2024 09:19:49

https://pubs.aip.org/aip/adv
https://doi.org/10.1063/5.0188578
https://pubs.aip.org/action/showCitFormats?type=show&doi=10.1063/5.0188578
https://crossmark.crossref.org/dialog/?doi=10.1063/5.0188578&domain=pdf&date_stamp=2024-April-9
https://doi.org/10.1063/5.0188578
https://orcid.org/0000-0003-0877-7968
mailto:aziz.ghoufi@u-pec.fr
mailto:aziz.ghoufi@univ-rennes1.fr
https://doi.org/10.1063/5.0188578


AIP Advances ARTICLE pubs.aip.org/aip/adv

If the solid is rigid or if the interface corresponds to the
liquid–vapor or liquid–liquid interfaces, the elasticity contribution is
zero, and γ = τ. This explains why SFE and ST are often used inter-
changeably. While the first term of Eqs. (1) and (2), i.e., τ, can be
easily calculated from the constraint tensor, the main difficulty in
predicting the SFE of a solid surface lies in the fact that ∂γ

∂ϵ cannot be
calculated. However, it is possible to overcome this problem by using
the cleaving method,10–17 a thermodynamic perturbation method.
This approach involves cleaving a unified solid into two separated
volumes using a perturbation of van der Waals interactions with a
coupling parameter.15 By evaluating the energy difference between
both perturbed and unperturbed states within the same statistical
ensemble, the term ∂γ

∂ϵ vanishes, so the free energy difference corre-
sponds to the term γ. This approach has been successfully employed
to calculate the SFE of solid–vapor interfaces15 and solid–liquid
interfaces.17 Furthermore, Di Pasquale and Davidchack utilized this
methodology to evaluate ∂γ

∂ϵ using the cleaving method as a function
of strain ϵ to demonstrate the validity of Shuttleworth’s relation.15

Although this method is robust, it requires very long simulations
(more than a hundred states of 10–20 ns to achieve converged sur-
face tension) and necessitates the use of fictive (perturbed) states.
Interestingly, at absolute 0 K, the entropic term is zero and, there-
fore, the surface free energy corresponds to the surface internal
energy given by

γ = γU − TγS with γS = 0 at T = 0 K, (3)

where γU and γS represent the surface internal energy and surface
entropy, respectively. By considering the cleaving of a unified bulk
solid (designated as u) into two separate solids (designated as s),
γU can be calculated based on the transformation depicted in Fig. 1.
In this scenario, the surface free energy corresponds to the work (W)
required for the cleaving process, which thermodynamically equates
to the free energy difference between the initial and final states, i.e.,
W = ΔF, leading to Eq. (4). From a statistical mechanics perspective,
internal energy (U) is connected to the configurational energy (U)
obtained from molecular simulation,

γ =
W
2A
=

ΔF
2A
=

Fs − Fu

2A
∼

Us −Uu

2A
=

U s − Uu

2A
at T = 0 K. (4)

The factor of 1/2 accounts for the presence of two interfaces.
At temperatures other than 0 K, the surface free energy cannot be
rigorously assessed from Eq. (4) because the entropic terms for both
the separated and unified solids are indeterminate. However, these
entropic terms can be approximated by considering the evaporation
heat of an adsorbed gas monolayer on the surface.18

Benjamin and Horbach have also developed a method to
compute the crystal–liquid interfacial free energy via thermody-
namic integration, requiring several perturbation windows.19 More
recently, Wu and Firoozabadi derived working expressions for esti-
mating solid–fluid interfacial free energy based on the free-energy
perturbation method with consideration of solid deformation.20

Their results reveal that the contribution of solid deformation highly
depends on the stress conditions in the solid, which can be either
positive or negative. Similar to the cleaving method, this approach
requires performing several simulations for different solid defor-
mations. This approach was recently criticized by Chapman and

Asthagiri, claiming an incorrect formulation of the first law of
thermodynamics for a solid–liquid system.21 Addula and Pun-
nathanam,22 and more recently, Yeandel and co-workers,23 have
also developed a new method to extract solid/liquid interfacial
free energies from molecular simulation using the perturbation
method. The common point of all these methods is the perturba-
tion method based on thermodynamic integration or free energy
perturbation, which requires the trajectory to be divided into several
thermodynamic sub-states.13,14,18–24

To sum up, both primitive and perturbation cleaving methods,
as well as the application of Shuttleworth’s relation for SFE calcula-
tion at finite temperatures, are either inconsistent or computation-
ally expensive. In this work, I offer an approach to determine surface
free energy by calculating the excess surface internal energy and
studying its temperature dependence, which enables the prediction
of surface entropy.

II. SURFACE FREE ENERGY CALCULATION
A. Theoretical framework

For an interfacial system involving a phase with elasticity, the
differential of the surface internal energy (U⋆) or excess internal
energy can be expressed as

dU⋆ = TdS⋆ + γdA +∑
i

μidN⋆i +∑
ij
[δϵ∥i jτij + σ�i jδij]A, (5)

where ϵ∥i j , σ�i j , eij, τij, and δij represent the parallel strain, normal
stress, interfacial excess quantity of the parallel components of the
bulk stress tensor, and interfacial excess quantity of the perpen-
dicular components of the bulk strain tensor, respectively. S⋆ is
the excess entropy related to the interfacial one, N⋆i is the excess
amount of i, and μi is the chemical potential of i. This relation is
derived from the application of the first thermodynamic principle,
taking into account both the interface term (γdA) and the elasticity
term ([δϵ∥i jτi j + σ�i jδi j]A), which can be equated to an elastic work.
Through the use of the Euler equation, it becomes possible to obtain
the excess internal energy,

U⋆ = TS⋆ + γA +∑
i

μiN⋆i . (6)

The excess free energy (F⋆) can then be expressed as follows:

F⋆ = U⋆ − TS⋆ = γA +∑
i

μiN⋆i . (7)

From this, I can introduce the generalized grand potential,

Ω⋆ = F⋆ −∑
i

μiN⋆i = γA. (8)

Equation (8) demonstrates that γ is connected to the surface
grand potential. Similarly to U⋆, after simplification, the differential
of F⋆ can be expressed as

dF⋆ = −S⋆dT + γdA +∑
i

μidN⋆i +∑
ij
[δϵ∥i jτij + σ�i jδij]A. (9)

AIP Advances 14, 045116 (2024); doi: 10.1063/5.0188578 14, 045116-2

© Author(s) 2024

 03 M
ay 2024 09:19:49

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 1. (a) Illustration of the method for calculating the surface free energy at 0 K using both unified energy (Eu) and separated energy (Es) with Eq. (4). (b) Illustration of the
different regions considered in the calculation of surface internal energy between two phases, A and B [Eq. (5)]. Here, EAB, Eb

A, Eb
B, Nb

A, Nb
B, NA, NB, and N represent the total

energy, the energy of B in the bulk phase, the energy of A in the bulk phase, the number of molecules of A in the bulk phase, the number of molecules of B in the bulk phase,
the total number of molecules A, the total number of molecules B, and the total number of A and B molecules, respectively. Lb

−
and Lb

+
denote the limits of the bulk regions.

(c) Similar representation to part (b) for spherical and cylindrical interfaces.
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By using Eq. (7), it is possible to establish a relation between
surface free energy (γF =

F⋆
A ), internal energy (γU =

U⋆
A ), and

entropy (γS =
S⋆
A ),

γF = γU − TγS =
F⋆

A
→ F⋆ = γFA = γA +∑

i
μiN⋆i , (10)

which entails the relation

γ = γF −∑
i

μiΓ⋆i such as Γ⋆i =
N⋆i
A

. (11)

Γ⋆i is the surface excess concentration of component i. Hence-
forth, the surface free energy will be denoted as γF , directly linked
to the free energy (F⋆), while γ will be associated with the grand
potential (Ω⋆). Consequently, I opt to designate γ as the surface
grand potential to distinguish it from SFE. Equation (9) yields the
subsequent set of partial derivative equations

γ = (
∂F⋆

∂A
)

T,N⋆i ,ϵ∥i j ,σ
�

i j

= (
∂[γFA]
∂A

)
T,N⋆i ,ϵ∥i j ,σ

�

i j

= γF + A(
∂γF

∂A
)

T,N⋆i ,ϵ∥i j ,σ
�

i j

, (12)

S⋆ = −(
∂F⋆

∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

= −(
∂[γFA]
∂T

)
A,N⋆i ,ϵ∥i j ,σ

�

i j

= −A(
∂γF

∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

− γF

✟✟✟
✟✟✟❍❍

❍❍❍❍

(
∂A
∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

. (13)

The last term of Eq. (13) is zero, as the surface area is constant.
Finally, I obtain

γS = −(
∂γF

∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

. (14)

Very interestingly, the equation obtained, Eq. (12), bears a
striking resemblance to the one derived by Dong, which establishes
a connection between differential and integral surface free energy.25

By comparing with the work of Dong, one can equate γF with the
integrated surface tension of Gibbs surface tension, which is sensi-
tive to the surface area. The last term of Eq. (12) ((∂γF

∂A )T,N⋆i ,ϵ∥i j ,σ
�

i j

)

cannot be calculated directly, as it requires a perturbation of sur-
face area while keeping ϵ∥i j , σ�i jϵ

∥
i j , σ�i j constant, which is not feasible.

However, by comparing Eqs. (11) and (12), one can derive Eq. (15),
which allows for the calculation of this derivative,

A(
∂γF

∂A
)

T,N⋆i ,ϵ∥i j ,σ
�

i j

= −∑
i

μiΓ⋆i . (15)

Additionally, by differentiating F⋆ [the last term of Eq. (10)]
and comparing it with Eq. (9), I obtain the following expression:

dγ = −γSdT −∑
i

dμiΓi +∑
ij
[δϵ∥i j(τij − γδij) + σ�i jδij], (16)

and

dγF = −γSdT +∑
i

dΓiμi +∑
ij
[δϵ∥i j(τij − γδij) + σ�i jδij], (17)

where δij denotes the Kronecker delta. Equation (16) is derived by
considering a reversible transformation that involves both deforma-
tion (at a constant number of atoms) and creation (at a constant
strain) of the surface. In this case, the excess internal energy must
account for both the work of creation, γdAcre, and the work of defor-
mation. This leads to dAcre

= dA − Aδϵ∥i jδi j . Upon equating Eqs. (16)
and (17) with the partial derivatives, I obtain

γS = −(
∂γ
∂T
)

μi ,ϵ
∥

i j ,σ
�

i j

= −(
∂γF

∂T
)

Ni ,ϵ
∥

i j ,σ
�

i j

, (18)

τij − γδij = A
⎛

⎝

∂γ
∂ϵ∥i j

⎞

⎠
T,μi ,σ�i j

= A
⎛

⎝

∂γF

∂ϵ∥i j

⎞

⎠
T,Ni ,σ�i j

. (19)

Very interestingly, Eq. (19) corresponds to Shuttleworth’s rela-
tion [Eq. (1)], while Eq. (18) enables the calculation of the interfacial
entropy from γ and γF . However, γS can only be calculated from
γF in the canonical or NpnAT statistical ensembles. Indeed, γ has to
be evaluated in the grand canonical ensemble where μi of each type
of molecule is kept constant.

B. SFE (γF ) calculation from SIE (γU )
While the entropic term is challenging to calculate, γU can be

computed using the following relation: γU =
U⋆
A , allowing U⋆ to be

directly evaluated from the configurational energy (U) obtained
from molecular simulations.26,27 To do this, two phases (A and B)
must be divided into two regions, as highlighted in Fig. 1(b). Similar
to γU , surface tension can be calculated from the excess contribution
of the constraint tensor (σαβ),26,27

γU =
U ⋆

A
=

UAB −NA ⋅ U b
A/N

b
A −NB ⋅ U b

B/N
b
B

A
, (20)

ταβ =
σ⋆αβ

A
=

σαβ −NA ⋅ σb
αβ,A/N

b
A −NB ⋅ σb

αβ,B/N
b
B

A
, (21)

where UAB, U b
A, U b

B, Nb
A, Nb

B, NA, NB, and N are the total energy,
the energy of B in the bulk phase, the energy of A in the bulk
phase, the number of molecules of A in the bulk phase, the number
of molecules of B in the bulk phase, the total number of molecules of
A, the total number of molecules of B, and N is the total number of
A and B molecules, respectively. σ represents the constraint compo-
nent in the α and β directions. Importantly, Eq. (20) can be applied
regardless of the physical nature of the interface [Liquid–Vapor
(LV), Solid–Liquid (SL), or Solid–Vapor (SV)] or its shape (cylin-
drical, spherical, or planar), as shown in Figs. 1(b) and 1(c). It is,
therefore, sufficient to determine the limits of both bulk regions
from the zones where the profiles of the density of the centers of
mass of the molecules are constant. Furthermore, it is necessary to
be sufficiently far from the interfacial region, which requires boxes
along the normal of the interface that are long enough. U b

A and U b
B

AIP Advances 14, 045116 (2024); doi: 10.1063/5.0188578 14, 045116-4

© Author(s) 2024

 03 M
ay 2024 09:19:49

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

can be calculated from the local energy (U(z)) of a slab located at z,
such as

U(z) =
N

∑
i

N

∑
j≠i
(U ij ⋅H(zi)))/2. with U b

=

z=Lb
+

∑
z=Lb

−

U(z), (22)

with Lb
− Lb

+ representing the limits of the bulk regions, as illustrated
in Fig. 1(b). As demonstrated earlier, the surface free energy can be
expressed as

γF = γU − TγS. (23)

If I differentiate this relation with respect to temperature,
I obtain the following equation:

(
∂γF

∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

= (
∂γU

∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

− γS − T(
∂γS

∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

. (24)

As shown in Eq. (18), (∂γF
∂T )A,N⋆i ,ϵ∥i j ,σ

�

i j

= −γS, which simplifies

Eq. (24) to

(
∂γU

∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

= T(
∂γS

∂T
)

A,N⋆i ,ϵ∥i j ,σ
�

i j

. (25)

The calculation of γ and γU as a function of temperature has
frequently revealed a slight curvature.27 This enables the adjustment

of γU through a second-order polynomial expansion, omitting the
linear term to allow γS = 0 at T = 0 K for the determination of the
integration constant. The method based on fitting using simple poly-
nomial functions is empirical because the fitting parameters may not
have physical meaning,

γU = A + CT2
→

∂γS

∂T
= 2C → γS

= 2CT + K → γS = 2CT → γF = A − CT2, (26)

where K is an integration constant, determined considering that
γS is zero at T = 0 K. In Fig. 2, I present the experimental surface
free energy of water in the liquid–vapor phase [Fig. 2(a)] and the
SFE of aluminum in the solid–liquid phase [Fig. 2(b)], along with
their respective fittings using a linear function and a second-order
polynomial without a linear term. As depicted in Figs. 2(a) and 2(b),
the polynomial fit proves to be better suited for adjusting the SFE.
Let me note that the Surface Interface Energy (SIE) could also be
approximated using other types of functions, subject to the follow-
ing constraints: (i) at T = 0 K, the entropy must be zero, implying
that the fitting function for γU must be defined in such a way that the
integration of its derivative with respect to T, divided by T (γS), is
well-defined at T = 0 K, and (ii) γS must be positive, similar to γU and
γF , and should be an increasing function. Classical thermodynamics
does not provide an exact relationship for the temperature depen-
dence of the internal energy of liquids. For the majority of isotropic
liquids, this internal energy is a monotonically increasing convex
function concerning temperature. Polynomials are most commonly
used for smoothing experimental data obtained for a single set of
measurements and for correlating large sets of data.

FIG. 2. The experimental surface free energy of the water liquid–vapor interface28 (a) and the calculated surface free energy of copper solid–liquid27 (b) along with their
respective adjustments using both linear and second-order polynomial models (without a linear term).
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Thermodynamically, it is well known that the heat capacity
can be defined as a polynomial of order n such as cv = ∑n

i=0 CiTi,
where Ci are constants and T is the temperature. Since cv = ∂U

∂T ,
where U can be defined, after integration, as U = K +∑n

i=0
Ci

i+1 Ti+1,

with K a constant, I can derive γU =
U
S =

K+∑n
i=0

Ci
i+1 Ti+1

S . Interestingly,
γU could also be evaluated from statistical physics as γU =

U
S

= kBT
SQ

∂Q
∂T = [⟨

U
S ⟩ −

T
S ⟨

∂U
∂T ⟩]. As U can be defined from a thermal

polynomial of order n, γU can thus also be described in this way.
Below, I sum up the main equations involving the operational

expression allowing the calculation of γF from Eq. 26:

● Equation (11), γ = γF −∑i μiΓ⋆i such as Γ⋆i =
N⋆i
A .

● Equation (12), γ = γF + A(∂γF
∂A )T,N⋆i ,ϵ∥i j ,σ

�

i j

.

● Equation (14), γS = −(
∂γF
∂T )A,N⋆i ,ϵ∥i j ,σ

�

i j

.

● Equation (17), dγF = −γSdT +∑i dΓiμi +∑i j

[δϵ∥i j(τi j − γδi j) + σ�i jδi j].

● Equation (18), γS = −(
∂γ
∂T )μi ,ϵ

∥

i j ,σ
�

i j

= −(
∂γF
∂T )Ni ,ϵ

∥

i j ,σ
�

i j

.

● Equation (25), (∂γU
∂T )A,N⋆i ,ϵ∥i j ,σ

�

i j

= T(∂γS
∂T )A,N⋆i ,ϵ∥i j ,σ

�

i j

.

C. When the solid is rigid
The calculation of γ can thus be directly performed from

Eq. (9), which is written as

dF⋆ = −S⋆dT + γdA +∑
i

μidN⋆i with γ = (
∂F⋆

∂A
)

T,N⋆i

. (27)

As the free energy of both the liquid and solid bulk phases
remains unaffected by modifications in surface area (except for size
effects29), I obtain

γ = (
∂F⋆

∂A
)

T,N⋆i

= (
∂F
∂A
)

T,N⋆i
= ⟨

∂U
∂A
⟩

T,N⋆i
. (28)

Therefore, γ can be evaluated by perturbing the surface area
using the non-exponential test area methodology (TA27), while
γF is calculated from γU . Interestingly, γ is always positive, while
γU and γF can be negative. These negative values can be compensated
by∑i μiΓi to obtain a positive γ.

III. COMPUTATIONAL DETAILS
A. Molecular dynamics simulations

Four systems were investigated: (i) water liquid–vapor, (ii)
aluminum solid–vapor, (iii) aluminum solid–water, and (iv)
water–graphene interfaces. Water was modeled using the rigid
TIP4P/2005 model, known for its accurate reproduction of thermo-
dynamic and interfacial properties.30 Aluminum solid was modeled
using a full Lennard-Jones (LJ) potential,18 which has demonstrated
exceptional accuracy in predicting both mechanical and interfa-
cial properties.17,18 Graphene was treated as rigid and modeled
using a pure Lennard-Jones potential.31 The partial charges and
Lennard-Jones parameters are provided in Table I. Interactions
between water/aluminum and water/graphene were described by
the LJ potential using the Lorentz Berthelot mixing rule.32,33 All
computed interactions were truncated at a cutoff of 12 Å. Electro-
static interactions (water/water) were handled through the Ewald
sum34 with a relative error of 10−6 and a convergence parameter
of 0.29 Å−1.

TABLE I. Lennard-Jones parameters and partial charges of different atoms of water, aluminum, and graphene. The
TIP4P/200530 water model was constructed from an oxygen atom (OW), two hydrogen atoms (HW), and a fictive massless
particle (MW). Geometrical characteristics of water and graphene are also provided.

Type σ (nm) ϵ (kJ mol−1) q (e)

Water
OW 0.315 89 0.775 11 0
HW 0 0 0.5564
MW 0 0 −1.1128
Distance of OW–HW 0.095 72 0.015 46
and MW–OW (nm)
Angle of HW–OW–HM (○) θ = 104.52
Angle of HW–OW–MM (○) θ = 52.26

Aluminum
Al 0.260 59 16.83 0

Graphene
Distance Cg–Cg (nm) 0.14
Cg 0.339 97 0.359 405 6 0
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TABLE II. Number of molecules/atoms and final box lengths (nm) as a function of
the type of interface. SV and LV correspond to the solid–vapor and liquid–vapor
interfaces, respectively. For the graphene–water interface, Lx ≠ Ly .

Type of interface N Lx = Ly LZ

Water LV 1807 3.055 25.0
Aluminum SV 7040 3.2365 22.1638
Water–graphene 3200-416 3.1929-3.4032 9.1271
Water–aluminum 400-7040 3.2365 22.0600

TABLE III. Gibbs dividing surface position (zG) and interface thickness (δ) as func-
tions of temperature were obtained from both the hyperbolic (tanh) and error (erf)
functions.

Temperature (K) zG (nm) δ (nm)

tanh
300 3.014 0.280
320 3.038 0.305
370 3.131 0.377
450 3.209 0.427
500 3.383 0.522

erf
300 3.014 0.280
320 3.038 0.305
370 3.131 0.377
450 3.209 0.427
500 3.383 0.522

The simulations of the liquid–vapor (LV) interface were
conducted in the NVT statistical ensemble, employing the
Nose–Hoover algorithm35 with a thermostat relaxation time of
0.1 ps. For the solid–liquid (SL) interface, the simulations were
carried out in the NpNAT statistical ensemble, utilizing the
Martyna–Tuckerman–Klein Barostat,36 where N represents the
number of molecules, V is the volume, T is the temperature, pN cor-
responds to the normal pressure at the interface, and A is the surface
area. The thermostat and barostat relaxation times were set to 0.1
and 0.5 ps, respectively. The normal component of the pressure ten-
sor, pN, was maintained at 0.1 MPa. The integration timestep was
set to 1 fs. Additionally, water dynamics were modeled using the
quaternion algorithm.37 All simulations were performed using the
DLPOLY code.38 The temperatures considered ranged from 300 to
500 K.

The equilibrium configurations of the homogeneous phases
(liquid and solid phases) were obtained from 10 ns of simulations
(2 ns in NVT, followed by 8 ns in NpNAT). The resulting config-
urations were then altered by elongating the Lz dimension from a
liquid bulk configuration. These resulting configurations served as
the initial configurations for the LV and SV MD simulations. The
equilibration phase consisted of 10 ns steps, and the calculation of
the average properties was carried out over an additional 20 ns dur-
ing the acquisition phase. Aluminum–water and graphene–water
simulations were conducted by equilibrating a central aluminum
box surrounded by two water boxes for 2 ns in NVT, followed
by 10 ns in NpNAT, and 20 ns for the acquisition phase. The ini-
tial configuration of aluminum corresponds to the crystallographic
structure,18 a cubic face-centered structure in which the interface lies
along the plane 0,0,1, while water molecules were randomly inserted.

FIG. 3. Snapshots of each studied system: (a) Water Liquid–Vapor (LV), (b) water–graphene, (c) aluminum Solid–Vapor (SV), and (d) water–aluminum interfaces.
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The number of molecules and the final length of the simulation box
are provided in Table II. Illustrations of each system are also pro-
vided in Fig. 2. Input and output files are freely accessible through
the GitHub server files.

IV. RESULTS
A. Water liquid–vapor interface

As shown in Fig. 1(b), the calculation of Surface Internal
Energy (SIE) requires the determination of both liquid (Ll

− and
Ll
+) and vapor (Lv

− and Lv
+) phases. To achieve this, density pro-

files along the z direction were calculated from the center of mass
of water molecules at each temperature and fitted with a hyperbolic
tangent function39–41 based on mean-field theory42,43

[ρ(z) = 0.5
(ρl + ρv) − 0.5(ρl + ρv)tanh(2(z − zG)/δ)], where ρl, ρv , zG, and
δ represent the liquid density, vapor density, position of the Gibbs
dividing surface, and the thickness of the interface, respectively. The
center of mass of the simulation box was located at the origin (0,0,0).
Figure 4(a) displays the density profiles at T = 300 K and T = 450 K,
along with their respective fits using the hyperbolic tangent func-
tion. As depicted in Fig. 4(a), the profiles are flat, indicating that the
system is well-sampled, and the hyperbolic function appears to be
well-suited for fitting the density profiles. Furthermore, the tempera-
ture effect is accurately reproduced, demonstrating good agreement
with the experiment [Fig. 4(a)]. The liquid and vapor phases were
selected such that Ll

−/+ = −/ + zG + / − δ and Lv
−/+ = zG − / + δ. All

parameters from 300 to 450 K are reported in Table III.
In the case of a planar liquid–vapor (LV) interface with one

component, γ = γF = τ with τ = τxx = τyy, the stress tension in the
x and y directions is identical because Lx = Ly (where L is the box
length). Surface internal energy was calculated and is presented as
a function of temperature (T) in Fig. 4(b). At 300 K, γU = 113.7
mN/m (including the long-range contribution calculated from the
corrected energy44). As shown in this figure, SIE increases with
increasing T, suggesting that the interfacial region becomes more
cohesive as T rises, counterbalancing the thermal effect and the asso-
ciated increase in disorder. Figure 4(b) illustrates that, in contrast
to γU , γ (calculated using the non-exponential test-area method,
TA27) decreases with increasing T because the entropic contribution
is well accounted for and consistent with experimental data.28 Addi-
tionally, γ was evaluated from an adjustment of γU using Eq. (26)
with the following adjusted parameters: A = 87.0751 mN/m and
C = 0.000 172 86 mN/m/K−2. Figure 3(b) demonstrates that the func-
tion used in Eq. (26) is well-suited for adjusting γU . Furthermore,
Fig. 4(b) highlights that γ calculated through this method aligns
well with surface free energy obtained from TA2. The increase of
γU with T corresponds to the increase in the interfacial energy due
to the enlargement of the interface thickness (δ), which increases by
a factor of 2 from 300 to 500 K (Table III).

Fitting the density profile only concerns the liquid–vapor inter-
face since both phases are not clearly defined, unlike the solid–liquid
interface. To assess the dependence of the Surface Free Energy (SFE)
and Surface Interface Energy (SIE) on the fitting function, I tested an

FIG. 4. (a) Density profile of the center of mass of water molecules at the
liquid–vapor interface at 300 and 450 K. The profiles are shown between 0 and
60 Å due to the symmetry of the planar system. Horizontal dashed gray lines cor-
respond to the experimental data.28 (b) Surface free energy and surface internal
energy of the water liquid–vapor interface as functions of temperature. Error bars
are not shown due to their insignificance; the average values obtained were Δγ
= 2.9 mN/m and ΔγU = 3.2 mN/m. (c) Surface entropy of the water liquid–vapor
interface is represented using second, third, and fourth order polynomials.

AIP Advances 14, 045116 (2024); doi: 10.1063/5.0188578 14, 045116-8

© Author(s) 2024

 03 M
ay 2024 09:19:49

https://pubs.aip.org/aip/adv


AIP Advances ARTICLE pubs.aip.org/aip/adv

FIG. 5. (a) Surface free energy and surface internal energy of the water–aluminum solid–vapor interface as a function of temperature. (b) Calculated surface free energy
using various fitting equations.

error function (erf) associated with capillary wave45 theory to adjust
the liquid–vapor density profile. Interface thickness and Gibbs posi-
tions are reported in Table III, while SFE and SIE are plotted in
Fig. 4(a). As highlighted in this figure, the final SFE and SIE are
weakly impacted by the fitting function. It is worth mentioning that
the solid–liquid (SL), liquid–liquid (LL), and solid–vapor (SV) inter-
faces do not need to precisely define the position of the interface
because both phases are clearly defined, unlike the liquid–vapor
(LV) interface. Additionally, I tested polynomials of orders 2, 3,
and 4, excluding the linear term to align with the requirement that
γS must be positive and an increasing function. Figure 4(c) depicts
the evolution of surface entropy as a function of temperature. As
illustrated in this figure, only the quadratic polynomial satisfies these
constraints. For polynomials of order n higher than 2, γS was calcu-
lated from the integration of the derivative of γU with respect to T,
as in Eq. (26), γU = A +∑n

i=2 CiTi, 1/TdγU/dT = ∑n
i=2 iCiTi−2, and

γS = ∑
n
i=2 (i/(i − 2))CiTi−1. In this case, this justification supports

the utilization of a second-order polynomial to fit γU . The poly-
nomials of higher orders (>2) did not satisfy the aforementioned

TABLE IV. SFE and stress tension of the aluminum solid–vapor system as functions
of temperature. For SFE and stress tension, the average standard deviation is 3.5
and 2.9 mN/m, respectively.

Temperature (K) γF (mN/m) τ (mN/m)

300 1231.22 147.01
342 1230.62 104.11
370 1229.06 98.65
450 1226.46 82.19
500 1224.17 64.79

constraints due to the limited number of data points (5 tempera-
tures). This point will be discussed in this section.

B. Aluminum solid–vapor interface
I present in Fig. 5(a) the surface free energy and surface inter-

nal energy as functions of temperature. Let us mention that, as

TABLE V. Fit coefficient values and their error deviations, a0(mN/m), a1(mN/m/K),
a2(mN/m/K2), and a3(mN/m/K2).

Coefficients Value Error bars

a0 + a1T2; 6 temperatures
a0 1235.8 0.504
a1 4.4822 × 10−5 2.98 × 10−6

a0 + a1T2; 9 temperatures
a0 1235.7 0.422
a1 4.5528 × 10−5 2.64 × 10−6

a0 + a1T2
+ a2T3, 6 temperatures

a0 1232.8 1.45
a1 1.0272 × 10−4 2.74 × 10−5

a2 −8.4105 × 10−8 4.44 × 10−8

a0 + a1T2
+ a2T3, 9 temperatures

a0 1232.4 1.3
a1 1.105 × 10−4 2.47 × 10−5

a2 −1.0655 × 10−7 4.04 × 10−8

a0 + a1T2
+ a2T3

+ a3T4

a0 1219.9 5.38
a1 6.0766 × 10−4 2.11 × 10−4

a2 −1.771 × 10−6 7.07 × 10−7

a3 1.5428 × 10−9 6.53 × 10−10
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shown in Eq. (11) in the case of the solid–vapor interface, γ = γF ,
and then they can be used interchangeably. SFE was calculated
through an adjustment of SIE. As shown in Fig. 5(a), SIE exhibits
a temperature dependence similar to that of the water liquid–vapor
interface, namely an increase with increasing T. The decrease in SFE
with increasing T is well captured, indicating that both the ther-
mal effect and the associated entropic contribution are appropriately
accounted for in our calculation. At 300 K, I obtain a surface ten-
sion of 1231 mN/m, in line with experimental data, which reported
values of 1218 mN/m for the {111} surface18 and 1160 mN/m from
the cleaving method.17 Notably, the surface entropy can be directly
calculated by averaging γS = (γU − γF)/T from 300 to 500 K, and
this result can be compared with the relation γS = −

∂γF
∂T . I obtain a

similar result of 0.035 743 mN/m/K through direct averaging and
0.036 244 mN/m/K from a linear fit of γF . Additionally, I provide
the stress tension τ as a function of T. As indicated in Table IV,
both the stress tension and surface tension decrease as T increases,
in contrast to γU , suggesting that an entropic term is also involved
in τ.

The accuracy of the fitting procedure is correlated with the
number of data points available. For a limited dataset (typically

TABLE VI. γU and its various contributions (mN/m) as a function of temperature (K)
for the graphene–water interface. Standard deviations are provided in subscripts such
that −45.33 = −45.3 ± 0.3 mN/m.

Temperature γU γU(H2O/H2O) γU(graphene/H2O)

300 −45.33 62.69 −127.84
320 −47.72 47.18 −127.85
370 −40.43 50.75 −118.76
420 −39.12 32.96 −109.48
500 −28.42 14.55 −93.26

5–6 temperatures), employing a second-order polynomial appears
appropriate, as indicated by the deviation errors on the fitted para-
meters (Table V). However, when employing a polynomial of a
higher degree with such limited data, the error bars on the fit coef-
ficients escalate (Table V), resulting in pronounced deviations in
their derivatives and subsequently introducing spurious entropic
terms. To mitigate this issue, expanding the data range becomes
imperative. As depicted in Fig. 5(b), when a third-order polyno-
mial is utilized, fair outcomes to those of the second order are
achieved, while a fourth-order polynomial involves a drastic devi-
ation of surface free energy in line with the bar errors reported in
Table V.

C. Water liquid–rigid graphene interface
The positions of the interfacial region were determined by cal-

culating the density profile of the centers of mass of water molecules.
As depicted in Fig. 6(a), molecular oscillations close to the graphene
surface are observed, likely due to excluded volume effects, which
extend the interface limit to about 20 Å. The surface free energy
and surface internal energy were then predicted and are presented
in Fig. 6(b). Similar to the liquid–vapor interfaces, SIE increases
with rising temperatures. However, in this case, SIE is negative
and not compensated by the entropic term, resulting in a negative
γF . In contrast, γ calculated from TA2 and τ [Eq. (2)] is posi-
tive and decreases as T increases. This could be attributed to (i)
a positive interfacial excess amount (ΓH2O) that counterbalances
the negative γF , potentially allowing for the extraction of ΓH2O via
ΓH2O = (γF − γ)/μH2O. The chemical potential of water according to
TIP4P/2005 is −32 kJ/mol6, leading to ΓH2O = 0.0287 Å 2, equiva-
lent to about 31 water molecules per interface in the first layer;
(ii) the absence of a solid contribution term in γU that could com-
pensate for the negative contribution arising from water/water and
water/graphene interactions (this point will be discussed later).

FIG. 6. (a) Density profile of the center of mass of water molecules at the graphene–liquid water interface at 300 K. The profiles are depicted between 0 and 50 Å due to the
symmetry of the planar system. (b) Surface free energy, surface internal energy, and stress tension of the graphene–liquid water interface as a function of temperature. Error
bars are omitted due to their insignificance; the average values obtained were Δγ = 0.9 mN/m and ΔγU = 0.5 mN/m.
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D. Aluminum–water solid–liquid interface

Bulk liquid and solid contributions have been calculated on a
slab of 10 Å to ensure they are far from the solid–liquid interfaces. In
Fig. 7(a), I present γU and γF as functions of temperature. This figure
illustrates that γU is well-fitted by the commonly used second-order
polynomial [Eq. (26)], showing an increase with temperature. On
the other hand, γF decreases as the temperature rises. These results
align with observations made for the liquid–vapor, solid–vapor,
and graphene–water interfaces. Interestingly, the obtained γU and
γF are weaker than those calculated for the solid–vapor interface
(Fig. 5). To further understand these contributions, I evaluated dif-
ferent components of γU , namely γU(Al/Al), γU(H2O/H2O), and
γU(Al/H2O). As shown in Fig. 7(b), γAl/Al

U is of similar magnitude to

γSV
U of the Al–vapor interface reported in Fig. 5, and it follows a sim-

ilar trend with temperature. Unlike γU(Al/Al), both γU(H2O/H2O)
and γU(Al/H2O) are negative, indicating a tendency to “create” sur-
face. The negative contribution [γU(H2O/H2O) + γU(Al/H2O)]
is then compensated by the positive γU(Al/Al). In the case of the
graphene–water interface, γU is also found to be negative [Fig. 6(b)]
and is not compensated due to the rigidity of graphene (Table VI).
Furthermore, in both solid–water interfaces, γU(solid/H2O) < 0
and γU(solid/H2O) < γU(H2O/H2O), indicating a strong wetting
tendency.

These results seem to suggest that considering the material
rigid may not be suitable for evaluating interfacial properties. This
observation holds true in all cases except for γ of the graphene–water
interface, which is of the right order of magnitude in comparison

FIG. 7. (a) Surface free energy and surface internal energy of the aluminum–water interface as a function of temperature. Error bars are omitted due to the small values;
the average obtained was Δγ = 12.5 mN/m and ΔγU = 12.8 mN/m. (b) Contributions of γAl

U (black circle and left axis), γH2O
U (red square and right axis), and γAl−H2O

U (blue
triangle and right axis) as a function of temperature. (c) Illustration of different configurations for calculating water-multilayer graphene surface tension. (d) Contact angles on
aluminum surfaces as a function of droplet radius (rd ) at 300 K.
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TABLE VII. γU and its various contributions (mN/m) for the aluminum–water
solid–liquid interface at 300 K for both flexible and rigid surfaces. Standard deviations
are provided in subscripts such that 1231.112 = 1231.1 ± 12 mN/m.

Type γU γU(H2O/H2O) γU(Al/H2O) γU(Al/Al)

Rigid −426.65 29.82 −451.49
Flexible 852.39 30.23 −452.28 1231.112

TABLE VIII. γU (mN/m) for multiple layer graphene–water interface at 300 K for both
flexible and rigid surfaces.

UW/G (×105) U b
W (×105) U b

G (×104) γU

Rigid −1.532 −1.527 ⋅ ⋅ ⋅ −37.2
Flexible −1.238 −1.527 2.57 238.1

with the liquid–vapor interface. Therefore, the γ calculated
for the rigid form, which corresponds to γ(H2O/H2O)
+ γ(Graphene/H2O), offers only a partial representation and
cannot be equated to γ. To further emphasize this point, I prepared
a rigid block of Al that I brought into contact with two water
reservoirs. The resulting γU and its various contributions at 300 K
are reported in Table VII. As shown in this table, the rigid solid
exhibits a negative γU , contrary to the flexible block. This negative
value arises from γU(Al/H2O), which remains similar in both
rigid and flexible cases, as well as γU(H2O/H2O). These findings
underscore the significance of the solid contribution [γU(Al/Al)],
which counterbalances the negative γU(Al/H2O).

If I explicitly consider the water/flexible-monolayer graphene
interface, using Eq. (20) to calculate γU is not feasible because the
energy of a graphene monolayer in the bulk phase is not computable
(due to the impossibility of defining a pure graphene bulk phase
without a graphene/vapor interface). To address this issue, I decided
to model the interfacial system (W/G), the water (W), and a multi-
layer graphene (G) bulk phase separately, with similar simulation
box sizes and molecule numbers [see Fig. 7(c)]. I chose a multi-
layer graphene with 11 monolayers to ensure a sufficiently large bulk
graphene phase, allowing the use of a cutoff of 12 Å and the NpnAT
statistical ensemble. Under these conditions, Eq. (20) becomes
γU =

UW/G− U b
W− U b

G
A . The flexibility of graphene was modeled

by considering intramolecular potentials (torsion, bending, and
bonding).46,47 The energy of each phase and the Surface Interface
Energy (SIE) are provided in Table VIII. This table reveals a drastic
difference between rigid and flexible graphene, as a negative value
of γU is found for the rigid case, aligning with the results obtained
from monolayer graphene and rigid aluminum. On the contrary, a
positive value is obtained from the flexible structure, confirming our
previous assertion about the strong impact of the solid contribution.

To offer further validation of the developed methodology, I
evaluated γSL of the aluminum–water interface from γSL

F by com-
bining Eq. (11) (γSL

= γSL
F −∑i μiΓ⋆i ) and the Young’s equation

(γSL
− γSV

+ γLV cos Θ = 0), where Θ is the Young’s angle. Indeed,
by extracting∑i μiΓ⋆i and calculating Θ, I obtain

∑
i

μiΓ⋆i = γSL
F − γSL

= γSL
F − γSV

+ γLV cos Θ. (29)

By evaluating∑i μiΓ⋆i and γSL
F , I obtain γSL from

γSL
1 = γSL

F −∑
i

μiΓ⋆i = γSV
− γLV cos Θ. (30)

The subscript 1 corresponds to the route utilizing γF and Θ.
Θ was determined by modeling various water nanodroplets, dis-
tinguished by the droplet’s radius (rd), deposited on an aluminum
surface. The calculation of Θ was performed using the method devel-
oped by Essafri et al.48 Four equilibrated droplets (rd = 57, 33, 25,
15 Å) deposited on an equilibrated aluminum surface, ranging from
25 to 50 nm over 6 nm in thickness, were considered. Through a
linear fit [Fig. 7(d)], I determined that Θ = 5.5○, which is in good
agreement with the experimental value49 of Θ = 4.6○. The illustra-
tion of the water nanodroplet provided in Fig. 7(d) highlights the
strong wettability of water over the aluminum surface.

From the values of Θ and γLV , I found γSL
1 = 1160 mN/m and

∑i μiΓ⋆i = −472.5 mN/m. In a second step, I evaluated γSL using
the phantom wall method14 (γSL

2 ), wherein the water/aluminum
interactions were progressively switched off through the free energy
perturbation method.50 The corresponding free energy difference
was then evaluated such that

γSL
2 = γLV

+ γSV
−

ΔF
S

. (31)

Subscript 2 corresponds to the route using the phantom wall
method. ΔF is calculated following the method developed by Leroy
and Müller-Plathe,14 where the perturbation of water/aluminum
interactions occurs through the coupling parameter λ. This is
expressed as ϵW/Al(λ) = λϵ1

W/Al + (1 − λ)ϵ0
W/Al. Here, ϵW/Al rep-

resents the energetic parameter of the Lennard-Jones poten-
tial, given by ϵW/Al =

√ϵAl/AlϵW/W . The parameter λ varies from
0 to 1 in ten windows (Nw). ΔF

S represents the work of adhe-
sion of water to aluminum, and it is defined as ΔF = ∑λ ΔFλ
= −kBT ln⟨exp (−ΔU(λ))⟩, where U(λ) is the difference in config-
urational energy corresponding to the LJ potential, given by U(λ)
= U(λ − 1) − U(λ) and λ = 1/Nw . Through this approach, I deter-
mined a work of adhesion of 230 mN/m. γSL2 is then found to
be 1072 mN/m, in fair agreement with γSL1, serving as an indirect
validation of the developed methodology.

E. n -Dodecane–water liquid–liquid interface
To validate the developed methodology, I applied it to calculate

the Surface Free Energy (SFE) and Surface Interface Energy (SIE)
of the oil (n-dodecane)–water interface. The united atom TraPPE51

force field was utilized to model n-dodecane, and the TIP4/200530

force field was used for water. The methodology closely follows that
of the solid–liquid interface, with the distinction of replacing the
solid phase at the center of the simulation box with n-dodecane
(see inset of Fig. 8). Figure 8 illustrates that γU is well-fitted by
the commonly used second-order polynomial, allowing for a Surface
Free Energy (SFE) in good concordance with the TA2 method and
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FIG. 8. Surface tension and surface internal energy of the n-dodecane–water inter-
face as functions of temperature. A snapshot of the typical configuration at 324 K
is reported in the inset.

experimental results.52 These results demonstrate that, even with
small amplitudes in surface tension (47–51 mN/m) and within a
narrow range of temperatures (300–335 K), the developed method
effectively manages Surface Free Energy (SFE).

F. Concluding remarks
In this study, I have introduced a straightforward method to

determine the surface free energy (γF) and decouple it from the sur-
face grand potential (γ). This approach involves empirical fitting
the surface internal energy (γU) with a second-order polynomial
without a linear term. By utilizing the first law of thermodynamics
to express the relationship between γF and γS, I have rediscovered
Shuttleworth’s and Dong’s relations, applied to γF , demonstrating
its dependency on surface area and elasticity. Compared to the
computationally expensive cleaving method, this approach required
simulations of the system at various temperatures. Interestingly,
I have demonstrated that methodologies based on surface area per-
turbation are unsuitable for calculating the interfacial properties of
flexible solids. Furthermore, in the case of liquids, the interfacial
energy remains constant even as the surface is stretched, leading to
similarities between surface tension and interfacial energy. However,
for solids, even with high elastic constants, these two contributions
diverge due to alterations (even very small) in the atomic structure
of the solid surface during elastic deformation. On the contrary,
in the case of a rigid structure, surface free energy and surface
tension become similar in the absence of deformation. However,
I demonstrated that this situation involves unphysical negative SIE.
To remedy it, it is crucial to consider the material’s flexibility as weak
as it is (high elastic coefficient).

The developed method has been applied to various interface
types, demonstrating good agreement between the calculated surface
free energies and experimental values. While this method effec-
tively extracts γF , it is important to note that the surface grand
potential (γ) cannot be directly calculated. For a one-component
liquid–vapor (LV) and solid–vapor (SV) interface, γF aligns with
γ when considering the Gibbs dividing surface. In a multi-
component LV system, γ can be determined using surface area
perturbation, while the method developed in this work can be

employed to evaluate γF , γU , and γS. For the solid–liquid interfaces,
γF , γU , and γS are determinable while calculating γ via surface area
perturbation is not feasible. Although γ cannot be directly estimated,
γF offers similar insights to γ regarding the degree of liquid wetting
on the surface. Therefore, this method provides valuable insights
into interface forces (γU) and degrees of freedom (γS). This method
could easily be applied to calculate the surface free energy of curved
interfaces (such as aerosols, droplets, bubbles, etc.) without being
constrained by the local definition of tensor pressure or the specific
nature of the surface area perturbation. It allows access to para-
meters like Tolman’s length or line tension, enabling the evaluation
of the internal γF of confined gases or liquids in nanopores such as
in metal organic materials where interfacial interactions could help
to improve dynamical53 or adsorption54 properties, among other
applications.

While the calculation of γU is entirely based on physics, the
determination of γS is semi-empirical. This is because the method
developed relies on physical assumptions and involves integrating
a polynomial function with fitting coefficients that lack physical
interpretation to describe γU as a function of temperature. This is
likely the main weakness of the described method. To improve it,
it will be necessary to introduce a physical interpretation of the fit-
ting coefficients and devise a new approach to extract the integration
coefficient in Eq. (26) that relates to the interfacial entropy at a refer-
ence temperature. One potential improvement could involve adding
more data points at low temperatures to better capture the ther-
modynamic behavior near T = 0 K, where γU ∼ γF . Alternatively,
another solution could be to rewrite Eq. (26) to compute γS using
numerical integration without relying on a fitting procedure.
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