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Ordonnancement avec des tâches
compressibles : Application à l’inférence de
réseaux neuronaux†

T. S. Barros, F. Giroire, R. Aparicio-Pardo, S. Pérennes, and E. Natale
Université Côte d’Azur/CNRS/I3S/Inria, Sophia Antipolis, France

Avec l’avènement et l’utilisation croissante du Machine Learning as a Service, les systèmes de cloud et de réseau
offrent désormais la possibilité de déployer des tâches de ML sur des clusters hétérogènes. Les opérateurs de réseaux
et de clouds doivent ensuite programmer ces tâches, en déterminant à la fois quand et sur quels appareils les exécuter.
Parallèlement, plusieurs solutions, telles que la compression de réseaux neuronaux, ont été proposées pour construire de
petits modèles pouvant fonctionner sur un matériel avec des ressources limitées. Ces solutions permettent de choisir la
taille du modèle au moment de l’inférence en fonction du temps de traitement désiré sans avoir à ré-entraîner le réseau.
Dans ce travail, nous considérons le problème DSCT (Deadline Scheduling with Compressible Tasks), un nouveau
problème d’ordonnancement avec deadlines dans lequel les tâches peuvent être compressées. Chaque tâche présente un
compromis entre son niveau de compression (et donc son temps de traitement) et son utilité. L’objectif est de maximi-
ser l’utilité des tâches. Nous proposons un algorithme d’approximation avec des garanties prouvées pour résoudre le
problème. Nous validons son efficacité par des simulations approfondies, en obtenant des résultats presque optimaux.

Mots-clefs : scheduling, neural network compression, approximation algorithms, convex programming.

1 Introduction
Nowadays, with the rise of 5G, IoT (Internet of Things), and new hardware capabilities, traditional

approaches for deploying cloud services, e.g. Machine Learning (ML) models, have changed. This shift
has led to services being deployed along the cloud-to-edge continuum. Then, due to hardware limitations,
new model compression techniques have appeared in order to reduce memory and storage usage with a
minimal accuracy drop. Cai et al. [CGW+20] introduce an adaptable Deep Neural Network (DNN), which
can be adjusted during inference without the need for retraining. Their method involves training DNNs
under multiples configurations, e.g. varying numbers of layers. Then, at inference time, the configuration
offering the best accuracy while meeting latency requirements can be identified.

In this work, we explore using adjustable neural networks to deploy Deep Learning models in a net-
worked system. Tasks, treated as inference requests, must be scheduled along the cloud-edge continuum
before deadlines. Previous research (e.g., [NBBW22]) suggests using pretrained models of varying sizes
to optimize latency and accuracy. However, we propose a more advanced approach: allowing machines to
compress models to any compression level. This flexibility, enabled by the large number of possible con-
figurations (e.g., over 1019 for MobileNet), allows for models closely matching targeted processing times.
This introduces an optimization challenge.

In this paper, we study the new problem of scheduling a set of fully compressible tasks with deadlines.
The goal is to decide when, on which machine, and with which compression level, each task should be
executed in order to maximize the global utility. The contributions can be summarized as follows:

– We introduce and study the scheduling problem DEADLINE SCHEDULING WITH COMPRESSIBLE
TASKS (DSCT) in which tasks can be compressed. The tasks have a utility function expressing their
trade-off between processing time and utility.

†A long version of this paper has been accepted for publication [dSBGAP+24]
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FIGURE 1: Accuracy vs. Latency using the OFA framework for classifying a set of 1000 images from imagenet-1k.
Experiments on a CPU (left) and GPU (right).

– We carry out experiments to study this trade-off for the OFA [CGW+20] solution.
– We model the accuracy function of large families of compressible tasks, as concave differentiable

functions, and we propose convex optimization models and exact algorithms to solve the problem
exactly on a single machine.

– We discuss the problem complexity and propose an approximation algorithm with proved guarantees
for several heterogeneous machines.

– Finally, the solutions are validated and compared to state-of-the-art solutions with experimentation.

2 Experiments and Latency-accuracy tradeoff analysis
In this section, we derive the latency-accuracy trade off of families of compressible neural networks

such as [CGW+20] experimentally. For this, we evaluated the updated OFA-resnet in two different
devices, one equipped with a CPU (Intel Core i9-12900H), and the other one with a GPU (NVIDIA RTX
A2000). Results are shown in Fig. 1 (left) and (right), respectively. The latency and accuracy of the different
configurations are plotted. Each point represents the average accuracy reached when classifying a set with
1000 images for a given maximum latency. First, we observe that we obtained a full range for the trade-off.
Then, for both CPU and GPU cases, we see that the accuracy function is a concave non decreasing function
with a very strong accuracy gains for small latency times and an almost flat curve for large latency times.

3 Modeling and Algorithms
We define the DEADLINE SCHEDULING WITH COMPRESSIBLE TASKS (DSCT) problem, which con-

sists of scheduling a set of n tasks which can be fully compressed on m machines. Formally, we have a set
J of tasks. Each task j ∈ J has a deadline dj , a maximum processing time tmax

j , and a utility function u j(t)
giving its utility when executed for a time t. The goal is to choose the processing time tj ∈ [0, tmax

j ] for
each task j ∈ J in order to maximize the global utility, i.e.,

∑n
j=0 u j(tj), the sum of the utility of all executed

tasks. We consider a scenario in which machines have different speeds (e.g. servers, laptops, cellphones,
IoT devices, etc.). The accuracy function of a task j on a machine r of speed sr is: aj ,r (t) = aj(sr · t), with
aj a concave function. We use an exponential accuracy function aj ,r (t) = 1 − e−sr θ j t , where θ j is the task
efficiency , but we believe we can extend for other concave functions family.

We exhibit that the DSCT on a single machine can be modeled by a convex linear program, as, for
a task, the decision isn’t whether to execute it, but rather the selection of its processing time. Using the
Karush–Kuhn– Tucker (KKT) conditions, we propose an exact algorithm to solve it on a single machine in
polynomial time.

We then show that the problem is NP-hard on multiple machines. We propose an approximation algo-
rithm, DSCT-APPROX, to solve DSCT with a proved guarantee, see Theorem 1. DSCT-APPROX consists
in three main steps:

— Step 1 (Fractional relaxation). We first solve the fractional relaxation. In this step, a single task can
be assigned to multiple machines. It gives a schedule with maximum accuracy value OPTf ≥ OPT
in polynomial time, where OPT is the maximum accuracy of DSCT.

— Step 2 (Rounding). Based on the total processing time computed in the previous step, we consider
the tasks by non decreasing deadlines and assign them incrementally to the machine with the least
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FIGURE 2: Optimality gap (av-
erage accuracy difference between
DSCT-UB and DSCT-APPROX)
over 1000 experiments when vary-
ing the task heterogeneity ratio µ.
Absolute guarantee G is given as a
baseline.

(A) Execution time vs number of
tasks

(B) Execution time over number of
machines

FIGURE 3: Execution times of DSCT-
APPROX vs DSCT-Opt for instances with
increasing (a) numbers of tasks and (b)
number of machines.

FIGURE 4: Average task accuracy
for DSCT-APPROX and the base-
lines as a function of the deadline
tolerance level ρ, for m = 10.

amount of work. At the end of this step, each deadline may only be violated by a single task on every
machine.

— Step 3 (Incremental shift). For each machine r ∈ M , we consider the tasks in the order of their
execution on r . If a task violates the deadline, we cut the amount of time passing the deadline and we
shift all the following jobs in machine r .

About the algorithm above, we state the Theorem 1. We denote θmax and θmin as the maximal and minimal
task efficiency, respectively; and amax and amin as the maximal and minimal accuracy levels, respectively.

Theorem 1. DSCT-APPROX is an approximation algorithm with an absolute performance guarantee G:
OPT −G ≤ SOL ≤ OPT , where OPT is the global accuracy of an optimal solution and SOL is the solution

returned by DSCT-APPROX and with G = mA
(
1 + 1

e ln
(
θmax
θmin

))
, where A

def
= maxj∈J (amax

j − amin
j ).

4 Experimental Evaluation
In this section, we evaluate the proposed approximation algorithm.

Experimental scenarios. We build scenarios with different (i) task heterogeneity and (ii) deadline tolerance
levels. For (i), we vary the task heterogeneity ratio of a set of tasks, denoted as µ def

=
θmax
θmin

which measures
the similarity between task efficiencies. For (ii), we define the deadline tolerance level, denoted by ρ, as
following: ρ = m·dmax∑

j∈J tmax
j
., where dmax is the maximal deadline and tmax

j is the maximal processing time for
a task j ∈ J. The deadline tolerance level indicates how strict the deadlines are. The greater ρ is the more
time is available for scheduling the tasks.
Baselines. We benchmark the performance of DSCT-APPROX with 3 different solutions:

- DSCT-UB, an upper bound solution provided by the fractional relaxation of the DSCT problem.
- EDF-NOCOMPRESSION: Here, compression is not allowed. Then, each task must be executed with

its maximal processing time (tmax
j ), which corresponds to the neural network in its maximal configu-

ration. The scheduling strategy used here is the EDF (Earliest Deadline First) [ZCG23].
- EDF-3COMPRESSIONLEVELS: Here, a discrete set of compression is considered. In this approach,

we use 3 levels of compression, corresponding to 3 accuracy levels : 27%, 55% and 82%. For this
algorithm, we implemented a strategy based on [LS21]

Study of the approximation guarantee. We first compare the performance of our algorithm to the abso-
lute performance guarantee derived in Theorem 1, i.e. G = mA(1 + 1

e ln(µ)). We thus make µ, the task
heterogeneity ratio, vary (from 1 to 20). The guarantee is derived from a worst case analysis.
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Fig. 2 presents the distribution over the experiments of two optimality gaps: (i) the absolute performance
guarantee G, which is actually a worst-case optimality gap; and (ii) the optimality gap provided by the
difference between the fractional relaxation DSCT-UB and the approximation algorithm DSCT-APPROX
solutions. We observe that the optimality gaps increase with the task heterogeneity ratio as expected, but
the gap with respect to the fractional relaxation solution is well below G. In our experiments, in average,
the ratio between the mean of the optimality gap and G was 12.36%.
Algorithm processing times. We also tested the execution time of DSCT-APPROX against DSCT-Opt,
which uses the cvx-MOSEK software, a widely used commercial solver which allows solving Mixed-
Integer Programs (MIP). The results are described in Fig. 3. We considered two scenarios: keeping the
number of tasks fixed (n = 50), and varying the number of machines and the reverse, fixing m = 5. We
set the solver’s time limit to 60 s. We observe that DSCT-APPROX can handle hundred of jobs and several
machines before reaching the time limit. The MOSEK solver, however, can reach a maximal value of 30
jobs and 3 machines.
Comparison with benchmarks for different deadline tolerance levels. We now compare the global ac-
curacy obtained by DSCT-APPROX with DSCT-UB and with the ones reached by EDF-NOCOMPRESSION
[ZCG23] and EDF-3COMPRESSIONLEVELS [LS21]. To explore the different possible scenarios of usage,
we vary the deadline tolerance level in a range between 0 and 1.5, with a step of 0.1. We observe that
DSCT-APPROX presents a performance close to DSCT-UB, providing near-optimal results. Moreover,
DSCT-APPROX outperforms the baselines for every deadline tolerance value tested. The difference be-
tween DSCT-APPROX and EDF-NOCOMPRESSION (and EDF-3COMPRESSIONLEVELS) performances
is significant and reaches more than .18 point (.1) of accuracy, e.g. representing a gain of 57.9% (22.2%)
for ρ = 0.4.
Fairness. A byproduct of allowing for task compression is that the allocation of processing times over tasks
is fairer than without compression, in the sense that it allows them to reach similar accuracy values. When
not using compression, a task is either executed, and reaches its maximum possible accuracy, or not, leading
to a minimum one.

5 Conclusion and Discussion
We studied the problem of scheduling with compressible jobs. We analyzed and modeled the tradeoff

between accuracy and processing time of a family of compressible neural networks.
We proposed an approximation algorithm for multiple machines scenario, which is a NP-hard problem.

The algorithm proposed obtained a near-optimal value, outperforming the baseline average accuracy by
up to 57%. Also, we observed the algorithm presents smaller execution time compared to commercial
MIP solvers. Extending our results to a wide range of optimization model, such as energy efficiency and
communication latency, is an interesting avenue for future work.
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