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We propose a method of optimization of asset allocation in the case where the stock
price variations are supposed to have “fat” tails represented by power laws. General-
izing over previous works using stable Lévy distributions, we distinguish three distinct
components of risk described by three different parts of the distributions of price varia-
tions: unexpected gains (to be kept), harmless noise inherent to financial activity, and
unpleasant losses, which is the only component one would like to minimize. The inde-
pendent treatment of the tails of distributions for positive and negative variations and
the generalization to large events of the notion of covariance of two random variables
provide explicit formulae for the optimal portfolio. The use of the probability of loss (or
equivalently the Value-at-Risk), as the key quantity to study and minimize, provides a
simple solution to the problem of optimization of asset allocations in the general case
where the characteristic exponents are different for each asset.

1. Introduction

Despite quite a number of early insightful studies [35, 24, 25, 18, 33], the fact

that many natural phenomena must be described by power law statistics has only

been fully accepted in the past ten years. Correspondingly, an intense activity has

developed in order to understand both the physical content of the mathematical

tools devised by P. Lévy [22] and others [19], and the origin of these ubiquitous
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power law tails. This has led to several interesting ideas [43], in particular, the

seminal concept of “self-organized criticality” [4].

As a matter of fact, it is in economy and finance that these power law dis-

tribution were first noted by Pareto [35] and, in the early sixties, by Mandelbrot

and Fama [24, 25, 18]. Their ideas were however discarded and did not have a

large practical impact: their work appeared when the “standard” model of efficient

markets was rapidly developing [30, 39] with notable successes, such as the CAPM

[31] (Capital Asset Pricing Model) or the Black–Scholes option pricing theory [8].

The efficient market hypothesis implies that market prices are not predictable,

prices change randomly and no consistent positive profit can be obtained from

speculation. The paradigm of stock price variations is thus the multivariate normal

distribution [12, 3]. The strength of the efficient market hypothesis is its conceptual

and mathematical simplicity: based on the elementary notions of mean and vari-

ance, the algebraic manipulations are eased by the hypothesis of Gaussian statistics,

for which a score of mathematical results are available. The “power-law” hypoth-

esis, on the contrary, may force one to abandon the notion of mean and variance

(although this is not always the case, see below) and find different, less elementary

objects as the building-blocks of the theory. The mathematical tool-box is also, in

that case, much more involved [37] and somewhat poorer.

The “power-law” (or “paretian”) hypothesis remained somewhat dormant until

recently, notwithstanding the continuing confirmation that distributions of price

variations and other commodities present a strong leptokurtosis (anomalously large

ratio, sometimes much larger than 3 characterizing Gaussian statistics, of the fourth

moment over second moment squared), indicating anomalously large fluctuations.

The recent revival of these ideas in finance is partly due to the 1987 crash, and more

recent smaller ones, which spotlights the crucial importance of large, catastrophic

events and the limitation of Gaussian theories, which dramatically underestimates

their probability of occurence. More recently, the notion of “value-at-risk” (VaR)

has become a central quantity to assess risk. A correct determination of this VaR,

and its necessary control again requires new theoretical tools.

A series of authors have thus explored, following [24, 25, 18], the possibility that

the stable Lévy distributions could represent price fluctuations more accurately

than the normal distribution (see [42, 26 and references therein]). These analysis

of stock market fluctuations (see [42, 34, 27, 29, 11]) consistently show that a Lévy

distribution (or more precisely a truncated Lévy distribution — see below) of returns

is a better representation of the data.

An additional clue comes from the well-known observation that the standard

“efficient portfolio” theory leads to several difficulties in practice: the weights of the

different assets must be revised all the time and the optimal portfolio often retain

a small fraction of all assets — an aspect that is felt unreasonable and impractical

by many operators.

The aim of the present paper is to extend previous theoretical approaches [38,

2, 6] of asset allocation developed for stable Lévy laws to more general situations
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where the power laws hold only on the tail of the distribution, i.e. on the most

notable events which have an immediate meaning for all operators on the financial

markets, or are characterized by different exponents (possibly larger than 2), i.e. are

not stable in the sense of Lévy. We also propose, loosely speaking, to replace

the standard return/risk ratio by a return/(probability of large losses) ratio. Our

basic idea being that “risk” should be decomposed into three distinct components:

unexpected gains (to be kept), harmless noise inherent to financial activity, and

unpleasant losses, which is the only component one would like to minimize.

The paper is constructed as follows: in the first section, we introduce notations

and specify the class of probability distribution (or probability density) that we shall

adopt for the description of real data. In Sec. 2, we shall propose a generalization of

the notion of covariance of two random variables which is adapted to large events. In

Sec. 3, important results on the addition of power-law distributed random variables

will be recalled (heuristic proofs are given in the Appendix A), and used in Sec. 4

to establish our results on optimal portfolio in the extended sense mentioned above.

Section 5 discusses the applicability of these ideas, and present a concrete example of

portfolio optimization. This paper is not claiming mathematical rigour, but rather

discusses these topics in an intuitive, and hopefully useful, manner.

2. Power-Law Distributions

Let us denote by v the (daily, weekly, monthly, . . .) variation in the value of

a given asset. Any progress on the problem of asset allocation depends on the

determination of the mathematical form for the probability density P (v) of v’s,

since it controls the existence or not of mean return and variance. As recalled

above, the repeated observations of a strong anomalous leptokurtosis has led to the

proposal that the “Gaussian paradigm” should be replaced by the “Lévy paradigm”.

Considering Lévy laws is a natural step, since they are characterized by power-law

tails and are stable, as is the Gaussian distribution, with respect to the addition

of variables. The first property gives hope to take into account the large observed

fluctuations and corresponding leptokurtosis. The second one ensures that the

mathematical description is invariant with respect to the chosen time step (daily,

weekly, monthly, . . .) and leads to the property of stationarity. However, we shall

not take a dogmatic point of view but rather let us guide by empirical data, in

particular allowing for deviations from a Lévy distribution.

Here, we will thus explore the more general situation where, for large enough

positive and negative variations v of the asset price, the probability density P (v) is

a power law:

P (v) ≃v→±∞
C±
|v|1+µ± . (2.1)

C+ (resp. C−) is the scale factor for the positive (resp. negative) price variations.

µ+ (resp. µ−) is the exponent of the tail of the probability density for positive



28 J. P. Bouchaud et al.

(resp. negative) price variations. Notice that µ (when µ+ = µ−) can be identified

with the index α for the particular case where P (v) is a Lévy distribution Lα.

This form is compatible with recent empirical studies [42, 27, 32, 29, 10] which

suggests that an appropriate description of price variations involve Lévy distribu-

tions. In fact, this might be too restrictive and a more flexible description might be

needed, involving power tails with exponents larger than 2 (i.e. not stable) [13, 23]

or rather cross-overs from a power law to an exponential behavior, leading to a

“truncated Lévy distribution” [29, 28, 10, 11]. In this respect, it is interesting to

note that the limit µ→∞ formally corresponds to exponential tails [11].
The expression (2.1) provides an interesting and useful parametrization because

robust statistical tools can be used to extract the exponent µ and scale parameter C

on a relatively small data set [44, 17, 1, 20, 16, 15, 14, 13]. We would like to mention

in particular the “rank ordering” technique pioneered first by [44] which puts the

emphasis on the analysis of the tails of distributions (see [40] for a recent review).

For the practical implementation of our proposed asset allocation strategy, we will

use this method to retrieve the values of the exponents and scale parameters.

The scale coefficient C± will play a crucial role in the following: it reflects the

scale of the fluctuations of the price variations v. More precisely, the order of

magnitude of the largest event out of N drawn from the distribution (2.1) is given

by the condition

N

∫ +∞

vmax

P (v)dv ≃ 1 (2.2)

yielding

v+max(N) ≃ C
1
µ+

+ N
1
µ+ (2.3)

for the typical largest positive variation and

v−max(N) ≃ −C
1
µ−

− N
1
µ− (2.4)

for the largest negative variation. Another interpretation of C±, which will be

exploited in the sequel is the following: the total probability of observing events

larger than a certain value is proportional to C±. Indeed, the probability for a loss

(resp. gain) larger than a certain value λ is given by

Ploss(|v| > λ) =
C−
µλµ−

; Pgain(v > λ) =
C+
µλµ+

. (2.5)

The power law (2.1) structure of the probability density P (v) describes a

self-similar process, i.e. one for which no intrinsic characteristic scale exists. Al-

though no precise model has been proposed to explain this in finance (see however

[4, 41, 21, 5]), this seems to be a rather reasonable assumption, at least in a restricted
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range of variations, by analogy with other collective systems. This assumption

may however break down at large variations, pointing out the possible existence

of characteristic scales. For example, the power-law tail is bound to break down

ultimately beyond some characteristic value vmax, where some extrinsic mechanism

might operate such as quotation suspension or market closure, or some intrinsic

feedback mechanism, leading to a faster decay (e.g. exponential) beyond vmax.

It is easy to see (from its very definition) that the qth moment of P ceases to

exist as soon as q ≥ µ. In particular, the mean of the distribution is formally infinite
when µ ≤ 1. Similarly, the variance of the distribution is infinite when µ ≤ 2. In
fact, because of the “cut-off” mechanism just described, the mean (resp. variance)

will remained well defined even for µ ≤ 1 (resp. 2), but proportional to the cut-off
v1−µmax (resp. v

2−µ
max ):

a hence in these cases, the mean (resp. variance) is obviously

not the interesting quantity to consider since it is unrelated to the typical order

of magnitude of the variations (resp. their fluctuations). Note that even for µ > 1

(resp. µ > 2) but not too large, the mean (resp. variance) remains a tricky notion to

use in applications, since its determination from a time series of length N converges

only slowly towards the theoretical value. As already shown, the largest variations

scale as vmax ∼ N
1
µ . Consequently, for 1 < µ < 1 the relative error on the mean

converges to zero as N
1
µ
−1. For µ > 2, the standard N−

1
2 convergence of the

mean is recovered. For 2 < µ ≤ 4, the estimation of the variance converges
slowly as N

2
µ
−1. For µ > 4, one recovers the standard N−

1
2 convergence of the

variance.

The important practical implication is that, if N is not very large, these basic

parameters for the determination of an optimal portfolio within the usual Gaussian

framework are changing with time — leading to rather strong instabilities in the

optimal weights. Let us illustrate further the importance of the slow convergence of

the mean (or of the variance) even in cases where their mathematical convergence is

ensured, with applications to real data in mind. Suppose that a given stock can be

described by a µ-variableb with µ = 1.5, which is an oft-cited value [42, 24, 25, 26].

Since µ > 1, 〈v〉 is a priori well defined. We have generated 1000 samples of 500
variable v > 0 sequences each distributed according to Eq. (2.1) with µ = 1.5 and C

such that the theoretical average value of v is 〈v〉 = 3/2. We have then determined
the empirical average value either directly, or by reconstructing the distribution

using the rank ordering method [44, 40] and computing analytically this mean

value using the empirical values of µ and C. The results are 〈v〉direct = 1.54± 0.12
and 〈v〉reconstructed = 1.50 ± 0.07, to be compared with 〈v〉exact = 1.50. In the
following, we shall thus use the rank ordering technique to extract from a given

time series the parameters µ,C+, C− and do the calculations from the reconstructed

distributions.

aWe drop from now on the distinction between µ+ and µ−.
bWe use the name µ-variable to denote a random variable distributed according to the power-law
probability density (2.1) with exponent µ.
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3. Tail Covariance. Generalized β Model and Multifactor Models

The diversification of extreme risks is only possible if large events are to some

extent uncorrelated. An important step towards obtaining a useful portfolio theory

is thus to generalize the usual notion of covariance to the “tail” of the distributions.

Since any definition of covariance is bound to involve products and linear combina-

tions of the price variations of different assets, we need to use the toolbox which is

available for the determination of the statistical properties of sums and products of

µ-variables.

The properties, that will be useful for our purpose are the following (a brief

derivation is given in Appendix A):

1. If wi and wj are two independent µ-variables, characterized by C
±
i and C

±
j ,

then wi + wj is a µ−variable with C± given by C±i + C±j .
2. If w is a µ-variable with a certain C then p×w is a µ-variable with a C equal
to pµC.

3. If w is a µ-variable, then wq is a µq -variable.

4. If wi and wj are two independent µ-variables, then the variable x = wiwj
is (up to logarithmic corrections) a µ-variable. Intuitively, this means that

cases where x is large corresponds to cases where — say — wi is large and wj
takes typical values in the central part of the distribution. Cases where both

wi and wj are very large are negligible, since these are uncorrelated variables.

3.1. Generalized “one factor” β-model

In order to progress, consider a particular model of correlation between all assets,

which is a generalization of the well-known β-model [31]. Following previous works

[18, 38, 2, 6], we assume that vi (the daily, weekly, monthly,. . . variation of asset

i) has a part which reflects a common evolution of all assets, and a part which is

intrinsic to each asset, i.e. using property (1) above:

vi ≃ β±i w0 + wi (vi → ±∞) , (3.6)

where w0 and {wi} are independent µ-variables with C±(w0) ≡ 1 and C±(wi) ≡
γ±i . This model was in fact first proposed by Fama [18] in the present context of

strongly fluctuating assets. The aim is thus to extract the set of parameters β±i and

γ±i from the data. In this goal, let us study the product vivj , whose probability

distribution constitutes, in the power-law world, the natural generalization of the

covariance.c Using properties (3) and (4), one finds the following result, expressed

cOther generalizations were proposed in the context of stable laws, in particular the “covariation”
discussed in [37] and recently applied to construct a “Stable” CAPM model in [7]. Its intuitive
meaning is however, at least to our eyes, less transparent than our own definition, which explicitly
measures the correlations between large events only, while to “covariation” picks up contributions
from the “core” of the distributions, and mixes positive and negative variations.
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rather symbolically:

vivj ≃ βiβj
µ

2
-variable + βiµ -variable + βjµ -variable + µ -variable , (3.7)

which shows that the tail of the distribution of vivj is dominated by the first term,

and will directly be sensitive to the product βiβj . More precisely, a rank ordering

analysis of vivj should give a slope of − 2µ and a C
±
ij proportional to (β

±
i )
µ(β±j )

µ.

From the set of all C±ij , one then checks first whether or not the “one factor”

model is sufficiently accurate, and, if it is, determines all the β±i . From the direct

rank ordering analysis of the individual vi, one also has the values of C
±
i , from

which, using (1), one finally gets

γ±i ≡ C±i − (β±i )µ . (3.8)

Note that for the number of equations to equal the number 2M of unknown, where

M is the number of assets taken into account, one has to choose a particular asset

i0 as the reference, i.e. set γ
±
i0
≡ 0.

3.2. Generalized “multi-factor” model

More generally, one can easily envisage the case where the assets vi are linear

combinations of M independent µ-variables wα, α = 1, . . . ,M , each characterized

by a tail amplitude C−α . Since the sum of µ-variables is still a µ-variable (point 1

above), we can write, for vi → −∞:

vi =
M
∑

α=1

aαi wα . (3.9)

The tail covariance of assets i, j is then given by C−ij =
∑M
α=1(a

α
i a
α
j )

µ

2C−α , which

indeed gives back the usual definition of the covariance matrix in the “gaussian

limit” µ = 2 if one identifies C2 with the variance (as it should). The empirical de-

termination of the “tail covariance matrix” Cij (using the method explained above)

then enables one to obtain the matrix A = aαi , since the matrix A
•µ/2 (where •µ/2

means that each element of the matrix is raised to the power µ/2) is the orthogonal

matrix allowing one to diagonalize C−ij ; its eigenvalues being the C
−
α .

This procedure constitutes the natural generalization of the calculation of

covariance in the presence of power-law distributions of asset price variations. With

this in hand, we can now turn to the determination of the “extreme risk optimized

portfolio”.

4. Optimal Portfolio Theory for Strongly Fluctuation Assets

Consider a given portfolio P characterized by the set of {pi}i=1,M , 0 ≤ pi ≤ 1,
giving the weights of M different assets, with

∑M
i=1 pi = 1. Using a generalization
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of assertions (1,2) above, the value V of the portfolio, given by V =
∑M
i=1 pivi, is a

µ-variable with a scale parameter given by

C±P =

(

M
∑

i=1

piβ
±
i

)µ

+
M
∑

i=1

pµi γ
±
i . (4.10)

This result generalizes to arbitrary µ and to assymetric distributions a result first

obtained by Fama [18]. By arbitrary µ, we mean, not only µ < 2 characterizing

stable Lévy distributions but, also µ ≥ 2; and in particular the limit case µ = ∞
which formally corresponds to exponential tails [11], for which the central limit

theorem holds and ensures well-behaved asymptotic convergences. We have already

pointed out that, even in this case, the determination of the mean return and vari-

ance could be ill-conditionned (see below for an extension of this discussion). Note

that our taking account of the assymetry of the distributions is automatically done

by considering separately the tails for large positive and large negative variations

v. We thus avoid the rather delicate problem of the determination of the assymetry

parameter of stable Lévy distributions which fit best the asset time series. Another

interest in calculating separately C+P and C
−
P will be obvious in the sequel in order

to define quality ratios, generalizing the Sharpe ratio.

C−P is the amplitude of the large loss part of the distribution of returns for

portfolio P , and C+P the corresponding amplitude for the large gain side. More
precisely, the probability for a loss (resp. gain) larger than a certain value λ is given

by

Ploss(|V | > λ) =
C−P
µλµ
, (4.11)

respectively

Pgain(V > λ) =
C+P
µλµ

. (4.12)

What should be the strategy underlying the determination of the optimal portfo-

lio? In the context of stable Lévy distributions with µ ≥ 1 for which the mean exists
mathematically, Fama has first proposed to minimize CP at fixed average return,

the solution of which has been provided by Samuelson [38]. This idea is the most

natural extension of the standard Markowitz portfolio model [30, 39, 31], which con-

sists of minimizing the variance of expected returns at fixed average return. Indeed,

as can be seen straightforwardly from the expression of the characteristic functions

of stable Lévy distributions, the coefficient CP of the Lévy distribution degenerates

into the variance of the Gaussian law which corresponds to the special borderline

stable law with µ = 2. Arad [2] has reviewed a variety of alternatives always written

in terms of two parameters (return-risk), involving for instance linear combinations

of mean and variance, or considering the probability of return larger than a mini-

mum value. Inspired by the intuitive meaning of the Sharpe ratio, Bawa et al. [6]
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have proposed that the optimal portfolio would be that which maximizes the ratio

of the average return (minus the return of a riskless asset) divided by the scale

parameter [CP ]
1/µ of the portfolio. This is again directly inspired by the standard

strategy used for normally distributed returns which consists of maximizing the

Sharpe ratio, since the coefficient CP of the Lévy distribution maps to the variance

of the Gaussian law for µ = 2.

Following a similar vein, we propose that the optimal portfolio is characterized

by the set of {pi}i=1,M , such that C−P is minimized. This minimization must be
done with some other constraints, for instance, for a given value of the expected

return R =
∑M
i=1 piRi, where Ri is the expected return of the ith asset. Another

possibility is to minimize C−P while maximizing the probability of large gains which is

proportional to C+P . This will give the generalization of the “efficient frontier” in the

usual portfolio theory and can be called a “tail chiseling” technique: the frequency

of very large, unpleasant losses is minimized for a certain level of return. Note that,

if this looks quite similar to previous works, there is a fundamental difference: we

do not attempt to minimize the global coefficient CP of the stable Lévy distribution

taken as the best representation of the whole distribution of price variations; this

strategy, common to Fama, Samuelson, Arad and Bawa et al., follows the idea that

it is better to have less fluctuations (both in gains and in losses) than to let the

possibility that large losses coexist with large gains. The strategy discussed here

focuses specifically on the scale parameter C−P weighting the large losses. In other

words, this amounts to minimizing the “Value-at-Risk” of the portfolio, which is the

value of λ corresponding to a certain loss probability— say 1%. In this process, since

we have separated the analysis of the tails for the positive and negative variations,

we are not a priori impeding the potential for large gains.

This strategy is justified by the common observation that losses or gains stem

from the behaviour of the portfolio over a small fraction of the total investment

period. Take for instance the US S&P500 index, which showed an average return

of 16.2% per year over 10 years from 1983 to 1992. Over these 2526 trading days,

80% of the index return stem from the 40 best days (defined as those days where

the index rose the most), corresponding to less than 1.6% of the 2526 trading days!

Defining a portfolio strategy based on the importance of large gains and large losses

should thus aim correctly at the part of the market moves which are significant for

the behaviour of the portfolio.

The practical implementation of the minimization of C−P can be performed using

Lagrange multipliers, which leads to

µβ−i

(

M
∑

i=1

piβ
−
i

)µ−1

+ µpµ−1i γ−i = α0 + α1Ri (4.13)

with α0 and α1 chosen as to ensure normalization of the weights and that R has its

chosen value. Following the remark at the end of Sec. 1, we suggest an alternative

definition of the average return Ri of the ith asset, determined only by the tails of
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the distribution. It is easy to show that the corresponding “tail” return, which only

retains contribution from large events, is given by

Rtaili =
1

µ− 1
[

(C+i )
1
µ − (C−i )

1
µ

]

. (4.14)

Instead of considering the average return given by Eq. (4.14), another interest-

ing criterion to determine optimal portfolio could be to minimize C−P for a given

value of C+P . The generalization of Sharpe’s ratio to this case is clearly the quality

factor

Q ≡ C
+
P

C−P
. (4.15)

Let us note that these minimization procedures only lead to non-trivial solutions

if µ > 1. If µ < 1, it can be shown, for instance by studying the limit µ → 1
from above, that the optimal corresponds to choosing the particular asset with the

lowest C−i with weight pi = 1. In this case, as first foreseen by Fama, increasing

diversification deteriorates the risk.

The above ideas can be extended to treat cases where assets are characterized

by different µi’s, which is probably important for applications. The idea is still to

minimize the probability of losses greater than a certain value λ, obtained simply

by generalizing Eq. (4.11):

P (|V | > λ) =
M
∑

i=1

pµii C
−
i

µiλµi
. (4.16)

The difference with the case where all µ are equal lies in the fact that the value of

λ is irrelevant in the latter case, but will matter in general. Different loss tolerance

levels λ will therefore correspond to different asset allocations. This formula (4.16)

quantifies, through the factor 1
λµi , the intuition that the allocation of the assets

with the smallest µi’s will be highly susceptible to the investor attitude towards

risk (i.e. to the chosen λ).

Figure 1 presents an example of the efficiency frontier for a portfolio containing

18 different assets, all characterized by different µ+ and µ−. The representation we

have used is to plot the average number of days between losses larger than some

value (here 2%) as a function of the average return normalized per day. This plot

generalizes the celebrated Markowitz–Sharpe variance-return diagram. The line

gives the generalized efficient border, defined as the maximum time span without

large losses which can be obtained (i.e. equivalently the minimum probability of

large losses) for a given expected return.

Our approach has common roots with the “safety first” criterion introduced

by Roy [36], which consists of minimizing the probability of a loss larger than

some predetermined value, or equivalently of minimizing the admissible loss thresh-

old (safety level or Value at Risk) given a given low probability of tolerance.
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Fig. 1. Generalized efficient border for a portfolio containing 18 different assets, all characterized
by different µ+ and µ−. The average number of days between losses larger than some value (here
2%) is shown as a function of the average return normalized per day.

Initially discussed in the framework of Gaussian statistics [36], this criterion has

recently been generalized to power-law distributions [14] using extreme probability

theory. However, these authors do not address the most general practical problem

of finding the best weights pi for constructing the best portfolio as we do here but

rather compare a few bond and equity portfolios and propose to select the one which

gives the lowest loss probability. No method is obtained to determinate the pi’s.

Thus, their method is more a measure of risk than a practical portfolio optimization.

4.1. The general (multi-factor) case

Finally, let us give the formulae for the general case where the assets are decom-

posed in as Eq. (3.9): vi =
∑M
α=1 a

α
i wα. The tail parameter of the portfolio is now

given by

C−P =
M
∑

α=1

(

∑

i

aαi pi

)µ

C−α . (4.17)

The minimization of C−P at fixed R now leads to the equation (written in matrix

form):

P = [A†]−1
{

(A∆)−1(α0 + α1R)•
1
µ−1

}

, (4.18)
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with (P)i = pi and (R)i = Ri, and α0 and α1 are Lagrange multipliers, and ∆ the
diagonal matrix made of the C−α ’s. Again, the limit µ = 2 gives back the usual

Markowitz formulae. The limit µ → ∞ can also be given a precise meaning and
corresponds to the case where the tail of the distributions are exponential, which is

indeed the case for in the extreme fluctuation regime [11].

5. Tail Survival: The Central Limit Theorem and its Limitations

At this point, the alert reader might worry that what we have claimed is in plain

contradiction with the central limit theorem, which in fact constitutes the strong

argument usually used to justify the standard approach to portfolio optimization.

Here again, the cases µ > 2 and µ < 2 must be distinguished. While it is certainly

true that for µ > 2, the sum V =
∑M
i=1 pivi converges towards a Gaussian variable

in the limit M → ∞ (provided the vi are not too strongly correlated), in the case
µ < 2 (infinite variance), V is distributed, in the largeM limit, according to a Lévy

stable distribution [19, 9]. These Lévy distributions have themselves tails decaying

as V −1−µ for large values of V . Hence the above arguments are certainly applicable

when µ < 2. Our point is that if M is not very large, our arguments are also

relevant for µ > 2. In order to understand this, let us qualitatively explain how

the Gaussian limit is approached. When M becomes large, the distribution of V

exhibits two regimes: a central part, which is essentially Gaussian of relative width

sharpening as M−1/2, extends up to V ≃ ±V ∗±, and tails extending from V ∗ to
∞ with precisely the same power as the original variables vi, i.e. as V −1−µ. Hence,
schematically,

P (V ) ≃ AM√
2πσ2

exp

(

− V
2

2σ2

)

(5.19)

for V ∗− < V < V ∗+ (we have assumed for simplicity that the mean value of V is

zero) and

P (V ) ≃ C±P
|V |1+µ , (5.20)

respectively for V > V ∗+ and V < −V ∗−, where AM and V ∗± are determined by
the overall normalization of P (V ), and by continuity of P (V ) around V = ±V ∗±.
The important point is that V ∗ grows as σ

√

log(M) when M tends to infinity, i.e.,

the regime (5.20) disappears in that limit (leaving, as well known, the Gaussian as

the limit distribution), but only very slowly. The “anomalous” weight contained in

the tails (5.20) in fact decay as

C±PM
1−µ

2

(logM)
µ

2 .
(5.21)

Note that for µ < 2, this weight increases with M signaling the breakdown of the

convergence to the Gaussian and the attraction to the µ-stable Lévy distribution.
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However, even for µ > 2 and when M is not very large, the optimization proposed

here based on the idea of chiseling the tails of the distribution of returns is quite

relevant. Similar arguments in fact apply when µ < 2 in the presence of a finite

cut-off Vmax: only for extremely large values of M the Gaussian will be recovered,

while for intermediateM a description in terms of Lévy stable distributions will be

adequate (see [28] for a recent discussion of this point).

6. Conclusion

Let us summarize our main points: many studies point towards the existence of

power-law tails in return probability distributions, with a rather low value of the

index µ, typically in the range µ = 1.2−1.8, which is usually cut-off above a certain
characteristic value Vmax (beyond which the distribution might also be a power law

with larger value for µ ≃ 3− 4 [13, 23], or more probably an exponential [29, 11]).
This means that the usual concept of variance, although formally well defined, may

not be relevant to the situation since it is dramatically sensitive to large events.

Even the expected return is not very well defined: for a time series of length N , the

relative uncertainty is of order N
1−µ

µ (≃ 10% for N = 1000 and µ = 1.5: see the
values quoted at the end of Sec. 1) not to speak about the intrinsic non stationarity

of financial time series. We propose here to replace these quantities by their nat-

ural analogue in the case of power-law distributions, which are the tail amplitudes

C+, C−. This generalization was in fact suggested on formal grounds and for µ < 2

in Fama and Samuelson, but the link with the tail amplitudes, and a systematic

method to extract the relevant parameters, was not explicited. We have suggested

to use the method of rank ordering to extract the “tail covariance”, and proposed

explicit formulae for the optimal portfolio in an extended sense, based on the mini-

mization of the probability of large losses. Our main point is to treat separately the

tails for positive and negative variations, thus allowing an independent minimiza-

tion of the probability of large losses, while keeping the potential for large gains.

Similar ideas were proposed for option pricing in a power-law world in [10, 11]. Let

us also stress that the idea that risk should be decomposed into three components

with the probability of loss as the key quantity to study and minimize, provides a

simple solution to the problem of optimization of asset allocations in the case where

the exponents µ are different for each asset, or even for more general distributions.

In general, the optimal portfolio in the sense of the Value at Risk is different for

the Gaussian (Markowitz) optimal portfolio.

Appendix. Results on Sums and Products of Power-Law Variables

The central result about µ variables which is used to obtain properties (1–4)

quoted in the text is the following. Suppose for simplicity that v is a positive

variable, such that

P (v) ≃v→∞
C

|v|1+µ . (A.1)
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A useful tool is to take the Laplace transform of P (v): P̂ (β) ≡
∫∞

0
dvP (v)e−βv.

P̂ (β) then reads

P̂ (β) = µ

∫ ∞

1

dwP (w)
e−βw

w1+µ
= µβµ

∫ ∞

β

dx
e−x

x1+µ
. (A.2)

Let us define m as the integer equal to the integer part of µ, i.e. such that m < µ <

m+ 1. Integrating by part m times, we obtain (with C = 1/µ)

P̂ (β) = e−β
(

1− β

µ− 1 + · · ·+
(−1)mβm

(µ− 1)(µ− 2) . . . (µ−m)

)

(A.3)

+
(−1)m

(µ− 1)(µ− 2) . . . (µ−m)

∫ ∞

β

dxe−xxm−µ . (A.4)

This last integral is no more singular as β → 0 and is given by
∫ ∞

β

dxe−xxm−µ = Γ(m+ 1− µ)[βµ + βm+1γ∗(m+ 1− µ), β)] , (A.5)

where Γ is the gamma function (Γ(n+ 1) = n!) and

γ∗(m+ 1− µ, β) = e−β
+∞
∑

n=0

βn

Γ(m+ 2− µ+ n) (A.6)

is the incomplete gamma function. One thus observes that P̂ (β) has a regular

Taylor expansion in β only up to order m = [µ], followed by a term of the form βµ.

For the general shape P (w) = C
w1+µ with arbitrary C, we can thus write

P̂ (β) = 1 + c1β + · · ·+ cmβm + cµβµ +O(βm+1) , (A.7)

with c1 = −〈v〉, c2 = 〈v2〉
2
, . . . and cµ is proportional to C. For small β, we can

rewrite P̂ (β) under the form

P̂ (β) = exp

[

m
∑

k=1

dkβ
k + cµβ

µ

]

, (A.8)

where the coefficient dk can be simply expressed as functions of ck’s. This expression

generalizes, to arbitrary µ and the positive tail, the canonical form of the Fourier

transform of stable Lévy distributions. We retrieve the Lévy distributions for µ < 2

by replacing β by ik.

Now the sum of two µ-variables has a distribution whose Laplace transform is

the product of the two individual Laplace transform by the convolution theorem.

Hence the term proportional to βµ is simply the sum of the corresponding cµ,

showing that the C’s themselves add up, leading to (1).

Points (2,3) are trivial and simply come from a change of variable v → pv or
v → vq.
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Finally, if z = vivj where vi and vj are independent, then

P (z) ≡
∫ ∞

0

∫ ∞

0

dvidvjPi(vi)Pj(vj)δ(z − vivj) =
∫ ∞

0

dvj
vj
Pj(vj)Pi(

z

vj
) . (A.9)

For large values of z, one thus finds

P (z) ∝ Ci
z1+µ

∫ z

0

dvjv
µ
j Pj(vj) ≃

CiCj log z

z1+µ
, (A.10)

which is the result announced in (4). Intuitively, (4) means that cases where x is

large corresponds to cases where — say — wi is large and wj takes typical values

in the central part of the distribution. Cases where both wi and wj are very large

are negligible, since these are uncorrelated variables.
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physics, in Lecture Notes in Physics 450.

[44] G. K. Zipf, Human behavior and the Principle of Least-Effort, Addison-Wesley, Cam-
bridge (1949).

View publication statsView publication stats

https://www.researchgate.net/publication/238696293_Human_Behavior_and_The_Principle_of_Least_Effort?el=1_x_8&enrichId=rgreq-50a6821c75b014a995715dd7dd81a5dc-XXX&enrichSource=Y292ZXJQYWdlOzI0MTk4NDU7QVM6MTYzNDQwNjY4NzE3MDU4QDE0MTU5Nzg3MDA0ODk=
https://www.researchgate.net/publication/238696293_Human_Behavior_and_The_Principle_of_Least_Effort?el=1_x_8&enrichId=rgreq-50a6821c75b014a995715dd7dd81a5dc-XXX&enrichSource=Y292ZXJQYWdlOzI0MTk4NDU7QVM6MTYzNDQwNjY4NzE3MDU4QDE0MTU5Nzg3MDA0ODk=
https://www.researchgate.net/publication/234489898_Levy_Flights_and_Related_Topics_in_Physics?el=1_x_8&enrichId=rgreq-50a6821c75b014a995715dd7dd81a5dc-XXX&enrichSource=Y292ZXJQYWdlOzI0MTk4NDU7QVM6MTYzNDQwNjY4NzE3MDU4QDE0MTU5Nzg3MDA0ODk=
https://www.researchgate.net/publication/234489898_Levy_Flights_and_Related_Topics_in_Physics?el=1_x_8&enrichId=rgreq-50a6821c75b014a995715dd7dd81a5dc-XXX&enrichSource=Y292ZXJQYWdlOzI0MTk4NDU7QVM6MTYzNDQwNjY4NzE3MDU4QDE0MTU5Nzg3MDA0ODk=
https://www.researchgate.net/publication/2419845



