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Abstract: Recently, low THz radar-based measurement and classification for archaeology emerged
as a new imaging modality. In this paper, we investigate the classification of pottery shards, a key
enabler to understand how the agriculture was introduced from the Fertile Crescent to Europe. Our
purpose is to jointly design the measuring radar system and the classification neural network, seeking
the maximal compactness and the minimal cost, both directly related to the number of sensors. We
aim to select the least possible number of sensors and place them adequately, while minimizing
the false recognition rate. For this, we propose a novel version of the Binary Grey Wolf Optimizer,
designed to reduce the number of sensors, and a Ternary Grey Wolf Optimizer. Together with the
Continuous Grey Wolf Optimizer, they yield the CBTGWO (Continuous Binary Ternary Grey Wolf
Optimizer). Working with 7 frequencies and starting with 37 sensors, the CBTGWO selects a single
sensor and yields a 0-valued false recognition rate. In a single-frequency scenario, starting with
217 sensors, the CBTGWO selects 2 sensors. The false recognition rate is 2%. The acquisition time is
3.2 s, outperforming the GWO and adaptive mixed GWO, which yield 86.4 and 396.6 s.

Keywords: radar system; GWO; co-design; classification

1. Introduction

About 13,000 years ago, humanity moved from nomad to sedentary life styles in
the fertile crescent. In the 9000 years Before Common Era (BCE), men started to raise
animals, to cultivate, and to make pottery for food storage [1]. How agriculture spread
from Mesopotamia to the rest of the world is still a subject of study for Historians, made
all the more challenging by the fact that writing emerged two thousand years later, about
3400 BCE. Looking for pottery techniques is one of the key enablers for solving this issue.
Indeed, historians found that the coiling technique has spread through Central and East
Europe, whereas the spiral one follows the Western and Mediterranean routes. Of course,
the remains that can be found by archaeologists are not entire potteries but shards, which
poses a new issue: how to recognize the pottery technique based on small pieces of
potteries? We have recently proposed a new imaging modality to solve this issue [2]. It
is based on low-THz radar-based Non-Destructive Evaluation (NDE) and classification
with a neural network. We emphasize, in [2], the interest of millimeter waves for this
research. Low-THz waves adequately capture pieces of information about the content of
an archeological shard, in particular the shape of the pores inside the shards, thanks to
the high resolution due to the short wavelength. The classification accuracy is close to
100%, which is very promising for quite a number of applications. However, in its present
form, the measurement time (about 2 h per shard) hinders its extension to an application
that requires real-time operation. This is a well-known problem in many radar-based
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applications. On one hand, the more spatial diversity we have, the better the image. At the
same time, the measurement sampling has to be dense in order to avoid spurious responses.
This leads to a significant number of measurements points (number of sensors), which in
turn slows down the measurement. These constraints are essentially based on the need
to recognize the object for imaging-based identification. In this paper, we propose to
overcome this issue with a co-design scheme. To this end, we are implementing a joint
optimization of the measurement system and the parameters of the Multi-Layer Perceptron
(MLP) used for the classification. Our main objective is to drastically reduce the number of
antennas (measurements points) for reaching real-time operation. In [3], sensor placement
is optimized in a wireless sensor network with a step-wise optimization approach; but
optimizing the placement of the radar sensors independently of each other is a brand
new outcome.

The interest of neural networks has been demonstrated to process multivariable sensor
data [4], or radar data with the aim of human activity classification (walking, running,
etc.) [5]. They also have been adapted to the design of radiofrequency and microwave
antennas [6–8], noise modeling in transistors [9], optimization of circuits [10], and to locate
fault elements in arrays of sensors [11].

The main contributions of this paper are as follows. A careful look at the parameters
involved in the considered radar issue permits to distinguish three types of ’search spaces’,
each containing all the possible values for a given parameter. For instance, the state of a
given sensor corresponds to a binary search space: either 0, or 1, standing for OFF or ON.
The other parameters that are investigated correspond to a continuous search space and
a ternary search space. To tackle this issue, we propose a novel optimization algorithm,
inspired by the GWO (Grey Wolf Optimizer), which we call the CBTGWO (Continuous
Binary Ternary Grey Wolf Optimizer), to minimize a criterion which depends on a false
recognition rate and on the number of sensors. Firstly, we derive a variant of the Binary
GWO which favors the reduction in the number of sensors which are switched on, and a
Ternary GWO. Secondly, we embed chaotic sequences in the update rules to enhance the
exploration and exploitation abilities of our algorithm. We propose an original way to profit
by the diversity of chaotic sequence, which exhibits the great advantage of authorizing a
perfect control of the behavior of the algorithm in the last iterations of the process. The
results obtained on either a single frequency context or on a wide-band context show the
ability of the proposed method to drastically reduce the number of sensors while offering
small false recognition rate values.

In Section 2, we provide the mathematical background and state-of-the-art about the
fundamentals of the GWO, and its binary version in particular. We explain what the materials
used in this paper are, such as the radar data used for shard classification. We present the
millimeter-wave system for shard analysis, and the neural network algorithm, which is meant
for data classification. We set the problem we wish to solve: the common minimization
of a false recognition rate and a number of sensors which are switched on. We derive a
single criterion that combines these two criteria, and we show that the parameters which
have an influence on this criterion belong either to discrete, ternary, or binary search spaces.
In particular, each sensor state corresponds to a binary search space: either ON, or OFF.

In Section 3, we detail the novel method proposed in this paper. Firstly, a novel
binary version of the GWO, which aims at estimating the optimal state of the sensors
while favoring 0 values, and enhances exploration thanks to an evolutive update rule.
Secondly, the combination of the continuous, binary, and ternary versions of the GWO
yields the CBTGWO.

In Section 4, we evaluate the performances of the CBTGWO, compared to the vanilla
GWO [12] and the adaptive mixed GWO [13]: firstly, on a synthetic ’surrogate’ function,
which models the practical radar issue under study, and, secondly, on the considered issue
and real-world radar experimental data. A discussion about these results is provided in
Section 5, and conclusions are drawn in Section 6.
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We use these notations in the paper:
Manifold blackboard bold A
Matrices boldface upper-case roman A
Vectors boldface lower-case roman a
Scalars lower-case or upper-case roman a, a or A

A vector a with P scalar components can be expressed as a =
[
a1, a2, . . . , aP]T .

We use these definitions in the paper:
Vector with P components a =

[
a1, a2, . . . , aP]T

Hadamard product ◦ a ◦ b =
[
a1b1, a2b2, . . . , aPbP]T .

Absolute value | · |
Interval [a : b] a and b are real scalar values

Set of discrete values {a, . . . , b} a and b are real scalar values

2. Theoretical Background and Materials

In this section, we present the theoretical background, which is necessary to understand
the novel algorithm that we have developed to solve the considered issue, and the materials
used in this paper.

In Section 2.1, we remind the background about various metaheuristics and the vanilla
GWO algorithm, and we focus on discrete and binary versions of the GWO. Section 2.2 details
the acquisition of radar data and the classification method. This subsection includes a general
overview of metaheuristic algorithms, and focuses on different versions of the GWO.

2.1. Theoretical Background
2.1.1. Background on Metaheuristic Algorithms

Metaheuristic algorithms have demonstrated their capacity in finding optimal solutions
in the frame of various issues in soft computing. One of these issues, which attracts much
attention since the increasing interest for neural networks, is the parameter tuning of
these networks. Referring to [14], the number of journal papers dealing with neural
networks is up to 12,000 in 2018 (4000 in 2015); and the number of papers dealing with
neural networks which are optimized with metaheuristics increases from 400 to 600 in
the same period. Therefore, it seems that parameter tuning of neural networks starts
attracting attention but still concerns a limited amount of studies. Among others, in [15],
a compressed version of the VGG-16 (Visual Geometry Group-16) convolutional neural
network is obtained through an optimization of its structure with a modified version of
the coral reef optimization algorithm. In [16], an optimal network for face recognition is
designed with a rider optimization algorithm, which tackles high noise and occlusion. This
algorithm optimizes the number of convolutional layers, pooling layers, fully connected
layers, hidden layers, and types of activation function and pooling. It is worth noticing that
there are five possible values for the activation function and three for the pooling.

In [17], a GWO algorithm is applied as a global search method to determine the
weights of a MultiLayer Perceptron (MLP). In [18], a new hybrid wind speed forecasting
model is developed based on Long Short-Term Memory (LSTM) networks. The GWO is
adopted to determine eleven LSTM model weights in a continuous search space. In the
field of image processing, autoencoders have attracted attention, as they preserve the
dimensionality of the data: when the input is an image, the output is also an image.
Optimized autoencoders, for instance, have already been applied to synthetic aperture
radar image processing [19–21], and to hyperspectral images [22]. Some improved versions
of the GWO have been applied to path planning [23,24].

Parameter tuning is carried out with a grid search, except in [21] where a multiobjective
metaheuristics is used for this purpose. In [25], a stacked and sparse denoising autoencoder
is proposed to reduce the wall clutter in indoor radar images. The results are convincing
but the parameter tuning issue is not considered at all.
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In [26], the automatic tuning of hyperparameters of an MLP is performed with the
GWO to identify COVID-19-affected chest X-ray scans. Still for a medical application,
in [27], a cellular genetic algorithm is designed with a special crossover operator to optimize
weights and biases of the MLP to classify medical data.

A first remark is that the metaheuristics cited above estimate optimal hyperparameters
of neural networks in continuous search spaces. This might not be the most appropriate
way to choose between a reduced number of possibilities, such as three types of solvers.
A second remark is that, to the best of our knowledge, few papers investigate any application
where a joint estimation is performed for the parameters related to the acquisition and to
the processing with neural networks.

2.1.2. Background on the Grey Wolf Optimizer

The seminal work of Mirjalili [12] is based on the observation of wolves. Equations
have been derived which mimic the behavior of wolf herds, and model their displacements,
depending on their role in the hierarchy of the herd. The Grey Wolf Algorithm (GWA) aims
at modeling the displacement of all members of the herd towards a ‘prey’ which represents
the global minimum of the considered objective function, in an iterative agent-based
algorithm. The algorithm assumes that P parameters are expected: K1, K2, . . . , Ki, . . . , KP,
where P ≥ 1. The following notations hold: P is the number of expected parameters, which
are indexed with i; iter denotes one iteration and Tmax the total number of iterations; and
C(·) is the objective function, also called criterion, which depends on the P parameters.
In this paper, unless specified, minimization problems are considered.

Wolves are represented through vectors: xq(iter) models a wolf indexed by q = 1, . . . , Q

at iteration iter. It contains the following values: xq(iter) =
[
K1, K2, . . . , KP]T.

The vanilla version of the GWO searches a continuous space [12]. The hierarchy of
the herd divides it into the three leaders α, β, and δ, and the other agents which are called
the ω wolves: xα(iter), xβ(iter), and xδ(iter) denote the position of the leaders α, β, and δ,
respectively, at iteration iter. The position of any wolf at iteration iter + 1 is calculated as

xq(iter + 1) =
yα(iter) + yβ(iter) + yδ(iter)

3
(1)

It results from the equal contribution of the α, β, and δ wolves. These contributions are
computed at each iteration iter as follows, for any leader l, either α, β, or δ:

yl(iter) = xl(iter)− ∆x(iter) (2)

where ∆x(iter) is a random additional term which decreases to 0 across iterations. It is
defined as follows:

∆x(iter) = b ◦ dl(iter) where dl(iter) = |c ◦ xl(iter)− xq(iter)|.
The vectors b and c are calculated as b = 2a ◦ r1 − a and c = 2r2. In these expressions,

vectors r1 and r2 have random components between 0 and 1. For the sake of a perfect
understanding of the rest of this paper, we detail below the component-wise notations of
these update rules for each parameter i = 1, . . . , P:

The component bi of b is defined as

bi = 2ar1 − a, (3)

The component di
l(iter) of dl(iter) is defined as

di
l(iter) = |2r2xi

l − xi
q(iter)| (4)

where r1 and r2 are two random values between 0 and 1; xi
q(iter) is the ith component of

the qth agent at iteration iter; and xi
l is the ith component of leader l.
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The component yi
l(iter) of yl(iter) is defined as

yi
l(iter) = xi

l − bidi
l(iter) (5)

With the notations above, Equation (1) can be expressed as

xi
q(iter + 1) =

yi
α(iter) + yi

β(iter) + yi
δ(iter)

3
(6)

The hunting process is divided into two phases: during the ‘exploration’ the wolves look
for the prey, and during the ‘exploitation’ they kill the prey. To distinguish between these
phases, the value of a in Equation (3) takes the following form:

a = 2(1− iter
Tmax

) (7)

Different expressions of a have been proposed in various versions of the GWO, either
‘modified’ [28], ‘adaptive’ [13], or including chaotic sequences [29]. In all these versions,
when a > 1 (exploration phase), wolves may diverge from the leaders; and when a ≤ 1,
wolves converge towards the leaders.

2.1.3. Discrete, Binary, and Ternary Grey Wolf Optimizers

The mixed and adaptive mixed GWO proposed in [13] handle jointly continuous
and discrete search spaces. They combine a continuous version and a discrete version
of the GWO. The discrete version handles all types of discrete search spaces, including
binary, but it is not specifically meant for binary spaces. Some other methods are specifically
dedicated to binary spaces. In [30], a Binary GWO is proposed where values in a continuous
space are turned to binary with a rounding operation. In [31,32], a selection is made which
rules the evolution of the wolves. This selection process replaces the wolves’ movements in
the seminal version of the GWO [12], and their discrete displacements proposed in [13].
Here are some mathematical details about the process, described in [31], for the selection of
the updated value of a wolf in a binary search space.

Firstly, we define

φ : [0 : 1]×R+ ×R+ → [0 : 1]; (y, c1, c2) 7→ φ(y, c1, c2)

φ(y, c1, c2) =
1√

1 + exp(−c1(y− c2))
(8)

where c1 and c2 are parameters in R.
φ is usually called ‘Sigmoid’ and exhibits an inflection point at location c2. In the

following, r is a real random number between 0 and 1. In dimension i (i = 1, . . . , N), wolf q
is updated from iteration iter to iteration iter + 1 as follows:
xi

q(iter + 1) = {
1 i f r ≤ φ(

yi
α(iter)+yi

β(iter)+yi
δ(iter)

3 , 10, 0.5)
0 otherwise

(9)

where yi
α(iter), yi

β(iter), and yi
δ(iter) represent the contribution, in dimension i, of leaders

α, β, and δ. The computation of these contributions is presented below in Equation (10).
In Figure 1, we display the binary map used in Equation (22) to choose either xi

q(iter + 1) = 0
or xi

q(iter + 1) = 1.



Sensors 2024, 24, 2749 6 of 28

Figure 1. Binary map.

In Equation (22), the weighted contribution
yi

α(iter)+yi
β(iter)+yi

δ(iter)
3 of the leaders is the

input of a transform function: the larger this contribution, the more probable the selection
of the value 1 as an updated value xi

q(iter + 1).
The contribution yi

l(iter) for any leader l (either α, β, or δ), in dimension i, is computed
as follows:

yi
l(iter) =

{
1 i f (xi

l + bstepi
l) ≥ 1

0 otherwise
(10)

where

bstepi
l =

{
1 i f cstepi

l ≥ r
0 otherwise

(11)

where
cstepi

l = φ(bidi
l(iter), 10, 0.5) (12)

In Equation (12), bi is the ith component of vector b; and di
l(iter) the ith component of

vector dl(iter), l denoting the considered leader.
In [29], a ternary update rule has been proposed which selects either 0, 1, or 2, in a

similar manner as in Equation (22), but with a ternary map involving two functions φu

and φd:

xi
q(iter + 1) =


0 i f r ≥ φu(

yi
α(iter)+yi

β(iter)
2 , a)

1 i f r < φu(
yi

α(iter)+yi
β(iter)

2 , a) and r ≥ φd(
yi

α(iter)+yi
β(iter)

2 , a)

2 i f r < φd(
yi

α(iter)+yi
β(iter)

2 , a)

(13)

where the scalar r is a random value between 0 and 1 and taken from a normal distribution.
Function φu separates the uppermost part of the map from the rest of the map; and function
φd separates the lowermost part of the map from the rest of the map.

Section 2.2 presents the considered application: the radar sensor system and the neural
network dedicated to aracheological shard classification.

2.2. Materials: Millimeter-Wave Radar Acquisitions and a Multilayer Perceptron for
Shard Classification

We consider an active radar acquisition system which transmits and receives millimeter
waves, using a certain amount of sensors. In a previous work, the millimeter-wave
measurements were processed with a two-dimensional fast Fourier transform to generate
real-valued data [2]. In this paper, we use the measured complex data directly. In addition,
we no longer aim at using a regular sensor sampling: the sensors are no longer supposed
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to be regularly spaced eventually. They can be switched on or off independently from
each other.

2.2.1. Description of the Neural Network

We tackle a classification issue: with a neural network called multilayer perceptron [33],
we wish to distinguish between two types of archaeological shards. So, our purpose is
twofold: we wish to use the least possible number of sensors and, at the same time, to reach
the best classification performances. For this, the proposed algorithm should select the
least possible number of sensors and place them in the best manner, and it should tune the
parameters involved in the multilayer perceptron. This ‘co-design’ consists in tuning the
parameters involved in both data acquisition and processing jointly, because all of them
influence the false recognition rate, which should be the smallest possible. Our aim is to
develop an algorithm which will be applied to the selection of the relevant parameter values
in this radar-based non-destructive testing workflow. Figure 2 represents the structure
of the MLP that we use in our application. It includes one hidden layer. The number of
input neurons N is equal to the number of elements in the sample millimeter-wave signals,
that is, a number of complex values. The values of any sample signal are denoted by In,
n = 1, . . . , N. The number of neurons in the hidden layer is denoted by L. Each output
neuron is denoted by Om, m = 1, . . . , M.

I1

I2

I3

I4

I5

I6

IN

...

Z1

Z2

ZL

...

O1

O2

O3

O4

OM

...

Input
layer

Hidden
layer

Output
layer

L Act

Solv

←−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−→
Figure 2. One hidden layer-MLP used for shard classification. ‘Solv’ denotes the solver, ‘L’ denotes
the number of neurons in the hidden layer, ‘Act’ denotes the activation function associated with the
neurons at the output layer.

In our classification issue, we aim at classifying the shards into coil or spiral. We
therefore deal with a binary classification problem. Two classes are considered, and the
number of output neurons M is equal to 1: the value of this single output neuron is either
0 or 1. There are three main hyperparameters to tune in this network: the activation function
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(Act.), the solver (Solv.), and the number of neurons on the hidden layer (L). L is generally
higher than the number of classes M and influences the classification performances. In the
MLP that we use, the activation function is the same for all neurons. In this work, we will
use the GWO-based algorithms to optimize the three hyperparameters mentioned above.

2.2.2. Problem Setting: Description of the Radar System and the Dataset

As mentioned in the introduction, archaeologists have studied the introduction of
agriculture in Europe during the 6th and 7th millennia Before Common Era based on
the study of pottery techniques. They have shown that the introduction of agriculture
followed two routes: the Central European one characterized by the technique of the coil,
while the Mediterranean route is associated with the technique of the spiral. The two
techniques are distinguished by the air bubbles (pores) formed during the manufacturing
process [34]. In coiled shards, the pores are aligned linearly (Figure 3a), in contrast to
spiral shards (Figure 3b). However, the alignment is unlikely to be visible to the naked
eye (Figure 3c,d), but can be identified with non-destructive testing [35]. Due to the size
of the pores, alignments of the order of the millimeter, CT-scan [36], or synchrotron [37]
were previously used but they are bulky and expansive. On the contrary, low-THz frequency
radar-based techniques [38,39] provide compact systems while offering high lateral resolution
within the diffraction limit of half a wavelength (typ. 1.5 mm at 100 GHz) [35,38,39].

However, when the issue to be solved is a binary classification, as in our case where we
are trying to find out whether we have a spiral or coiled shard, this limit can be overcome
by using AI-based classification and an appropriate measurement scheme. There are three
well-known ways to increase measurement diversity, hence the resolution.

• The frequency diversity;
• The spatial diversity;
• The polarisation diversity.

As per spatial diversity, it depends on the transmitting and receiving angles with
respect to the object. Multi-static measurements are commonly accepted as being more
relevant for non-destructive evaluation because the wave goes through the object and,
therefore, provides richer information. However, this significantly increases the system
complexity. In addition, the shards typically range in depth from 8 mm to 1 cm. When
imaging them with low-THz, the high frequency wave rapidly vanishes inside the clay
medium from which the shards are made. This cancels out the advantage of multi-static
measurements and we chose to work with mono-static measurements. There is a trade-off
between spatial and frequency diversity that was clearly described in our previous paper [2].
The more frequencies, the fewer spatial measurement points for the classification accuracy
close to 100% and vice-versa. Both scenarios have advantages and drawbacks:

• Working at a single frequency with a high number of antennas significantly reduces the
complexity of the electronics at the component level since we do not need wide-band
operation, but it is demanding in terms of the switching matrix.

• Working with a large bandwidth but a low number of antennas significantly reduces
the complexity of the electronics at the system level because we get rid of the large
switching matrix and the post-processing of the data coming from the various antennas,
but requires wide-band components.

In this paper, we want to overcome this trade-off by pushing the co-optimization
of the system and the AI algorithm to its ultimate limits. In other words, we aim at
minimizing the number of antennas (measurement points) and frequencies far beyond
what has been obtained before. In addition, we implement the possibility to choose between
the vertical and horizontal polarizations for increasing flexibility. So, we start from the
former obtained results [2] and consider two scenarios: in the first one, we use seven
frequencies; in the second scenario, we use only one frequency. We use the spherical 3D
scanner of our laboratory [40] for the measurements of the reflection coefficient of each
shard over the entire D-band (i.e., 110–170 GHz) with a frequency step of 10 GHz over a
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scan area of θ × ϕ = (20◦ × 20◦), and with a scan step (denoted by ∆θ,ϕ) of 0.2◦. A total of
13 archaeological shards are used here. The total number of measurement points per shard
and per frequency is 10201.

(a) Coiling shard n◦1 (b) Spiral shard n◦1

(c) Coiling shard n◦2 (d) Spiral shard n◦2

Figure 3. Archaeological samples: coiling and spiral shards.

A database of classification samples is created by dividing the scan area into 51 patches,
each consisting of 51 × 51 measurement points. The patches are created by shifting a
window along the diagonal of the scan area by a scan step ∆θ,ϕ = 0.2◦. Thus, each patch
corresponds to the measurement of the shard at a particular incidence. From all these
constraints on the measurement setup, the total number of measurement points is 5101,
corresponding to 5101 sensors [2]. In the following, we will use the term ’image’ to refer
to the matrix of measurement points obtained for each patch. The total number of data
samples that we afford in the databases is derived as follows: for each shard, we afford
51 patches, multiplied by the number of frequencies, either 7 or 1. That is, for each shard,
we afford

• A total of 357 classifier samples in the first scenario;
• A total of 51 classifier samples in the second scenario.

The validation database represents 10% of the training database. In Table 1 we
summarize the characteristics of the classification database.

Table 1. Classifier database: number of classifier samples for each scenario.

Scenario Total per Shard Training Validation Test Total

n◦ 1: 7 frequencies 357 1285 143 3213 4641
n◦ 2: 1 frequency 51 183 21 459 663
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Throughout the paper, we use the False Recognition Rate (FRR) as a metric to judge
the performance of the classifier. The FRR is extracted from the confusion matrix defined
in Table 2. The FRR is defined in Equation (14).

Table 2. Definition of the confusion matrix.

Classes Negative (Actual) Positive (Actual)

Negative (Predicted) TN: True Negative FN: False Negative

Positive (Predicted) FP: False Positive TP: True Positive

FRR = 1− TN + TP
TN + TP + FN + FP

(14)

In Equation (14), the value of TN + TP + FN + FP is the number of data samples in
the considered database. For the validation base this value is equal to 143 in Scenario n◦ 1,
and to 21 in Scenario n◦ 2. For the test base, this value is equal to 3213 in Scenario n◦ 1,
and to 459 in Scenario n◦ 2.

2.2.3. Preliminary Study: Scan Step Maximization

Since our goal is to have a compact and mobile measurement system capable to
detect the shape of the pores, we reduced the number of measurement points (sensors)
by maximizing the scan step (denoted by ∆θ,ϕ). This is carried out with the help of the
continuous GWO algorithm, paying attention to the potential impact on the performance
of the classifier. Reducing the number of sensors means that we are looking for the largest
possible value ∆̂θ,ϕ of the scan step ∆θ,ϕ, which increases the ill-posedness of the inverse
problem and thus decreases the ability of the classifier to distinguish between the shapes of
the pores. We wish to retrieve the largest possible value of ∆θ,ϕ which yields a FRR value
which is smaller than 0.2. This study has been presented in [2], though without any formal
presentation. In Section 2.2.3, we set the problem as closed-form equations. The criterion,
which is minimized by the GWO, is defined in Equation (15):

C = FRR (15)

with : 0 ≤ C ≤ 1. The criterion C is calculated with the validation database.
We aim at reaching a criterion value which is smaller than 0.2, as in [2]. So, in

Section 2.2.3, two parameters are expected and estimated by the continuous GWO: the scan
step ∆θ,ϕ, and the number of neurons L.

The following notation holds: xα(iter) = [x1
α(iter), x2

α(iter)]T . The criterion C can
also be denoted by f ([x1

q(iter), x2
q(iter)]T) when computed on wolf q at iteration iter.

The convergence curve obtained by the GWO while minimizing the criterion in Equation (15)
is defined by the following set of values:{

f ([x1
α(1), x2

α(1)]
T), . . . , f ([x1

α(iter), x2
α(iter)]T), . . . , f ([x1

α(Tmax), x2
α(Tmax)]

T)
}

(16)

Our purpose is to find, by a careful look at the values in Equation (16) and the values in
xα(iter), the largest instance x1

α( ˆiter) of x1
α(iter), which yields a criterion value C under

0.2. This step value, the largest possible, will be denoted by ˆ∆θ,ϕ. We denote by ˆiter the
corresponding iteration index of the GWO. So, we define ˆiter as

ˆiter = max

(
argmax

iter

{
x1

α(1), . . . , x1
α(iter), . . . , x1

α(Tmax)
})

(17)

submitted to
f ([x1

α(iter), x2
α(iter)]T) < 0.2 (18)



Sensors 2024, 24, 2749 11 of 28

In Equation (17), taking the max permits to remove any potential ambiguity, if more
than one instance of iter yields the expected maximum step value, we choose the solution
corresponding to the maximum value of iter. It corresponds, indeed, to the least possible
value of false recognition rate as the values in the convergence curve decrease across the
iterations. Solving Equation (17) yields ˆ∆θ,ϕ = 3.2◦ in Scenario n◦ 1, and ˆ∆θ,ϕ = 1.2◦ in
Scenario n◦ 2. Therefore, in Scenario n◦ 1, the number of regularly spaced sensors is 37,
the FRR value on the test database is 0.006224. In Scenario n◦ 2, the number of regularly
spaced sensors is 217, and the FRR value on the test database is 0.037037. The GWO
algorithm already allows us to reduce the number of sensor (from 5101 to either 37 or
217), with a minimum impact on the performance of the classifier (the mean FRR on the
validation database is less than 0.2 in both scenarios). Despite these results, the step scan is
still regular between two sensors, which is a drawback for our application and our goal.
We will take these results into account in the criterion that is minimized by the CBTGWO,
in Section 2.2.4.

2.2.4. Sensor Selection and Neural Network Tuning: Definition of a Single Objective and
Enumeration of the Parameters of Interest

Our aim is to switch the sensors on or off independently from each other, and to reduce
the number of sensors which are switched on. Therefore, there is no longer any step value
∆θ,ϕ whose optimal value should be estimated. Instead, the state of each sensor should be
estimated. In this subsection, the criterion that is minimized is as follows:

C =

√
(1 + FRR)(1 +

SOn
S

)− 1 (19)

where

• S is the number of sensors. We will set either S = 37, when all frequencies are used or
S = 217, when one frequency is used;

• SOn is the number of activated sensors, equivalently the number of sensors which are
switched on;

• FRR is the false recognition rate obtained with the validation database.

The criterion C is a geometric mean, which permits to balance the influence of large
values versus small values. We can notice that P = S + 4: for i = 1, . . . , S, Ki is the state of
sensor i, either 0 or 1, such that

SOn =
i=S

∑
i=1

Ki (20)

For i = 1, . . . , S, the values of Ki are in a binary space: we switch each sensor either “ON”
or “OFF” independently.

For i = S + 1, Ki = KS+1 is the polarization of the radar wave, either H (horizontal) or
V (vertical).

For i = S + 2, Ki = KS+2 is the activation function, either relu (rectified linear unit),
logistic, or tanh.

For i = S+3, Ki = KS+3 is the solver, either adam (Adam adaptive moment estimation), sgd
(stochastic gradient descent), or lb f gs (limited-memory Broyden–Fletcher–Goldfarb–Shanno).

For i = S + 4, Ki = KS+4 is the number of neurons L in the hidden layer. We have
chosen three of the activation functions which are commonly used, and three well-performing
solvers. As concerns the value of L, it cannot be smaller than 1, and we arbitrarily set its
maximum possible value to 30.

The best possible case is when C is the closest possible to 1. We predict that C should
probably be slightly higher than 1 because the value of SOn which permits us to reach a
zero-valued FRR, should be larger than 1 (or possibly equal to 1).

The interest of such a process is that once the optimal position and number of sensors
being switched on is estimated, the other sensors are not needed. We also look for the best
polarization of the scattering field. It is a parameter of our acquisition system which can
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be chosen as either horizontal or vertical. In parallel, we also look for the optimal MLP
architecture by optimizing the number of neurons in the hidden layer, the solver, and the
activation function. The expected parameters are either in binary, continuous, or ternary
spaces. For the state of the sensors {OFF = 0, ON = 1} and the polarization {H, V} the
search space is binary; the search space is ternary for the solver and for the activation
function as well. A continuous search space is investigated with a continuous update rule
for the number of neurons L in the hidden layer and so we used a floor to get an integer
number. Table 3 summarizes the search space for all parameters.

Table 3. Radar system and MLP configuration: jointly optimized parameters and search spaces.

Optimized
Component Parameter Search Space

Category Range

Radar system
Sensor state

Binary
{OFF, ON}

Polarization {H, V}

MLP configuration

Activation function
Ternary

{relu, logistic, tanh}
Solver function {adam, sgd, lb f gs}

Number of neurons Continuous [1 : 30]

In the next section, we propose a Continuous Binary Ternary GWO: it is a ‘mixed’
version of the GWO, which combines a continuous, a binary, and a ternary version of the
GWO to tackle the problem of co-design presented here, and estimate the best values for
all parameters presented in Table 3, either for the acquisition and for the processing of
the radar data. This mixed method will be denoted by the CBTGWO (Continuous Binary
Ternary GWO).

Considering all the materials described in this section, we end up with Figure 4 which
describes the training process and with Figure 5 which describes the test process.

The update rule for the continuous and Ternary GWO are provided in Equations (1) and (13).
The update rule that we propose for the Binary GWO is detailed in Section 3.

Figure 4. Workflow of the proposed method: training which consists in co-designing the acquisition
and classification setup.
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Figure 5. Workflow of the proposed method: test which consists in acquiring and classifying the data
with the optimized parameters of the setup.

3. Methods: Proposed Continuous Binary Ternary GWO

We wish to preserve the original philosophy of the GWO: the number of leaders ruling
the update of the agents is superior to 1, and the parameter a permits us to distinguish
between an exploration phase at the beginning of the algorithm and an exploitation phase at
the end. The continuous, original version of the GWO will be used to estimate the number of
neurons in the hidden layer of the MLP because the search space is relatively wide (from 2 to
30); the ternary version proposed in [29] will be used to design the 2 other hyperparameters
of the MLP. Indeed, data scientists usually compare the performances of three main solvers
and three main activation functions to choose the best configuration for their application.
Using an adaptive learning rate with adam can offer flexibility, but stochastic gradient
descent performs well with relatively small datasets. As concerns lb f gs, it may outperform
adam when the dataset is relatively small. See [41–43] and references inside. As the
dataset considered in this paper is relatively small, we decide to take these three solvers
as candidates.

We propose for the first time in this paper a binary version to design the sensor system,
which favors the 0 value.

3.1. Novel Adaptive and Chaotic Expression of a

In this work, we combine the expression proposed in [13] and the expression proposed
in [29], which yield an adaptive and chaotic version of a:

a = 2(1− a2(0.5 + Γ(q, iter))) (21)

where Γ(q, iter) is a value taken from a chaotic sequence as in [29], and a2 is defined as
follows:

a2 =

{
(iter/(Tmax/2))η i f iter ≤ Tmax/2

((iter− Tmax/2)/(Tmax/2))1/η otherwise
(22)

with η = 2, and assuming Tmax is even.

3.2. Novel Binary GWO Favoring 0 Values

In the considered co-design problem, we face a constraint: the method that is meant
to select the sensors which are switched on or off should favor the sensor switch off. That
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is why the proposed novel Binary GWO still explores a binary search space but favors
0 values.

3.2.1. Contribution of a Leader

As explained previously in the paper, in the case where the search space is continuous,
the contribution yi

l(iter) corresponding to any leader l is calculated through Equation (5).
In Equation (5), the contribution yi

l(iter) may be smaller than 0 and larger than 1. So, we
enforce clip this value in this interval:

yi
l(iter) = clip(xi

l − bidi
l(iter)) (23)

where bi is defined as in Equation (3) and di
l(iter) is defined as in Equation (4); the clip

consists in setting a value which is lower than 0 to 0 and a value which is larger than 1 to 1.

3.2.2. Binary Update Rule

In the considered issue of sensor selection, we wish to favor the selection of the ‘off’
state for the largest possible number of sensors. That is, we wish to favor the value 0 while
updating any wolf position. In the proposed novel version of the Binary GWO, wolf q is
updated from iteration iter to iteration iter + 1 as follows:
xi

q(iter + 1) = {
1 i f r ≤ φ(

yi
α(iter)+yi

β(iter)
2 , c1(a), c2(a))

0 otherwise
(24)

Equation (24) is a modified version of Equation (22), where the slope of the Sigmoid is
set to a real-valued scalar c1(a) and the inflexion point of the Sigmoid is set to a real-valued
scalar c2(a).

We propose the following expressions for c1(a) and c2(a):

c1(a) = 30(1− a/3) (25)

and
c2(a) = 0.75 + 0.1 a (26)

The interest of these rules, compared to the update rules in Equation (22), is two-fold:

• This emphasizes the exploration capacities of the method at the beginning of the
algorithm, because c1(a) is small at the beginning and value 0 may be chosen even for
large values of y;

• This permits us to favor the choice of the value 0, because c2(a) > 0.5.

This novel version is illustrated in Figures 6–8.

Figure 6. Binary map privileging 0 values, iter = 0, a = 2.
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Figure 7. Binary map privileging 0 values, iter = Tmax
2 , a = 1.

Figure 8. Binary map privileging 0 values, iter = Tmax, a = 0.

We notice in Figures 6–8 that the surface dedicated to 0 is increased, compared to
the original Binary GWO (see Figure 1), whatever the iteration index. Consequently, the

probability to choose 0 for a given value of
yi

α(iter)+yi
β(iter)

2 is also increased whatever the
iteration index. This is of great interest for our application where a large number of sensors
should be switched off, and an important novelty compared to previous works such as the
original Binary GWO proposed in [31], and the Ternary GWO proposed in [29]. Another
novelty, compared to the binary versions presented in [31,44], is the ‘evolutive’ nature of our
version of the Binary GWO: at the beginning of the optimization process, for small values
of iter, it is possible for the value 0 to be selected, even if the two leaders, for parameter

i, bear the value 1. See the illustration in Figure 6. If
yi

α(iter)+yi
β(iter)

2 = 1, the value 0 is
selected with a probability of 0.38 at iteration iter = 0, with a probability of 0.05 at iteration
iter = Tmax/2, with a probability almost equal to 0 at iteration iter = Tmax.

This evolutive nature enhances the exploration abilities of the proposed method at the
beginning of the process.

3.3. Pseudo-Code CBTGWO (Algorithm 1)

We propose combining the continuous and ternary versions mentioned in Section 2 with
the proposed binary version of the GWO, which privileges the choice of value 0. A
novelty with respect to the adaptive mixed GWO proposed in [13] is the combination of
three update rules instead of two, repositioning of the three worst agents at Step 4, and
inserting a memory effect at Step 6: an agent is updated if the new score is better than the
previous one.
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Algorithm 1 Pseudo-code: Continuous Binary Ternary Grey Wolf Optimization
Inputs: fitness function, number of Q search agent, search space of P parameters, maximum
of iteration Tmax, small factor ϵ set by the user, to stop the algorithm.

1. Set iteration number iter = 1, create an initial herd composed of Q wolves with all
required parameter values xq(iter), q = 1, . . . , Q. This initial population forms of a
matrix with Q rows and P columns.

2. Evaluate fitness function value C(xq(iter)) of each wolf xq(iter), q = 1, . . . , Q.
3. Sort the wolves through their fitness value and update the α, β, and δ wolves which

hold, respectively, the first, second, and third best fitness value. Store their position in
vectors xα(iter), xβ(iter), and xδ(iter), respectively.

4. Reposition the three worst agents which become
xα(iter)+xβ(iter)

2 , xα(iter)+xδ(iter)
2 , and

xβ(iter)+xδ(iter)
2 , respectively.

5. Repeat steps for each wolf xq(iter), q = 1, . . . , Q:
For each component xi(iter) with i = 1, . . . , P:
compute xi

q(iter + 1) using:

(a) Equation (24) if Ki takes its values in a binary search space;
(b) Equation (13) if Ki takes its values in a ternary search space;
(c) Equation (6) if Ki takes its values in a continuous search space.

6. if C(xq(iter + 1))<C(xq(iter)) update xq(iter) as xq(iter + 1).
7. Exchange the current population with the new one, obtained at step 5.
8. If iter < Tmax or C(xq(iter)) > ϵ, increase iter, and go to step 2.

Output: estimated parameter values K̂1, K̂2, . . . , K̂P

In Section 4, we aim, firstly, to illustrate the performances of the CBTGWO on a
synthetic test function with the same number of parameters as in the considered co-design
application. Secondly, we evaluate our method and comparative optimization algorithms
on experimental radar data acquired from shards.

4. Results

In Section 4.1, we describe the experimental conditions in terms of software, metrics,
and comparative methods. The expressions and optimal solutions of the surrogate function,
which are based on a paired of widely used synthetic functions, are also detailed in this
subsection. In Section 4.2 we present a case where we afford 37 sensors and several
frequencies of the D-band and a case where we afford 217 sensors and only one frequency.

4.1. Performance Evaluation on a Surrogate Function

In order to evaluate the performances of the proposed CBTGWO, a synthetic function
which is supposed to adequately represent the proposed problem is considered. The continuous
version is used for one parameter, the ternary version for two parameters, and the binary
version for all other parameters.

4.1.1. Experimental Conditions and Metrics

In this section, the test environment is a Win10 flagship 64-bit operating system with a
dual-core Intel Core i5-4210 M @2.60 GHz and 16 GB internal storage.

The software is Python 3.7.0. As comparative methods, we use the adaptive mixed
GWO in discrete mode [13] (denoted by amixedGWO), and the vanilla continuous GWO [12].
We run all methods with Q = 50 agents and Tmax = 300 iterations. The agents are initialized
at random, with values between the lower and upper bounds of the search spaces. Refer
to Table 3: the upper bound is 1 for the binary search space, 2 for the ternary search
spaces, and 30 for the continuous search space; the lower bound is 0 for all search spaces.
The algorithms are run R = 30 times for each test function to get statistical results.
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The statistical performances of the algorithms are computed and displayed in terms of
geometric average (GAvg) of the final score and of the convergence curves:

GAvg = (
R

∏
ρ=1

C(xα(Tmax))ρ)
1
R (27)

where ρ denotes the index of the run, R the number of runs, and C(xα(Tmax))ρ the score
obtained at run ρ.

4.1.2. Description of the Benchmark Functions

Functions F1 and F2 are defined in Table 4. F1 is unimodal and F2 is multimodal.
In Table 4, P denotes the dimension. Vector x =

[
K1, K2, . . . , KP]T is a set of input

parameters to any test function.

Table 4. Synthetic benchmark functions.

Function

F1(x) = −20 exp

(
−0.2

√
1
P

P
∑

i=1
(10Ki)P

)
− exp

(
1
P

P
∑

i=1
cos
(

20πKi
))

+ 20 + e

F2(x) =
P
∑

i=1
Ki2

We define the criterion C(x) depending on P values in vector x, as

C(x) =

√
(1 + F1(x− xmin)/P)(1 +

√
F2(x− xmin)/P)− 1 + o (28)

We reiterate that P in Equation (28) is the number of parameters to be estimated. F1/P
is a surrogate for the false recognition rate, and

√
F2/P is a surrogate for the proportion of

sensors which are turned on. We set o = 10−8, which is the minimum value of criterion C,
reached at location xmin.

4.1.3. Experiments

We set the position of the expected global minimum as xmin = [0 , . . . , 1 , . . . , 0 , H, relu,
lb f gs, 2]T . That is, we expect a single sensor switched ON, polarization H, the first
activation function, the third solver function, and two neurons.

Experiments are performed for which we display the geometric average of the convergence
curve, that is, the score C(xα(iter)) across iterations. We have performed some experiments
with small values of P such as P = 10 and P = 20. We could notice that the CBTGWO and
amixedGWO behave well in the case where P = 10. With this relatively small number of
parameters, the amixedGWO even outperforms slightly the CBTGWO and GWO. When
P = 20, the amixedGWO no longer outperforms the CBTGWO and GWO. The most
interesting results concern the values of P which simulate the presence of 37 and 217 sensors,
that is, P = 41 and P = 221. These results are displayed in Figure 9. In the case where
P = 41, the proposed method reaches the expected value 10−8; the GWO yields 2.5× 10−2

and the amixedGWO 6× 10−2.
In the case where P = 221, the proposed method yields GAvg = 4.3× 10−3; the

GWO yields GAvg = 4.5× 10−3 and amixedGWO GAvg = 3.1× 10−2. Due to the high
dimensionality of the problem, the proposed method does not reach the expected minimum,
but still outperforms the comparative methods. Whatever the value of P, these results
illustrate the exploratory abilities of the CBTGWO: the convergence curve values slowly
decrease across the first iterations, and the CBTGWO eventually reaches an average score
value GAvg which is smaller than the score obtained by the GWO or amixedGWO.
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(a) P = 41

(b) P = 221

Figure 9. Minimization of criterion C defined in Equation (28) with CBTGWO, amixedGWO,
and GWO: experiment with 50 agents, 300 iterations, P = 41 and 221.

Although function F in Equation (28) is only a ’surrogate’ for the considered co-design
problem, the simulation results show that the proposed CBTGWO is trustworthy. We
investigate its performances on real-world data in Section 4.2.

4.2. Results Obtained on Real-World Radar Data
4.2.1. Minimization of the Number of Sensors Operating at All D-Band Frequencies

For the first experiment, we aimed to reduce the number of sensors which are switched
on among the S = 37 sensors operating in the D-band and to keep only the most relevant
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sensors for the classification. We set the number of search agents as Q = 10 and the
maximum number of iterations as Tmax = 100.

Theoretically, the best solution is reached with SOn being equal to 1. From physical
considerations, we predict that this single sensor should be placed vertically or close to the
vertical. The theoretical least possible value Cmin of the criterion is :

Cmin =

√
(1 + 0)(1 +

1
37

)− 1 = 0.013423419 (29)

In Figure 10, we present the convergence curve of the three optimization methods. It is
worth noticing that, contrary to the convergence curves in Figure 9, the curves should not
reach 10−8 but Cmin = 0.013423419.

Figure 10. Minimization of criterion C defined in Equation (19): convergence curve of CBTGWO,
GWO, and amixedGWO algorithms for Scenario n◦1.

It can be observed that the convergence curve of the CBTGWO decreases faster than
the curves of the amixedGWO and the GWO. The results of the optimization are as follows.

As concerns the CBTGWO, the final experimental value C(xα(Tmax)) of the criterion
is equal to the best possible value 0.013423419 defined in Equation (29) for the CBTGWO,
which yields SOn = 1 sensor and FRR = 0.

As concerns the GWO, it has reached a final value C(xα(Tmax)) = 0.285714285, with
SOn = 8 sensor and FRR = 0.421052631.

As concerns the amixedGWO, it has reached a final value C(xα(Tmax)) = 0.228903609,
with SOn = 25 sensor and FRR = 0.0. We assume that the GWO and the amixedGWO
algorithms have reached a local minimum, and not the global one.

In some previous works using the amixedGWO [13] the number of estimated parameters
is significantly smaller than in the study of this paper, which may have been an advantage for
the amixedGWO.

The amixedGWO yields a 0-valued FRR but the CBTGWO algorithm provides a
number of neurons which yields a 0-valued FRR with only 1 sensor instead of 25.
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At the last iteration of the CBTGWO algorithm, we obtained:

C(xα(Tmax)) = 0.013423419 xα(Tmax) =
[
K1, . . . , K19, . . . , K37, H, relu, adam, 15

]T

where K19 = 1 and Ki = 0 ∀ i ̸= 19. The best-measured field is with horizontal polarization,
the number of neurons in the hidden layer is L̂ = 15, the activation function is relu, and
the solver function is adam. The computational time is 4628 s. For the three optimization
methods, the optimal location of the sensor is shown in Figures 11 and 12.

Tables 5 and 6 summarize the results obtained by the three optimization methods.
The acquisition time is provided for IF = 100 Hz. We notice that the optimization time
is about 2 times higher for the CBTGWO (essentially due to the memory effect) but the
acquisition time, once the setup is designed, is 8 and 25 times smaller compared to the
GWO and amixedGWO, respectively.

Table 5. Scenario n◦1. Summary of the results for the tree optimization methods: CBTGWO, GWO,
and amixedGWO.

Methods C(xα(Tmax)) FRR SON Act. Solv. Pol. L

CBTGWO 0.013423419 0 1 Relu adam H 15

GWO 0.285714285 0.4210 8 Relu adam H 15

amixedGWO 0.228903609 0.0249 25 Relu lbfgs H 9

Table 6. Scenario n◦1. Computational time for the optimization, and for the optimized acquisition:
CBTGWO, GWO, and amixedGWO.

Methods Optimization Time Acquisition Time

CBTGWO 4628 s 3.2 s

GWO 2184 s 25.6 s

amixedGWO 2063 s 80 s

Figure 11. Optimization of the number of sensors for Scenario n◦1: CBTGWO. Empty cyan circles
denote the potential positions of the sensors. The full blue circle denotes the position of the selected
switched on sensor.
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After the optimization and training phases, we classified the 9 shards of the test
database and got an FRR value equal to 0.003112356. That is, 10 data samples out of 3213
are not correctly classified.

The design of this system operating at the seven frequencies of the D-Band is feasible
but still complex. We propose another alternative in Section 4.2.2.

(a)

(b)

Figure 12. Optimization of the number of sensors for Scenario n◦1: GWO (a) and amixedGWO (b). Full
blue circles denote the position of the selected switched on sensors.

4.2.2. Minimization of the Number of Sensors Operating at the Central D-Band Frequency

Frequency diversity is very important for our application, but the design and development
of a compact measurement system operating over the entire D-band is complex. Therefore,
we need to drastically reduce the number of sensors but also the frequency bandwidth.
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The spatial diversity is more important and crucial when the frequency diversity is reduced.
Therefore, we propose to reduce the number of “ON” sensors among the S = 217 sensors
operating at the central frequency of the D-band (140 GHz). We use the criterion defined in
Equation (29). We do not expect SOn to be equal to 1. Indeed, the characterization of the
pores with one frequency needs some spatial diversity. As in the first experiment, we are
also estimating the best values for the polarization, the number of neurons in the hidden
layer, the activation function, and the solver. The number of search agents is Q = 50 and
the maximum number of iterations is Tmax = 150. The convergence curves of the CBTGWO,
GWO and amixedGWO algorithms are shown in Figure 13. The convergence curve of
the CBTGWO decreases faster than the convergence curve of the comparative methods,
and the best score, C(xα(Tmax)) = 0.014897307, is provided by the CBTGWO. The score
achieved by the CTBGWO can be expressed as follows:

C =

√
(1 + 0.02061)(1 +

2
217

)− 1 = 0.014897307 (30)

That is, we reach an FRR value on the validation base which is equal to 0.02061 with
SOn = 2 sensors which are switched on. With the GWO and amixedGWO, the final
value C(xα(Tmax)) is equal to 0.291441082 and 0.228271353, respectively. Even though
the amixedGWO provides a lower FRR value, the value of SON is much higher than with
the CBTGWO. Again, the CBTGWO provides a good compromise between the number of
sensors and FRR (which is only 2%). As for the Scenario n◦ 1, the GWO and amixedGWO
algorithm have found a solution corresponding to a local minimum.

Figure 13. Minimization of criterion C defined in Equation (19): convergence curve of the CBTGWO,
GWO, and amixedGWO algorithms for Scenario n◦ 2.

At the last iteration of the CBTGWO algorithm,

C(xα(Tmax)) = 0.014897307
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and

xα(Tmax) =
[
K1, . . . , K47, . . . , K109, . . . , K217, V, relu, adam, 28

]T

where K47 = K109 = 1 and Ki = 0 ∀ i ̸= 47, 109. The components of the wolf α do not
change after iteration 119.

Tables 7 and 8 summarize the results obtained by the three optimization methods.
The acquisition time is provided for IF = 100 Hz.

For the CBTGWO, the best-measured field is with vertical polarization. The number
of neurons in the hidden layer is L̂ = 28, the activation function is relu, and the solver
function is adam (see Table 7). The computational time is 6559 s for the CBTGWO, 3055 s
for the GWO, and 3426 s for the amixedGWO. So, we notice that, as in the case with 37
sensors, the optimization time is about 2 times higher for the CBTGWO. However, the
CBTGWO yields a measurement time which is, by far, the smallest. The obtained optimal
sensor location is shown in Figures 14 and 15.

Table 7. Scenario n◦2. Summary of the results for the tree optimization methods: CBTGWO, GWO,
and amixedGWO.

Methods C(xα(Tmax)) FRR SON Act. Solv. Pol. L

CBTGWO 0.014897307 0.0206 2 Relu adam V 28

GWO 0.291441082 0.5015 32 Logistic lbfgs H 16

amixedGWO 0.228271353 0.0 147 tanh lbfgs V 27

Table 8. Scenario n◦2. Computational time for the optimization, and for the optimized acquisition:
CBTGWO, GWO, and amixedGWO.

Methods Optimization Time Acquisition Time

CBTGWO 6559 s 5.4 s

GWO 3055 s 86.4 s

amixedGWO 3426 s 396.9 s

This configuration yields a measurement time of 5.4 s for the configuration provided
by the CBTGWO, 86.4 s for the configuration provided by the GWO, and 396.9 s for the
configuration provided by the amixedGWO (see Table 8). The convergence curves in
Figure 13 illustrate the exploration abilities of the proposed CBTGWO: the convergence curve
of the reaches a minimum which is 20 to 30 times smaller than with the two comparative
methods, which have missed the global minimum. This illustrates the exploration abilities of
the proposed algorithm, possibly due to the adaptive and chaotic nature of the expression of
a that we propose in this paper (see Equation (21)). Moreover, the solution which is proposed
by the CBTGWO is consistent with the physical considerations: the locations of the two
selected sensors in Figure 14 offer two points of view which are complementary. Hence, the
small value of the FRR. The CBTGWO offers an MLP architecture which handles the data
provided by only two sensors: it yields an FRR value on the validation base which is smaller
than with the GWO, with a smaller number of sensors. The amixedGWO yields a smaller
FRR value, but with a number of sensors and a computational time for the acquisition which
is 73 times higher (see Table 8).
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Figure 14. Optimization of the number of sensors for Scenario n◦2: CBTGWO. Empty cyan circles
denote the potential positions of the sensors. Full blue circles denote the position of the selected
switched on sensors.

We classify that the 9 shards included in the test database and the FRR obtained on this
test database are equal to 0.023965141. That is, 11 images out of 459 are not correctly classified.

We also performed another experiment which consists of keeping the same sensors
and the same MLP architecture with its optimal parameters found previously and changing
only the working frequency. We obtained that, whatever the value of the frequency, the FRR
is less than 3%. These interesting results mean that we do not need to optimize the location
and the number of sensors and the MLP architecture if the working frequency is changed.
In this case, the spatial diversity provides more information than the frequency diversity.

(a)

Figure 15. Cont.
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(b)

Figure 15. Optimization of the number of sensors for Scenario n◦2: GWO (a) and amixedGWO (b).
Empty cyan circles denote the potential positions of the sensors. Full blue circles denote the position of the
selected switched on sensors.

5. Discussion

The mixed optimizer composed of the continuous GWO, the Ternary GWO, and
the Binary GWO solve the considered problem of co-design of a radar system and a
neural network for experimental radar data processing. Numerical simulations performed
on a surrogate benchmark function show the good behavior of the proposed CBTGWO
with respect to the vanilla GWO proposed in [12] and the discrete version proposed in [13].
We show that when 37 sensors are simulated, the exact location of the global minimum of
the surrogate function is found by the proposed CBTGWO.

This justifies its use in the considered co-design problem: we optimize the number and
the location of a set of sensors, and jointly tune the parameters of a multilayer perceptron
to perform shard classification from millimeter-wave measurements.

In a wide-band scenario, using the vanilla GWO and a fixed step between the sensors,
we reach a 8.3% FRR on the validation base with 37 sensors; using the proposed CBTGWO,
we reach a 0% FRR on the validation base with only 1 sensor. On the test database, 10
images out of 3213 are not correctly classified.

In a scenario with only one frequency, using the vanilla GWO and a fixed step between
the sensors, we reach a 0% FRR on the validation base with 217 sensors; using the proposed
CBTGWO we reach a 1.3% FRR on the validation base with only 2 sensors. On the test
database, 11 images out of the 459 images are not correctly classified. The results obtained
in the wide-band scenario point out a limitation which is inherent to the classification
process: whatever the performance of the optimization method, a test database is always
different from a validation database. We infer from these results that the appropriate
strategy consists in finding a trade-off between the FRR value obtained on the validation
database and the number of sensors, instead of aiming at the least possible FRR value on
the validation database.

6. Conclusions

The contributions of this paper are three-fold. Firstly, we set a problem of radar system
design, in which the number of sensors which are turned on should be minimized, and a
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false recognition rate should also be as small as possible. Secondly, we propose a novel
binary version of the Grey Wolf Optimizer, which favors the choice of the value 0 and
sensor switch off; this Binary GWO, combined with the Ternary Grey Wolf Optimizer and
the continuous GWO, yield the CBTGWO. Thirdly, we apply our CBTGWO to perform
the co-design of a radar acquisition system, jointly with the classification neural network.
We thereby solve a major issue in the radar community, which is the selection of the least
and most relevant sensors for a given application. In a wide-band scenario, the proposed
method manages to select only one sensor while yielding a zero-valued FRR. In a scenario
with only one frequency, three sensors are selected and placed in a manner that preserves
the spatial diversity. Future research could consider other classification issues, on data
acquired in a different manner. The proposed methodology could be used to design other
sensor architectures (in different wavelength domains, for instance), and other neural
networks including, for instance, convolutional layers.
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