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1 Introduction : the Noah and Joseph effects and

the non-Gaussian and non-Brownian issues of

the financial theory

Let (S(t), t ≥ 0) denote the price process of a given asset. The basic model in finance
is the exponential Brownian motion, i.e. the stochastic process defined by

S(t) = S(0) exp (μt+ σW (t)) (1)

with W (t) standard Brownian motion, that is, W (0) = 0, IE [W1] = 0 et IE [W 2
1 ] = 1.

This is the standard model of price variations in finance. It was introduced by
Samuelson in 1965 and is sometimes called in the early financial literature “geometric
Brownian motion”1. We introduce the notation

X(t) = lnS(t)− lnS(0) (2)

as the continuously compounded return of the asset. According to the standard
model (1),

X(t) = μt+ σW (t) (3)

is the Brownian motion introduced by Bachelier in 19002. The distribution of X(t) is
the normal (Gaussian) one. In other words, with the standard model, the marginal
distributions of returns have to be Gaussian.

It is important to clearly distinguish between the normality assumption and the
continuity assumption in (3). The two assumptions are confounded in the standard
model because of the properties of Brownian motion, but they refer to different
conceptual frameworks. The normality of asset returns has played a central role in
finance for a large number of static models, beginning with the Markowitz’ standard
portfolio theory (1952) and the Sharpe’s Capital Asset Pricing Model (1964) and
more recently with the Value at Risk computations in the Basle framework. On the
other hand, the continuity of trajectories has played a central role in the dynamic
models built on the building blocks of the Black, Scholes and Merton’s standard
option pricing theory (1973) and the default risk probabilities computed with the
Vasicek’s yield curve model (1977).

It is now well documented that both the normality and continuity assumptions
are contradicted by the data : the normal distribution is a poor model for the

1Samuelson [1965].
2See Courtault and Kabanov [2002], Walter [2002b].
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marginal returns, and all the trajectories exhibit a lot of jumps. Tackling these
challenges has represented the aims pursued by Benôıt Mandelbrot3 :

“In science, all important ideas need names and stories to fix them in
the memory. It occurred to me that the market’s first wild trait, abrupt
change or discontinuity, is prefigured in the Bible tale of Noah. As Gen-
esis relates, in Noah’s six hundredth year God ordered the Great Flood
to purify a wicked world. [...] The flood came and went – catastrophic
but transient. Market crashes are like that : at times, even a great bank
or brokerage house can seem like a little boat in a big storm.

The market’s second wild trait – almost cycles – is prefigured in the
story of Joseph. Pharaoh dreamed that seven fat cattle were feeding in
the meadows, when seven lean kine rose out of the Nile and ate them.
[...] Joseph, a Hebrew slave, called the dreams prophetic : Seven years of
famine would follow seven years of prosperity. [...] Of course, this is not
a regular or predictable pattern. But the appearance of one is strong.
Behind it is the influence of long-range dependence in an otherwise ran-
dom process – or, put another way, a long-term memory through which
the past continues to influence the random fluctuations of the present.

I called these two distinct forms of wild behavior the Noah effect and the
Joseph effect. They are two aspects of one reality4”.

We present below the three main models of Benôıt Mandelbrot and their legacy.
The next section presents the description of the Noah effect by the α-stable motion
(1962). Section 3 shows the relation between Joseph effect and fractional Brownian
motion (1965). Section 4 presents the fundamental intuition of the time-changed
Brownian motion (1967) for disentangling the Noah and Joseph effects.

3A short biography of Benôıt Mandelbrot can be found in the Richard Hudson’s prelude to Man-
delbrot [2004], p. xv-xxiv : “Introducing a Maverick in Science”. Other existing short biography
is “A maverick’s apprenticeship”, by Benôıt Mandelbrot himself (available on website).

4Mandelbrot [2004], p. 200-201.
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2 The first model of Mandelbrot (1962) : α-stable

motion with paretian tails

Adopting a static standpoint, the issue of non normality is exhibited by the so-
called leptokurtic phenomenon5 which appeared very early in financial literature.
To solve this puzzle, the idea of Mandelbrot can be summarized as follows: let us
abandon both the continuity and normality assumptions, but keep the assumption
that the process has independent increments. Hence, in 1962, Mandelbrot replaced
the standard model (3) by a new model called α-stable Lévy motion6, where the
distributions have fat or pareto-type tails, and in fact, infinite variance. This pre-
cisely allows to understand the Mandelbrot’s intuition : the search for paretian tails
in finance. “The power of power laws”7 is a tale of fat tails:

“Examine price records more closely, and you typically find a different
kind of distribution than the bell curve : the tails do not become im-
perceptible but follow a “power law”. These are common in nature. [...]
In economics, one classic power law was discovered by italian economist
Vilfredo Pareto a century ago. It describes the distribution of income in
the upper reaches of society. That power laws concentrates much more
of a society’s wealth among the very fews; a bell curve would be more
equitable, scattering incomes more evenly around an average. Now we
reach one of my main findings. A power law also applies to positive or
negative price movements8 of many financial instruments. It leaves room
for many more big price swings than would the bell curve. And it fits
the data for many price series. I provided the first evidence in a 1962
research report” (our italics).

The legacy of paretian approach The sequel of the story is now well known9.
After a period of strong arguments on the pros and cons of the infinite variance
hypothesis, the 1962 model was abandoned because of the lack of second moment,
considered as too strong for financial uses. However the ideas didn’t disappear.
On one hand, the theory of extreme values, the rebirth of which dates back to

5Following the terminology inroduced in Walter [2002a].
6Mandelbrot [1962], followed by a more detailed description Mandelbrot [1963].
7Mandelbrot [2004], p. 13.
8Exactly the two sides of the Lévy measure defined in (13).
9See Walter [2009] for a comprehensive approach of the story of the α-stable attempts for solving

the leptokurtic character of returns.
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1993, kept the intuition of paretian tails but subsumed it through the generalized
Pareto distribution which includes many cases of fat tails and not only the α-stable
ones10. On the other hand, the general Lévy processes which were considered in
the 1990s maintained the discontinuity feature but without the infinite variance
characteristic of the α-stable motion11. There is now a large body of research on
these topics and financial modelling under Non Gaussian distributions12 is becoming
a new consensual approach in the financial literature.

3 The second model of Mandelbrot (1965) : frac-

tional brownian motion with aperiodic cycles

An interesting feature of the standard model defined in (3) is that the process X(t)
is self-similar when the drift μ is zero. We say that X(t) is self-similar with exponent
1/2 (hereafter 1/2-ss) if

X(at)
d
= a1/2X(t) (4)

where the notation
d
= defines equality in distributions. The presence of self-similarity

in classical finance stems from the fact that Brownian motion is a 1/2-ss process.
The second Mandelbrot’s idea was to generalize the equation (4) and to propose
representing the fluctuations of returns by a self-similar process with exponent H ∈
(0, 1]. Hence the relation

X(at)
d
= aHX(t) (5)

defines the fractional brownian motion13 (FBM) introduced in 1965. This process
can display what is called a “long-range dependence” or long memory, which is of
great interest in modelling the complex dependency of economic variables, termed
by Granger, “the typical spectral shape of an economic variable”14. In fact, the
intuition behind this modification is the notion of long memory, termed “Joseph
effect” by Mandelbrot, in reference to the slow and aperiodic cycles evoked by the
biblical Joseph with regard to fluctuations of the harvest. This led Mandelbrot to
rediscover Hurst’s law15 by introducing the concept of fractional Brownain motion
(FBM) which is a self-similar process with exponent H and whose increments admit

10See for instance Embrechts, Klüppelberg and Mikosch [1997].
11See for instance Cont and Tankov [2004], Le Courtois et Walter [2012].
12According to the title of Jondeau, Poon and Rockinger [2007].
13Mandelbrot [1965], followed by a more detailed description : Mandelbrot and van Ness [1968].
14According to Granger [1966].
15Hurst [1951].
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as autocovariance function

CH(h) =
1
2

[|h+ 1|2H − 2|h|2H + |h− 1|2H] (6)

With the FBM, the span of interdependence between the increments can be said to
be infinite. There is a power law in the correlation as there was a power law in the
returns (paretian tails) in the 1962 model. Thus, power laws, albeit with a different
interpretation, are involved in both cases.

The legacy of long memory approach The search for long memory failed for
returns but was successfully achieved for volatility. In the first case, the long memory
properties of returns were hard to find, either using the Hurst R/S analysis16 or with
the attempt of ARFIMA modelling17. But it appeared that long memory properties
exist in volatility. This was at the origin of the FIGARCH models of volatility18

which led to an important stream of academic studies on volatility processes and
volatility forecast with long memory.

4 The third model of Mandelbrot (1967) : time

changed Brownian motion with stochastic clock

It was difficult, however, to reconcile both fat paretian tails (non-normal returns) and
long aperiodic cycles (volatility correlations) in the same model and to isolate the
two effects. In order to disentangle the Noah and Joseph contributions, Mandelbrot’s
third idea in 1967 was to consider the price variations in a different time grid, related
to market activity (or business activity) and not to physical time19. That means
to replace in the standard model (3) the physical time t by a social economically
relevant time Θ(t) to design a new process ξ(t) = X(Θ(t)) defined in physical time
as

ξ(t) = μΘ(t) + σW (Θ(t)) (7)

In fact, what is called time-changed Lévy processes can simultaneously address these
two issues. It is easy to see that the choice of the new clock Θ(t) determines the
new model ξ(t) in physical time. By replacing the usual clock of an independent
Brownian motion by a stochastic one, Mandelbrot and Taylor paved the way for a

16About the R/S tests, see for instance Lo [1991] and Beran [1994].
17The ARFIMA process was introduced by Granger [1980] and Hosking [1981].
18The FIGARCH process was introduced by Baillie, Bollerslev and Mikkelsen [1996].
19Mandelbrot and Taylor [1967].
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new interpretation of the non-normality of returns. The intuition behind it is the
following :

“The key step is to introduce an auxiliary quantity called trading time.
The term is self-explanatory and embodies two observations. While price
changes over fixed clock time intervals are long-tailed, price changes be-
tween successive transactions stay near-Gaussian over sometimes long
period between discontinuities. Following variations in the trading vol-
ume, the time interval between successive transactions vary greatly. This
suggests that trading time is related to volume.”20

In the setup of the 1967 model, W (t) was Brownian motion and hence had indepen-
dent increments, but this constraining hypothesis was relaxed later on. For instance,
if one replaces W (t) by WH(t) which is the FBM defined above, then ξ(t) is called a
multifractal process. From a general standpoint, the resulting process ξ(t) is a time
changed process, i.e. a process using a stochastic clock in social time.

The legacy of Brownian subordination After the first investigation of Clark
in 197321, the idea that return distribution should be normal when measured per
unit of relevant clock was rediscovered in the end of the 1990s by several authors who
generalize Clark’s results22 to be able to build a general framework for time-change
modelling by using Lévy processes. The models based on Brownian subordination
are now of a great interest and two recent models (variance gamma process and
normal inverse Gaussian process23) represent a good illustration of the wide appli-
cability of this ap.roach.

20Mandelbrot [1997], p. 39.
21Clark [1973].
22See for instance Ané and Geman [1997], Geman, Madan and Yor [2001], Carr and Wu [2004].
23See Madan, Carr and Chang [1998] and Barndorff-Nielsen [1998].
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Embrechts P., Klüppelberg C., Mikosch T. [1997], Modelling Extremal
Events for Insurance and Finance, Berlin, Springer-Verlag.

Geman H., Madan D, Yor M. [2001], “Time changes for Lévy processes”, Math-
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6 Appendix : a tale of fat tails

A Lévy process (X(t), t ≥ 0) is a process with stationnary (identically distributed)
and independent increments (hereafter i.i.d.). It follows that X(t) is infinitely divis-
ible. The characteristic function of the random variable X is ΦX(u) = IE[exp(iuX)].
If X(t) is a Lévy process, then ΦXt = exp (ΨXt(u)) where ΨXt(u) is the characteris-
tic exponent of X(t). The characteristic exponent of the return process X(t) in the
case of the standard model (3) is

ΨXt(u) = t

(
iμu− 1

2
σ2u2

)
(8)

An interesting feature of the Lévy processes is that a Lévy process is completely
determined by any of its one-dimensional marginal distributions : ΨXt(u) = tΨX1(u)
and it suffices to define ΨXt(u) for t = 1.

In 1962, Mandelbrot replaced the standard model (8) by a new model termed
the α-stable Lévy motion24 and defined by

ΨXt(u) = t

(
iμu− γα|u|α

(
1− iβ

u

|u| tg
πα

2

))
(9)

The α-stable Lévy motion is another special case of the general Lévy processes,
with both activity and variation infinite. For an heuristic understanding of the
Mandelbrot’s idea and the choice he made of this type of Lévy process, one intoduces
the Lévy-Khinthine representation

ΨXt(u) = t

(
iμu− 1

2
σ2u2

)
+ t

∫
IR∗
ψ(u, x) ν(dx) (10)

with
ψ(u, x) = eiux − 1− iux1|x|<1(x)

With this representation, the characteristic exponent (9) of the α-stable Lévy mo-
tion25 is

ΨXt(u) = t

(
iμu+

∫ 0

−∞
ψ(u, x)

C−
|x|1+α

dx+

∫ +∞

0

ψ(u, x)
C+

x1+α
dx

)
(11)

From (10) and (11), it follows that the Lévy measure of the α-stable motion is

ν(dx) =
C−

|x|1+α
1(−∞,0)(x)dx+

C+

x1+α
1(0,+∞)(x)dx (12)

24Mandelbrot [1962], followed by a more detailed description Mandelbrot [1963].
25See for example Samorodnitsky et Taqqu [1994].
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or in a more intuitive form

ν(x) =

⎧⎨
⎩

C−
|x|1+α if x < 0

C+

x1+α if x > 0

(13)

This last form (13) clearly exhibits a power paretian law in the Lévy measure. This
precisely allows to understand the Mandelbrot’s intuition : the search for paretian
tails in finance. A tale of fat tails, he named “the power of power laws”26.

26Mandelbrot [2004], p. 13.
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