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ABSTRACT
In the absence of a DNA template, the ab initio production of long double-stranded DNA molecules of predefined sequences is particularly chal-
lenging. The DNA synthesis step remains a bottleneck for many applications such as functional assessment of ancestral genes, analysis of
alternative splicing or DNA-based data storage. In this report we propose a fully in vitro protocol to generate very long double-stranded DNA
molecules starting from commercially available short DNA blocks in less than 3 days using Golden Gate assembly. This innovative applica-
tion allowed us to streamline the process to produce a 24 kb-long DNA molecule storing part of the Declaration of the Rights of Man and of the
Citizen of 1789 . The DNA molecule produced can be readily cloned into a suitable host/vector system for amplification and selection.

TWEETABLE ABSTRACT
Minion-controlled ab initio production of long DNA molecules of predefined sequences from commercially available short DNA blocks in less
than 3 days.

MULTIDISCIPLINARY ABSTRACT
DNA molecules are easily copied from pre-existing DNA molecules. However, in the absence of a pre-existing DNA template, the ab initio pro-
duction of long DNA molecules of chosen sequences is particularly challenging and precludes the usage of such molecule for DNA digital data
storage. In this report we propose a protocol that is carried out exclusively in a reaction tube to generate very long DNA molecules starting from
synthetic short DNA blocks in less than 3 days using Golden Gate assembly. This innovative application allowed us to streamline the process to
produce a 24 kb-long DNA molecule storing part of the Declaration of the Rights of Man and of the Citizen of 1789.

METHOD SUMMARY
We developed, using Golden gate assembly, an iterative DNA assembly pipeline to produce long double-stranded DNA molecules of predefined
sequences. This pipeline relies on the orderly assembly of multiple 500-nt commercial fragments into medium sized 5-kb BigBlocks that are
then assembled in an iterative process. PCR allowed us to select and amplify the full-size molecules. The DNA construction steps were analyzed
using single-molecule sequencing, demonstrating that our protocol is highly effective in obtaining correctly assembled molecules. We used this
pipeline to store part of the Declaration of the Rights of Man and of the Citizen of 1789 on DNA.

KEYWORDS:
DNA assembly • DNA storage • long read sequencing • Oxford nanopore technology • synthetic DNA

For billions of years, double-stranded DNA (dsDNA) molecules have been the molecular support of choice for the storage of biological
information and the support of life. In biological systems, DNA replication is a core biological process that occurs at high speed in
prokaryotes (∼700 nucleotide [nt]/s [1]). In eukaryotes, the process is slower (∼15–30 nt/s [2]) but so highly parallelized that it allows
to achieve replication of a 1.7-billion nt genome in less than 30 min in early Xenopus embryos (∼9.4 × 105 nt/s). It is also particularly
efficient for the synthesis of collinear DNA molecules of up to hundreds millions of nucleotides, such as lungfish chromosomes [3].
This is made possible by the faithful copy of pre-existing nucleic acid polymers and template-specific DNA polymerases [4]. On the
other hand, the ab initio production of DNA molecules of only thousands of nucleotides of defined sequence remains a technological
and scientific challenge. Thus far, commercial companies generally offer cost-effective chemical synthesis of oligonucleotides up to
a few tens of nucleotides and advertise longer DNA molecules of desired sequences for up to 50,000 nt [5,6], albeit at a substantial
cost (Table 1). Assemblies of impressively long DNA molecules such as the mouse mitochondrial genome (16.7 kb), T7 bacteriophage
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Table 1. Comparison of production costs for the construction of one dsDNA fragment of 24 kb using DNA parts from different
suppliers.

Supplier Integrated DNA
Technologies™

Twist GenArt GenScript

Product name eBlock™ MiniGene Gene
Fragment

Clonal Gene DNA
Fragment

Cloned Genes Economy GenBrick

Ex
te

rn
al

pa
ra

m
et

er
s

Fragment type ds DNA ds DNA
cloned

ds DNA ds DNA
cloned

ds DNA ds DNA
cloned

ds DNA ds DNA
cloned

Fragment range size (kb) 0.3–1.5 0.5–5.0 0.3–1.8 0.3–5.0 0.2–3.0 0.1–12.0 <8.0 >8.0–50.0

Starting price (€/bp)† 0.070 0.650 0.070 0.090 0.134 0.470 0.288 0.450–0.750

Quantity of each fragment
(μg)

0.2 4.0 0.1–1.0 0.1–1.0 0.2 5.0 4.0 4.0

Shipped business days (n) 10 12 9 15 8 32 10 23

In
te

rn
al

pa
ra

m
et

er
s

Minimum number of blocks
to assemble

16 blocks of
1.5 kb

5 blocks of
5.0 kb

14 blocks of
1.8 kb

5 blocks of
5.0 kb

8 blocks of
3.0 kb

2 blocks of
12.0 kb

3 blocks of
8.0 kb

1 block of
24 kb

Assembly wetlab days 3 2 3 2 2 2 2 0

DNA price (€) 1680 15,600 1680 2160 3220 11,280 6900 10,800

DNA + reactions +
sequencing price (€)

1940 15,840 1940 2400 3455 11,520 6140 10,800

† 2023 prices.
Initial DNA parts are either obtained as linear DNA molecules or as DNA molecules cloned into a vector.

(39.9 kb) or even the Mycoplasma genitalium genome (583.0 kb) are documented in the literature, but all rely on hierarchical assembly
and molecular cloning steps which are time-consuming and laborious [7–9]. Furthermore, analysis and assessment of the accuracy
of the assemblies relies on their cloning into an appropriate vector, which must be transferred into a host and biologically selected. A
less laborious procedure has yet to be defined, aimed at producing in vitro and cost-effectively long dsDNA molecules of predefined
sequences in the absence of a DNA template.

This limitation is unfortunate considering the numerous applications of long DNA molecules in synthetic biology [10,11]. Long syn-
thetic DNA molecules are also a subject of interest in experimental biology, as they can provide insights into several areas of research
such as the reconstruction of ancestral DNA genes, regulatory elements and proteins [12] or the investigation of alternative splicing reg-
ulation [13]. Moreover, the production of large artificial or semi-artificial DNA molecules, including mutants or variants, is a widespread
practice for the remodelling of genetic circuits, the evaluation of gene function, and the identification of functional domains within DNA
or encoded proteins [6]. In addition, these DNA molecules are also useful as templates for RNA vaccine production [14]. Their main indus-
trial applications concern in vitro screening of mutations for the development of therapeutics and chemical products, including drugs
and biofuels [10,15].

Another important use of long DNA molecules takes root in their dense and stable information content. Current data-storage systems,
whether magnetic or silicon based, are indeed unable to respond to the rapid increase in archiving needs and have several drawbacks
such as a limited lifespan, energy consumption, miniaturization restrictions and environmental impact. DNA molecules are nowadays
envisaged as an alternative to store data owing to their tremendous information density and high chemical stability, as evidenced by
the recovery and analysis of ancient DNA extracted from fossils [16,17]. However, the main bottleneck for the storage of information on
DNA is the DNA synthesis step itself, which is slow, expensive and can only generate short oligonucleotides [18,19]. The reduced size
of the oligonucleotides implies fragmenting the digital documents into a large number of small pieces, which must necessarily include
indexes allowing the reconstruction of the original document [20]. The size of this index can be important compared with the size of
a DNA oligonucleotide and thus significantly affects the effective amount of information stored and the synthesis costs. Incidentally,
this fragmentation will also increase the difficulty in recovering the original documents. On the other hand, single-molecule real-time
sequencing (Pacific Biosciences, CA, USA) or nanopore sequencing (Oxford Nanopore Technologies, Oxford, UK) are now capable of
reading individual long DNA molecules, which is compatible with storing information on longer DNA fragments [21–23]. Such long DNA
molecules will only contain a small fraction of indexing information, making them more archival efficient.

Many methods have been developed to construct large DNA fragments from short chemically synthesized DNA oligonu-
cleotides [6,15,24]. The most common are Golden Gate assembly (GGA), Gibson cloning and polymerase cycling assembly. These meth-
ods are all based on user-defined overlapping ends, defined as overhangs, and generally allow the seamless joining of five to ten frag-
ments per reaction. The assembly is then cloned into a vector, transferred to a host, selected and amplified.

Herein we propose a fully in vitro iterative method based on GGA to faithfully construct a long synthetic DNA molecule starting from
commercially available dsDNA. The peculiarity of this method is that it does not rely on the biological properties of the assembled
DNA molecule for its selection and therefore the synthetic DNA molecules could be used for any common biological purpose or to
store information. The various assembly steps of our procedure were evaluated on an application for storing part of the Declaration of
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the Rights of Man and of the Citizen (26 August 1789) in a single long DNA fragment that was then sequenced using Oxford nanopore
technology (ONT) to retrieve the original text. The different steps of the DNA construction were analyzed using ONT long read sequencing
technology to quantify the ordering of the building blocks, demonstrating that our protocol is highly effective in obtaining correctly
assembled molecules.

Methods
Encoding of a binary file into DNA alphabet
We encoded the first articles of the Declaration of the Rights of Man and of the Citizen as a binary string of 4.2 Ko (Supplementary
data file 1). The binaries were first randomized by performing a bitwise Exclusive OR operation between the input binary and the output
of the hash function (SHA-256) over a constant in a process similar to what is described in [25]. The randomized binary is converted
into DNA alphabet using an algorithm that respects synthesis rules of the DNA blocks. Briefly, 60 > %GC > 40, no homopolymer >3 nt
(Supplementary data file 5). This encoding allows alteration of the DNA sequence at the �-encoded bits to ensure the absence of BsaI
restriction sites and of inverse repeat regions longer than 10 nt. The 23,400 nt-long DNA sequence (Figure 1C & Supplementary data
file 1) is partitioned into 40 blocks of 472 nt (eight internals eBlocks™ for each of the five BigBlocks) and ten blocks of 452 nt (one eBlock
for each BigBlock extremity). Each internal block is then framed by a DNA sequence composed of a 15-nt buffer sequence and a specific
BsaI restriction site. Similarly, each external block is framed by a DNA sequence that includes a 20-nt region following the BsaI restriction
site, which serves as a target for PCR selection of the BigBlock. Digestion with BsaI generates a 5′ overhang of 4 nt, which allows ordered
assembly. Overhangs are selected with the NEBridge R© GetSet™ Tool. Overhangs used are CGCT, ACGA, GCAA, CACC, CCTA, CGGA, TGAA,
ACTC and ACAT. Primers used for amplification of assembly products were defined with ITHOS, a submodule of Genofrag [26], with
parameters defined in Supplementary data file 6. A 20-nt flanking sequence composed of a BsaI site and a 9-nt external buffer sequence
was added to each primer to allow for the assembly of BigBlocks to MaxiBlocks (primer sequences are available in Supplementary data
file 7). The sequence was controlled to comply to Integrated DNA Technologies™ (IA, USA) eBlock synthesis rules.

DNA fragments
A total of 50- DNA blocks were ordered as 524 bp-long eBlocks from Integrated DNA Technologies. The eBlocks were delivered in a 96 well
plate at 10 nmol/μl in TE buffer, pH 8.0 (10 mM Tris-HCl/0.1 mM EDTA). Each eBlock was quantified with an AccuGreen™ High Sensitivity
dsDNA Quantitation Kit on a Qubit R© Fluorometer (Q32851, Invitrogen™, France) , aliquoted and stored at -20◦C. The eBlock integrities
were individually verified by electrophoretic analysis on 3% agarose-TBE gels stained with GelRed R© (Biotium, CA, USA).

BigBlock assemblies
Each of the five BigBlocks were comprised of ten oriented eBlocks described above. The assembly reaction was conducted in a 25.0-μl
assembly reaction mix comprised of 1.0-μl NEBridge Golden Gate Assembly Kit BsaI-HF R© v2 (NEB E1601), 2.5μl T4 DNA ligase buffer 10×
(NEB B0202), 0.04 pmol of each eBlock. Reactions were conducted for 65 cycles (37◦C, 5 min; 16◦C, 5 min) and stopped by incubation
at 60◦C for 5 min. The expected assembly size was 4764 bp.

BigBlocks were PCR-amplified with dedicated primer pairs in a 25.0-μl PCR reaction mix comprised of 0.25-μl Q5 R© Hot Start High-
Fidelity DNA Polymerase 2 U/μl (NEB R© M0493), 5.0 μl Q5 5× buffer (NEB B9027), 0.75 μl dNTP 10 mM Mix (NEB N0447), 1.25 μl of
each primer (10 μM) and 1.5 ng of BigBlock as template. Amplification was conducted at 98◦ for 30 s; 5× (98◦C, 10 s; Thyb, 20 s; 72◦C, 2
min 30 s) followed by 10× (98◦C, 10 s; 72◦C, 2 min 30 s) and a terminal extension at 72◦C for 2 min. The annealing temperature (Thyb)
was 62◦C, except for BigBlock 1 at 66◦C and BigBlock 3 at 66◦C. The expected size of each amplified BigBlock was 4796 bp. BigBlock
assemblies and PCR products were analyzed by electrophoresis on 1–2% agarose-TBE gels stained with GelRed.

MaxiBlock assembly
The MaxiBlock was assembled from the five BigBlocks (BigBlock 1–5) in a 20.0-μl reaction mix comprised of 2.0 μl NEBridge Golden
Gate Assembly Kit BsaI-HF v2 (NEB E1601), 2.0 μl T4 DNA ligase buffer 10× (NEB B0202) and 200 ng of each BigBlock. The reaction
was conducted 65× (37◦C for 5 min; 16◦C for 5 min) and stopped by incubation at 60◦C for 5 min. The MaxiBlock size was 23,796 bp.

The MaxiBlock was PCR amplified with MaxiBlock PCR Fw and MaxiBlock PCR Rv primers in a 25.0-μl reaction comprised of 1.0 μl
LongAmp R© Hot Start Taq DNA polymerase, 2.5 U/μl (NEB M0534), 5.0 μl LongAmp Taq 5× buffer (NEB B0323), 0.75 μl dNTP 10 mM
mix (NEB N0447), 0.25-μl primers pair 5.0 μM and a 1.0-ng MaxiBlock assembly. Amplification was conducted at 94◦ for 30 s; 15× (48◦C
for 20 s; 55◦C for 20 s; 65◦C for 22 min) and a terminal extension at 65◦C for 15 min. The expected size of each amplified MaxiBlock
was 23,796 bp.

MaxiBlock assembly and PCR products were analyzed on TapeStation 4200 (Agilent Technologies, CA, USA) following the supplier
protocol using Genomic DNA reagents (Agilent Technologies, 5067–5366) loaded onto a Genomic DNA ScreenTape (Agilent Technolo-
gies, 5067–5365).
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Figure 1. Overview of the strategy for building a 23,796-bp dsDNA from short dsDNA fragments. (A) dsDNA building blocks are comprised of a DNA
cargo framed by 2 BsaI sites and a buffer sequence at the extremities. The colored tetranucleotides correspond to the overhang produced by the BsaI
digestion during assembly. (B) Oligonucleotides are comprised from 5′ to 3′ of a 9-nt buffer sequence, a BsaI site and a BigBlock specific sequence. (C)
Two-step strategy for building a 23,796-bp dsDNA. Five sets of ten eblocks are assembled into Bigblocks (4764 bp) in parallel using GGA. The expected
products are selected, amplified and decorated with BsaI sites using specific primer pairs described in B. Bigblocks are mixed in equimolar amounts
before proceeding to GGA. The final 23,796-bp product is selected and amplified by PCR.
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DNA sequencing
BigBlock and MaxiBlock assemblies and PCR products were sequenced using Oxford Nanopore Technologies MinION Mk1C and Grid-
ION Mk1 sequencer hardware, respectively. The sequencing libraries were prepared according to the manufacturer protocol (version:
NBE 9065 v109 revAD 14Aug2019) with a Ligation Sequencing Kit (Oxford Nanopore Technologies, SQK-LSK109) and PCR-free Multi-
plexing Native Barcoding Kit (Oxford Nanopore Technologies, EXP-NBD104). Sequencing libraries were quantified with AccuGreen High
Sensitivity dsDNA Quantitation Kit on a Qubit Fluorometer (Invitrogen Q32851) and loading on a Flowcell Flongle (Oxford Nanopore
Technologies, FLO-FLG001) for a run time of 24 h.

Data processing
Raw sequencing data were preprocessed using Oxford Nanopore Technologies Guppy software (V6.0.1 and V6.3.9) [27] for super accu-
racy base calling (see configuration file: Supplementary data file 8) and demultiplexing (front and rear score set >60). The sequencing
quality of each demultiplexed sample was controlled with Nanoplot (V1.38.0) [28]. Scripts are available in Supplementary data file 9.
Sequencing data have been made available on the European Nucleotide Archive under accession number PRJEB62556.

Bioinformatics results analysis
Each quality-passed long read was analyzed to identify the order and identity of the blocks that comprised it. We used the Smith-
Waterman algorithm [29] to test the local alignment of a read to all 50 original block sequences. The highest scoring block was identified
and removed from the read. The alignment procedure was then recursively applied to the other parts of the read before and after the
aligned subsequence of the read, until the entire read was identified or not identified in blocks. To quantify the association between each
block, we determined whether each individual block was followed by an identified block, an unrecognized block or the end of the read.
To analyze the global assembly, we classified reads as either correct if all the blocks comprising it were correctly ordered, or as incorrect
if at least one block was misplaced.

Results & discussion
Articles 1 through 9 of the Declaration of the Rights of Man and of the Citizen were encoded into a 23.4 kb-long DNA sequence (Supple-
mentary data file 1). To fully build this dsDNA molecule in vitro, we started from 50 commercially available 524 nt-long dsDNA molecules
(eBlocks) that we assembled into 4764 bp-long dsDNA molecules (BigBlocks) that were then assembled into a 23,796-bp DNA molecule
(MaxiBlock; Figure 1). This fully in vitro strategy used commercial dsDNA molecules as building blocks, each being a few hundred nu-
cleotides long (eBlocks). The design of these building blocks relied on an architecture comprised of, starting from the end, a 15 nt-long
buffer sequence that ensured the integrity of the two BsaI prefix and suffix sequences, the four base cleavage sites that allowed direc-
tional ligation, and finally the cargo part of the DNA containing the encoded information (Figure 1A). Upon cleavage by BsaI, the DNA
cargo part remained solely framed by the predefined 4-nt overhangs to allow ordered assembly of ten blocks in a single GGA reaction.
Specific primer pairs targeting the extremities of the assembled BigBlocks (Figure 1B) were used to select and amplify the 4764 bp-long
assembly products and flank them with sequence-specific type IIS (BsaI) restriction sites to allow for the second in vitro assembly to
generate the MaxiBlocks (Figure 1C). As described in Supplementary data file 2, the different assembly steps were controlled during the
course of the experiment. The 23,796-bp MaxiBlocks were PCR amplified before utilization.

First assembly step: eBlocks to BigBlock
To design a 23,796 bp-long DNA molecule, we split the sequence into a total of 50 524-bp parts, which were first assembled in groups
of ten to generate five 4764-bp BigBlocks. At the time of our study, purchasing the 524-bp eBlocks at Integrated DNA Technologies was
the most cost-effective way to obtain these long dsDNA molecules (Table 1). The five GGA reactions aiming to obtain 4764 bp-long DNA
molecules were directly controlled on agarose gels (Figure 2A). Incomplete sequential ligation occurred and a scale of DNA molecules
ranging from 480 bp, the initial size of the eBlocks after BsaI digestion, to 4764 bp by incremental steps of approximately 500 bp could
clearly be observed. We selected the desired 4764-bp assembly using PCR, targeting the extremities of the BigBlocks. As presented in
Figure 2B, size fractionation of the PCR product demonstrated that for each of the five BigBlocks, we could specifically amplify the longer
4764-bp DNA molecules. Interestingly, even BB2 that appeared on the gel to have a lower amount of full-length assembled molecules
could be very efficiently selected and amplified by PCR.

This demonstrated that approximately 5 kb-long dsDNA molecules can be effectively assembled in vitro from commercial 524-bp
dsDNA molecules. However, in the absence of functional testing of the DNA molecules, this did not demonstrate that the fragments
were correctly ordered in the assembly.

To determine to which extent the assembly process was ordered, we took advantage of ONT sequencing technology to sequence raw
assembly products and raw PCR products for BigBlock 1 and 4. We reasoned that single-molecule long-read sequencing technologies
such as ONT or PacBio were the most effective at obtaining sequence information about the accuracy of long collinear assemblies. For
the assembly of BigBlock 1 (Figure 3A) or BigBlock 4 (Figure 3B), the graphics represent the percentage of transition from one block
(n) to another block, to the end of the read (end) or to an unrecognized sequence (unknown). BigBlock 1 graphics were produced from
4935 reads with a median length of 1435 nt and a median quality of 10.9. For BigBlock 4, graphics were generated from 5281 reads with
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Figure 2. BigBlock™ assemblies before and after PCR analyzed on 2% agarose electrophoresis gels. (A) Five different BigBlocks (BB1–BB5) were
assembled from 50 eBlocks™ of 524 bp (Integrated DNA Technologies, IA, USA). Each BigBlock was comprised of ten oriented eBlocks. Expected
size = 4764 bp. (B) BigBlock products from (A) were PCR-amplified with dedicated flanked primers. Expected size = 4796 bp.
L: 1-kb Plus DNA ladder (NEB R©).

a median length of 1898 nt and a median quality of 11.1 (Supplementary data file 3). While the median quality is in the expected range
for Oxford nanopore sequencing, the median read lengths are about one-third of our expected product size but still in agreement with
size fractionation (Figure 2), showing that the reaction is comprised of partially assembled molecules. Directly analyzing the assembly
reaction products, we could note that the percentage of correct concatenations of two consecutive eBlocks ranged from 61 to 95%
for the assembly of BigBlock 1 and from 74 to 94% for the assembly of BigBlock 4 (left panel in Figure 3A & B, respectively). In both
cases and as expected, eBlock 10 was most generally terminal, at 99 and 96%, respectively. In the case of BigBlock 1 assembly, the
lower efficiency of assembly of eBlock 5 was associated with either incorrect assembly of eBlock 5 to eBlock 7 (∼10%) or eBlock 5
being terminal (∼20%). Similarly, in the assembly of BigBlock 4, the lower level of concatenation of eBlock 34 to eBlock 35 was caused
by eBlock 34 being terminal.

This analysis indicates a faithful assembly process, as generally the assembly is correct from eBlock (n) to eBlock (n + 1) or otherwise
no assembly occurs.

We used PCR to select and amplify the full-length BigBlock assembly (Figure 2B). BigBlock 1 post-PCR graphics were produced
from 3000 reads with a median read length of 4757 nt and a median read quality of 10.9. For BigBlock 4 post-PCR, graphics were
generated from 1476 reads with a median length of 4752 nt and a median quality of 10.9 (Supplementary data file 3). PCR selection and
amplification therefore led to an approximately threefold increase in median read lengths compared with pre-PCR products – 4757 nt
compared with1435 nt for BigBlock 1 and 4752 nt compared with 1898 nt for BigBlock 4. This median size was close to the 4796-nt size
of the expected product. This illustrates how effective the PCR amplification step is in selecting full-length assembly products.

After PCR, the BigBlock sequencing results showed a frequency of correctly ordered eBlock pairs ranging from 87–99% for BigBlock 1
assembly and 92–100% for BigBlock 4 assembly, a neat increase in accuracy with respect to previous results (right panel in Figure 3A & B,
respectively). The problematic assembly of eBlock 5 to eBlock 7 in BigBlock 1 before PCR remains at a similar level after, while the
premature termination of the assembly at eBlock 5 becomes negligible as it cannot be amplified. Similarly, for BigBlock 4, only the
premature termination of the assembly at eBlock 9 remains notable (7%), while being reduced by half compared with the assembly
without PCR.

This shows that when an eBlock is erroneously terminal this does not affect the final PCR-selected product, while if two eBlocks are
erroneously assembled they will remain present in the PCR-selected assembly. It is therefore important to maximize individual ligation
efficiency.

While the previous analysis focused on the correct assembly of pairs of eBlocks, it was also important to estimate the overall accuracy
of whole BigBlocks assembly. We used the above ONT sequencing data to estimate the distribution of the length of the DNA assembly
and to determine the proportion of correct assembly for the different fragment sizes. This also enabled us to quantify the enrichment in
correct assemblies following the PCR amplification and selection process (Figure 3C). As observed by gel electrophoresis, the reaction
generated all product sizes between one and ten assembled eBlocks (0.5–5 kb). The target molecule comprised of ten eBlocks domi-
nated the reaction products and represented 15 and 22% of the sequenced reads in BigBlock 1 and BigBlock 4 reactions, respectively,
with fewer than 3% inaccurate assemblies. The proportion of molecules with more than ten eBlocks was negligible (<1%). Upon PCR
amplification and selection, we observed a drastic depletion of BigBlocks comprised of fewer than ten fragments. Approximately 84%
of the DNA was included in molecules comprised of ten fragments, almost all being correctly ordered (∼99% for both BigBlock 1 and
BigBlock 4).
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Figure 3. Analysis of the assembly of BigBlock 1 and BigBlock 4 before (left panel) and after (right panel) PCR selection. (A) Heatmap presenting in the
assembly of BigBlock 1 the proportion (%, only percentages above 1% are shown) of two ligated consecutive eBlocks determined by Oxford nanopore
technology sequencing. (B) Same as (A) for BigBlock 4. Sequencing data were from assemblies shown in Figure 2. Unknown: the eBlock is ligated to an
unknown DNA sequence; End: the eBlock is terminal. (C) Distribution of DNA content in the assembly for BigBlock 1 and BigBlock 4 relative to the
number of eBlocks comprising the reads. Green: all the eBlocks comprising a read are in the correct order; red: at least one eBock is misplaced.
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electrophoresis and (B) associated electropherogram. (L) (Black) DNA ladder Agilent; (MB1) (Blue) FinalBlock assembly before PCR; (MB2) (Red)
FinalBlock assembly after PCR. The expected size of the MaxiBlock was 23,796 bp.

Taken together, these analyses indicate that the combination of directed assembly without any intermediate purification step and
with PCR selection allows the efficient production of long DNA molecules of the expected structure.

Second assembly step: BigBlocks to MaxiBlock
Having established the reliable production of 4796-nt dsDNA molecules (the BigBlocks), we set about assembling five of them into a
23,796-bp MaxiBlock. As shown above, the five BigBlocks were amplified using primers that introduced BsaI restriction sites together
with tetramer sequences required to correctly order the fragments (Figure 1B). The assembly reaction of the five BigBlocks shown in
Figure 2 was performed using GGA. The reaction products were analyzed either directly after the reaction or after PCR amplification and
selection using primers targeting the first (BigBlock 1) and the last (BigBlock 5) BigBlocks of the assembly. Because of the expected size
of the DNA assembly, we analyzed the reaction products by capillary electrophoresis on a Tape Station (Agilent Technologies; Figure 4).
It is noteworthy that the resolution of the Tape Station does not allow for precise sizing of the DNA molecules in the higher size range.
The products of the ligation reactions (Figure 4A; MB1) ranged in size from 4 kb to more than 15 kb in a manner compatible with partial
and complete assembled molecules in the reaction mix. After PCR amplification (Figure 4B; MB2) using primers targeting the extremity
of the Maxiblock and LongAmp Hot Start Taq (NEB) DNA polymerase, a single PCR product 15 and 48 kb in size was detected and in
agreement with the expected 24-kb DNA product.

To better evaluate the quality of the assembled fragments, we again took advantage of ONT sequencing to compare the reaction
products before and after amplification and selection of a 23,796-bp DNA assembly. ONT sequencing of the MaxiBlock assembly pro-
duced 25,507 reads with a median length of 3091 nt and a median quality of 11.7 before PCR and 3215 reads with a median length of
1143 nt and a median read quality of 11.9 after PCR (Supplementary data file 3). The limited median size of the sequencing reads of the
MaxiBlock assembly takes its root in the presence of 1) numerous short sequencing reads comprised of part of terminal eBlocks 1 or
50; and 2) the presence of sequences that were ill-attributed during demultiplexing (Supplementary data file 4). As shown in Figure 5A
(left panel), the proportion of correctly ordered BigBlock pairs ranged from 56 to 85%. As designed, BigBlock 5 is most often (97%) the
terminal block. When BigBlock (n) is not ligated with BigBlock (n + 1), then it is usually a terminal block of the assembly. Upon PCR
selection, the DNA molecules sequenced were mainly composed of an assembly of BigBlocks in the right order (Figure 5B, right panel).
The proportion of correctly ordered BigBlock pairs ranged from 89 to 96% and BigBlock 5 was exclusively terminal. This indicates that
upon PCR, full-length products were selected while a large proportion of partial assemblies were not amplified.

We analyzed the number of eBlocks and the correctness of their assembly for all sequenced reads. In the pre-PCR reaction products,
a striking pattern of reads comprised of 10, 20, 30, 40 and 50 eBlocks were present and represented the assembly of 1, 2, 3, 4 or 5
BigBlocks together. They respectively represented 12, 4, 11, 4 and 14% of the DNA content of the reaction products. Most notably, the
majority of these reads were comprised of correctly ordered fragments (Figure 5B).
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Figure 5. Oxford nanopore technology sequencing analysis of the MaxiBlock assembly. (A) Heatmap showing the proportion of pairs of linked
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As done for the selection of BigBlocks, PCR on the MaxiBlock aimed to both amplify and select the full-length 23,796-bp assembly
product. We used a single DNA polymerase (LongAmp Hot Start Taq, NEB M0534) for amplification of the MaxiBlock. When comparing
the PCR-amplified products and the pre-PCR assembly reaction, there is a clear depletion of DNA molecules comprised of 10, 20, 30
and 40 fragments, while the full-length assembly product of 50 eBlocks represents 12% of the total DNA content in the mix (Figure 5C).
As could be expected, the efficiency of production of the final 24-kb full-length Maxiblock was lower than the efficiency of the 5-kb
Bigblock assembly (12% compared with ∼80%). Additional purification steps based on size fractionation could be envisaged to improve
the purity of the final product at the expense of hands-on time. However, our analyses indicate that our fully in vitro iterative method
could efficiently and faithfully construct long synthetic DNA molecules by assembling commercially available short dsDNA.

Conclusion
The cost of construction of the 23,796-bp molecule, including DNA and enzymatic reactions, is approximately US$2000 without negotia-
tion on suppliers’ list prices (Table 1). One important aspect of our protocol is the relatively short hands-on time: once the DNA sequences
have been designed and the materials received, the full-size construction process can be completed within 3 days. On day 1, eBlocks are
controlled by agarose gel electrophoresis and quantified. The assembly of the eBlocks into BigBlocks is carried out overnight. On day
2, the assembled BigBlocks are controlled by agarose gel electrophoresis, followed by PCR selection. PCR products are then controlled
by agarose gel electrophoresis and quantified by spectrometry. The MaxiBlock assembly is then constructed overnight. On day 3, the
MaxiBlock assembly is controlled on a TapeStation and PCR amplified. The final PCR products are ultimately controlled on TapeStation.
Higher throughput is easily achievable by robotizing and parallelizing the assembly [30].

Compared with some recent assembly methods (Table 2), our method for producing long DNA molecules offers improvements upon
already published GGA-based assembly in three areas: 1) it is fully independent of pre-existing natural DNA molecules as it starts from
chemically synthesized DNA; 2) it is conducted solely in vitro; and 3) the selection of the assembled DNA molecules does not rely on
their biological properties. This differs from previous reports of long DNA assemblies that generally start from PCR products amplified
from biological DNA that require some steps to be performed in vivo in bacteria or with the help of lambda phages, and usually relies on
the biological properties of the reconstructed DNA to all for stringent selection such as plaques forming assays, antibiotic resistance
or colorimetric assays [9,31]. However, at the same time these selections impose strong constraints on the DNA being assembled.
The method presented here is easily generalizable to any other type of DNA molecule without any requirement for specific biological
properties of the molecule, and as such is adapted to the storage of information or assembly of any gene sequence.

The length of the final DNA is limited by the capabilities of the DNA polymerase used for the final PCR selection. In fact, obtaining
PCR products larger than 24 kb can be challenging with respect to efficiency and accuracy with standard DNA polymerase such as
Taq polymerase. However, some DNA polymerases are known to have higher processivity, extension rate or error correction capabilities,
making them more suitable for amplifying longer DNA fragments. LongAmp Hot Start Taq DNA polymerase from NEB has the theoretical
capacity to amplify DNA fragments up to 35 kb in length, while Platinum™ SuperFi II DNA Polymerase from Invitrogen can amplify up to
40 kb and TaKaRa LA Taq R© DNA Polymerase from Takara Bio (Shiga, Japan) can amplify up to 48 kb. However, it is important to keep in
mind that amplifying long DNA fragments can be a difficult task, and successfully obtaining a PCR product larger than 24 kb will depend
on various factors such as DNA quality, reaction conditions and the optimization of PCR conditions.

The final PCR product can be directly used for molecular biology processes such as in vitro transcription with T7 RNA polymerase if a
T7 promoter was included in the PCR primers. It must be highlighted that this product is not clonal and therefore contains a population
of different molecules with potential point substitutions or deletions. To obtain a clonal product, the DNA molecule should be purified
by performing agarose gel electrophoresis and excising the appropriate sized band, and cloned into a suitable host/vector system for
amplification and selection. The size of the final product (∼24 kb) remains compatible with cloning into plasmid or cosmid vectors.
The in vitro process described here allows for the time-efficient construction of long dsDNA molecules. The absence of any subcloning,
transformation and selection step allow us to streamline the process of long dsDNA molecule construction. Yet, they can be readily
subcloned and selected on the basis of a double PCR screen using two pairs of primers located in the vector backbone and the building
blocks at the extremity. Therefore, we feel this protocol may be an approach of choice to obtain artificial building blocks of thousands
of nucleotides long that can be used in downstream applications.

Future perspective
The ab initio synthesis of DNA molecules of fully artificial composition is a major challenge in DNA digital data storage but also for the
reconstruction of ancestral DNA molecules or the production of molecules encoding human or AI-designed proteins. The alternatives for
artificial DNA production are scarce and rely either on chemical oligonucleotide synthesis or on enzymatic synthesis of DNA. However,
both methods are limited by the maximal product size and must therefore leverage assembly methods to generate longer DNA molecules.
The automation of these assembly methods will probably allow for the mass production of several kb long DNA molecules of chosen
sequences.
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Reports

Executive summary

Background
• To define and evaluate a method of assembly of long DNA molecules of artificial sequence.
Experimental
• We devised an iterative method for the in vitro two-step construction of a 24 kb-long artificial sequence DNA molecule.
• The assembly process was monitored using single-molecule sequencing on a minion sequencer.
Results & discussion
• This study devised an iterative method that allows for the synthesis of long DNA molecules to be used for digital data storage, with our

study producing a DNA molecule encoding the Declaration of the Rights of Man and of the Citizen of 1789.
• Evaluation of the assembly steps by minion sequencing allowed us to rapidly evaluate the faithfulness of the assembly process.
Conclusion
• Our fully in vitro iterative method can faithfully construct long synthetic DNA molecules by assembling commercially available short dsDNA.
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