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Experimentally realized physical-model-
based frugal wave control in metasurface-
programmable complex media

Jérôme Sol1, Hugo Prod’homme1, Luc Le Magoarou1 & Philipp del Hougne 1

Metasurface-programmable radio environments are considered a key ingre-
dient of next-generation wireless networks. Yet, identifying a metasurface
configuration that yields a desired wireless functionality in an unknown
complex environment was so far only achieved with closed-loop iterative
feedback schemes. Here, we introduce open-loop wave control in
metasurface-programmable complexmedia by estimating the parameters of a
compact physics-based forwardmodel. Our experiments demonstrate orders-
of-magnitude advantages over deep-learning-based digital-twin benchmarks
in terms of accuracy, compactness and required calibration examples. Strik-
ingly, our parameter estimation also works without phase information and
without providing measurements for all considered scattering coefficients.
These unique generalization capabilities of our pure-physics model unlock
unforeseen and previously inaccessible frugal wave control protocols that
significantly alleviate the measurement complexity. For instance, we achieve
coherent wave control (focusing or perfect absorption) and phase-shift-keying
backscatter communications in metasurface-programmable complex media
with intensity-only measurements. Our approach is also directly relevant to
dynamic metasurface antennas, microwave-based signal processors and
emerging in situ reconfigurable nanophotonic, optical and room-acoustical
systems.

The tailoring of wave-matter interactions underpins the ability of wave
engineers to mold the flow of information in applications spanning
from communications via sensing to computing. Traditional approa-
ches rely on fabricating judiciously designed scattering structures or
coherently shaping input wavefronts. Recently, a new trend of tuning
complex scattering media in situ with a large number of adjustable
degreesof freedom(DOFs) emerges across scales andwavephenomena
(see also Supplementary Note 1). Currently the most prominent exam-
ple aremetasurface-programmable smart radio environments, foreseen
to play a pivotal role in next-generation wireless networks1–3. The same
concept also underlies promising implementations of reconfigurable
holographic antennas4–6 and wave-based signal processors7,8 in the
microwave regime, and emerges in nanophotonics9–11, optics12–14 and

room acoustics15,16, too. However, the inverse-design problem of iden-
tifying a configuration of the DOFs that yields a desired system transfer
function is notoriously difficult for two reasons. First, themapping from
a configuration to its transfer function is a priori unknown in complex
media for which detailed geometrical and/or material descriptions are
usually not available. Second, this mapping is difficult to characterize
because it is non-linear: multi-bounce paths create short-range and
long-range correlations between the DOFs17. The lack of accurate
setting-specific forward models so far precludes open-loop wave con-
trol in massively programmable complex media (MPCM), i.e., the pos-
sibility to optimize the metasurface configuration for a desired wave
control functionality without additional measurements (see also Sup-
plementary Note 2). Therefore, the potential of MPCMs is currently
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severely limited: to date, MPCMs are eithermerely deployed in random
configurations4,5, or optimized configurations are identified in prohibi-
tively long closed-loop iterative in situ optimizations requiring mea-
surements at each iteration3,6–9,11,12,14–16. Meanwhile, in the signal-
processing community, algorithmic developments largely resort to
simplified linear cascaded models18 that risk being incompatible with
the experimental reality since they ignore these correlations17.

Nowadays, a tempting solution to enable open-loop wave control
in MPCMs is to blindly combine massive amounts of data and com-
puting power to obtain a deep-learning digital twin of an MPCM19.
However, as we show below, such approaches surprisingly struggle to
accurately learn the DOFs’ correlations. Instead, by noting that the
fundamental wave-physical principles underlying an unknown MPCM
are easily formulated, we here report on the successful calibration and
use of a compact and highly accurate physical model in a prototypical
experiment with a metasurface-programmable chaotic cavity. Within
the context of smart radio environments, our work experimentally
achieves accurate end-to-end channel estimation, even under rich
scattering conditions, overcoming the inherent limitations of existing
channel-estimation algorithms20–22 originating from their tacit linearity
assumption. Beyond its accuracy and compactness, the appeal of our
physical model lies in its unique far-reaching generalization capabilities
that enable the retrieval of information about phases and scattering
coefficients that were not included in the calibration data, enabling, for
instance, non-coherent channel estimation. Thereby, we unlock pre-
viously unimagined wave control regimes for MPCMs that are inacces-
sible with closed-loop approaches or deep-learning digital twins.

The physics of MPCMs fundamentally differs from traditional
approaches to controlling wave-matter interactions (see Supplemen-
tary Note 1). Generally speaking, the transfer function of a linear system
is related to the inverse of the system’s interactionmatrix. The diagonal
[resp. off-diagonal] entries of the interaction matrix capture the local
[resp. non-local] properties of the primary entities that make up the
system, i.e., their polarizabilities [resp. coupling] which depend [resp.
do not depend] on the scattering occurring away from these entities
(see Supplementary Note 3C for details). In wavefront shaping, the
system transfer function is static, and the output linearly depends on
the input which is optimized23. For a static inverse-designed structure,
the entire interaction matrix is optimizable in the offline design phase
(within physical bounds and fabrication constraints) to achieve a
desired transfer function. While blind neural surrogate forward models
have successfully mapped design DOFs to the corresponding system
transfer functions24–27, there are also various efforts to integrate some
physics knowledge into such neural models28–31. In contrast, for an
MPCM, only some local scattering properties (i.e., some diagonal
entries of the interaction matrix) are tunable in situ32. A few models
capturing this fact based on discrete-dipole approximations32–34 or
impedance matrices35–37 were recently proposed but have to date not
been validated experimentally, let alone in an unknown complex med-
ium. The favorable inductive bias of physics-based models for end-to-
endmetasurface-parametrized channel estimation has to date not been
recognized. Moreover, the naturally built-in constraints of physics-
basedmodels imply powerful generalization capabilities that have gone
unnoticed, enabling unforeseen frugal wave control protocols
for MPCMs.

In this article, we introduce and experimentally demonstrate
physical-model-based protocols for frugal coherent wave control in
metasurface-programmable complexmedia. The key ingredients are (i)
a compact physical model whose number of parameters does not
depend on the environment’s complexity and that does not require an
explicit description of the unknown environment, and (ii) the estima-
tion of the physical model’s parameters. Compared to deep-learning
benchmarks, our physical model offers orders-of-magnitude improve-
ments in terms of compactness (the number of model parameters),
accuracy, and the number of required calibration examples. Moreover,

our approach enjoys a favorable scaling of the number of required
calibration examples with the number of considered scattering coeffi-
cients. Strikingly, we discover that natural constraints built into the
physical model enable the complete and accurate estimation of its
parameters without every measuring phase, or without ever measuring
some of the considered scattering coefficients. Thereby, we unlock
previously unimagined frugal wave-control paradigms. For instance, we
demonstrate how to tune a reconfigurable complex medium to feature
a coherent perfect absorption (CPA) state at a desired frequency and
how to identify the corresponding CPA wavefront – without ever
measuring phase. Within the context of smart radio environments, our
work reports the first experimental validation of a physics-compliant
end-to-end channel model, the first exploration and demonstration of
physics-compliant end-to-end channel estimation, and the discovery of
previously unimagined frugal channel-estimation procedures (e.g., with
non-coherent detection) enabled by the physics-compliant model. Our
results reveal that the higher mathematical complexity of physics-
compliant channel models in contrast to widespread cascaded channel
models yields unique advantages for end-to-end channel estimation.

Results
Physical model
Our experimental system, a metasurface-programmable chaotic cavity
connected via NA = 4 antennas to the outside world, is shown in Fig. 1.
The metasurface contains NS = 68 1-bit programmable meta-atoms
whose resonance frequencies can be individually reconfigured via the
bias voltages of PIN diodes (seeMethods). Our system’s exact geometry
and material composition is unknown, and there is strong modal
overlap (see Methods). However, it is easy to measure the transfer
function (i.e., the 4 ×4 scattering matrix S defined through the anten-
nas, or a subset thereof) for a few known random metasurface config-
urations. Is that enough to calibrate amodel that accurately predicts the
transfer function for any of the 268 possible metasurface
configurations?

Our system contains N =NA +NS wireless entities of primary
interest (NA antennas to input/outputwaves,NS meta-atoms to control
the system transfer function) that are naturally discrete. We model
each entity as a dipole characterized by its polarizability (αA for the
nominally identical antennas; α0 or α1 for the nominally identical 1-bit
programmablemeta-atoms, dependingon their configuration). The ith
and jth dipoles are coupled reciprocally via the background Green’s
function Gij =Gji between their respective locations. Importantly, Gij

accounts for all scattering in the complex environment irrespective of
the latter’s complexity and whether the scattering objects are con-
tinuous or discrete (see Supplementary Note 3C regarding the relation
to refs. 32,37,38. concerned with discrete scattering objects sur-
rounded by free space). The dipole moment of the ith dipole is pro-
portional to the field component Ei incident at its location along its

orientation: pi =αiEi, where Ei = E
ext
i +

PN
j = 1 Gijpj is the superposition

of the externally incident wave Eext
i on the ith dipole and the waves re-

radiated from the other N � 1 dipoles. Solving self-consistently for the

dipole moments, we obtain (in matrix form) p=W�1Eext, where the
diagonal and off-diagonal entries of the interactionmatrixW are α�1

i �
Gii and�Gij , respectively (see Supplementary Note 3C for details). The

input andoutputwavefronts are proportional to the entries of Eext and
p, respectively, that correspond to the NA antennas. Because we seek
to calibrate our model to an experimental setting, any proportionality
factors and additive constants that do not depend on the metasurface
configuration cannot be unambiguously identified and can hence be

absorbed into W�1, meaning that we can work with S= ½Ŵ�1�AA and

H= ½Ŵ�1�RT here, where T andR denote the dipole indices associated
with transmitting and receiving antennas, respectively, andA= T ∪R.
We use the circumflex symbol (^) to denote that we have absorbed
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multiplicative and additive factors into the respective quantity. This
compact physical model (summarized in Fig. 1) involves three
complex-valued local parameters (α̂A, α̂0 and α̂1) and ðN + 1ÞN=2
complex-valued non-local parameters (Ŵ is symmetric due to reci-
procity); importantly, its size is independent of the scattering envir-
onment’s complexity and dimensions (2D vs 3D).

Clearly, there are infinitelymany interactionmatrices that yield the
same transfer function, so there is no unique true set of parameters to
describe agiven experimental system.Rather thanbeing aproblem, this
non-uniquenessmakes it easier to calibrate ourmodel. (See ref. 39 for a
discussion under which conditions almost all ambiguities can be lifted.)
We refrain from imposing additional constraints besides reciprocity
(such as passivity) for the same reason. Note also thatwe could not have
formulated our model based on some form of temporal coupled-mode
theory40 because the functional dependence of local and non-local
properties on the metasurface configuration is unknown in the modal
basis. Using anefficient gradient-descent algorithm (seeMethods) and a
calibration data set involving Ndata pairs of known randommetasurface
configurations and the corresponding measured transfer functions, we
calibrate our model (i.e., estimate its parameters; see “Methods”).

Benchmarking and scaling of model accuracy
We now investigate how the accuracy of our calibrated physical model
depends on Ndata as well as the number of considered scattering
coefficients, and we compare the performance to two benchmark
models: first, a simple linear model, being the currently most widely
usedmodel in the signal-processing community18, and, second, a deep-
learning (DL) digital twin19 (see “Methods”). The linear model can be
derived from our physics-based model upon expressing the

underlying matrix inversion as infinite series of matrix powers and
truncating that series after the first term depending on the metasur-
face configuration17. The DLmodel is a standardmultilayer-perceptron
feedforward artificial neural network that is widely used for blind
function approximationwithout any a priori knowledge. Of course, the
more valid a priori knowledge is injected into a model, the better its
inductive bias will be; therefore, in hindsight it will be obvious that our
physics-based model outperforms the benchmarks (i.e., taking its
validity as established).We quantify the accuracywith ametric defined
analogous to the signal-to-noise ratio: ζ is the ratio of the variance of
the true scattering coefficient and the variance of the difference
between the true and predicted scattering coefficient, the variance
being taken over random unseen metasurface configurations17. To
contextualize this metric, note that ζ =0dB is trivially achieved by
assuming the scattering coefficient does not depend on the metasur-
face configuration, and that improving ζ from 10dB to 30dB can yield
a 2.5-fold improvement in the channel’s information-transfer capacity
(see Fig. S4).

To start, we examine the accuracy onunseen randommetasurface
configurations with the largest considered value of Ndata = 4× 10

4 to
predict a single transmission coefficient (S31). The linearmodel (Fig. 2a)
uses few parameters but its accuracy of ζ 31 = 7:3dB is quite low since
by construction it cannot capture multi-bounce paths encountering
multiple meta-atoms. The DL model uses three orders of magnitude
more parameters and manages to capture some (but surprisingly not
all) of the non-linear correlations between meta-atoms, achieving
ζ 31 = 13:9dB. Visual inspection of Fig. 2b reveals the DLmodel’s limited
accuracy. In contrast, thephysicalmodel uses twoorders ofmagnitude
fewer parameters than the DL model and achieves an order of

Fig. 1 | Physical model. The scattering of electromagnetic fields inside a complex
massively programmable wave system depends in a highly non-trivial way on the
configuration of a programmable metasurface due to non-local interactions
between the scattering entities. The physical model faithfully reproduces the
experimental scattering process. It obtains the scattered fields from a block of an
inverted interaction matrix Ŵ that captures the local properties of the system’s

primary internal scattering entities (antennas and programmable meta-atoms) as
well as their non-local interactions via proximity and long-range reverberation. The
physical model is calibrated with a very small random subset of all possible meta-
surface configurations and corresponding scattering measurements from the
experimental systemof interest, without any information about its geometry. In the
photographic image, the top cover is removed to show the cavity’s interior.
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magnitude better accuracy of ζ 31 = 23:4dB as seen in Fig. 2c. If the
physical model is calibrated for the 2 × 2 transmission matrix rather
than only the single transmission coefficient S31, then its accuracy
improves by yet another order of magnitude without requiring sig-
nificantly more parameters – see Fig. 2d. Calibrating our physical
model with more scattering parameters helps because it understands
how they are related. In contrast, the linear model predicts each
scattering coefficient independently, and the DL model’s accuracy
even deteriorates slightly when asked to predict multiple scattering
parameters (see Fig. 2e). In Fig. S3 we also show a supplemental
experiment conducted in a meeting room; the effect of reverberation
therein is weaker such that the benchmarkmodels performbetter, but
the physicalmodel still is one order of magnitudemore accurate while
using hundred times fewer parameters.

As Ndata is increased, we observe in Fig. 2e that the linear model’s
accuracy eventually saturates, the DL model’s accuracy slowly but
steadily improves, and the physical model’s accuracy slowly improves
until at some value of Ndata the accuracy suddenly improves by one or
multiple orders of magnitude before saturating. This accuracy jump is
reminiscent of phase transitions in compressive sensing41. The more
scattering coefficients are used to calibrate our physical model, the
earlier the phase transition occurs. In the case of calibrating with the
full scattering matrix, Ndata = 398 is already sufficient to achieve
ζ =25:8dB, a value that the benchmarkmodels never reach within the
considered range of Ndata. (Note that 398≪ 268; 268 being the total
number of possible metasurface configurations).

Phase retrieval
Since our physical model understands the wave physics at play, we
now explore to what extent its generalization capabilities go beyond
predicting transfer functions for unseen metasurface configurations.
In this section, we calibrate our physicalmodelwith phaseless data and
surprisingly find that it nonetheless accurately predicts all phase
relations. Whereas neither the linear nor the DL model can make any
meaningful phase prediction without calibration data involving phase
information, the physical constraints built into our model seemingly
imply that if it correctly predicts amplitudes then it must have simul-
taneously understood the phase relations.

For concreteness, we calibrate our phase-retrieval physical model
(PR-model) with intensity-only information of the full 4 × 4 scattering
matrix for Ndata = 10

5 random metasurface configurations. Our PR-
model’s complex-valued predictions for unseen random metasurface
configurations are seen in Fig. 3a–d to accurately predict how the
phase of each scattering coefficient depends on the metasurface
configuration, as well as what the relative phase between different
scattering coefficients is. The achieved ζ around 20dB exceeds what
the benchmark models achieve with complex-valued calibration data.
Retrieving phase information from phaseless data is an established
discipline within signal processing with applications across the EM
spectrum because it removes the costly need for coherent
detection42–44. However, conventional phase-retrieval deals with static
rather than programmable systems and uses elaborate algorithms to
retrieve either the system’s transfer function or the input wavefront.
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Fig. 2 | Benchmarking and scaling of model accuracy. a–d, Measured ground
truth (blue circle) and model prediction (red cross) of S31 for ten unseen random
metasurface configurations for the linear model (a), the deep-learning model (b),
and the physical model (c), all calibrated only with S31, as well as for the physical
model calibrated with the 2 × 2 transmission matrix (d). The achieved accuracy ζ 31
and number of model parameters Nparams are indicated. e Scaling of the accuracy
ζ SISO of a single predicted transmission coefficient as a function of the size Ndata of

the calibration data set. We consider the cases of models calibrated to predict only
a single transmission coefficient (h, purple), a 2 × 2 transmission matrix (H, green),
and a 4× 4 scattering matrix (S, blue). We compare these cases of the physical
model and the two benchmark models (DL and linear). For the linear model, the
accuracy does not depend on the number of predicted scattering coefficients. In
the cases of models predicting H or S, ζ SISO is averaged over all available trans-
mission coefficients.
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Our results suggest that if system programmability is available, a
simple compact model and gradient descent algorithm is sufficient
because wave-physical constraints naturally built into the model are
leveraged.

Using our PR-model, we can perform coherent wave control at a
level comparable to knowing the ground-truth scatteringmatrix—even
though we never measured phase. Phaseless coherent wave control in
MPCMs has not been imagined previously, and it was out of reachwith
closed-loop approaches or deep-learning forward models. First, we
consider the standard wavefront-shaping problem of coherent focus-
ing on an antenna by injecting a coherent wavefront through the
remaining antennas. The provably optimal input wavefront is the
phase-conjugated transmission vector. Applying phase conjugation to
the predictions of our PR-model, we achieve on average 99.92 % of the
ideal focusing efficiency with the ground-truth complex-valued trans-
mission vector (see Fig. 3e). To underline the importance of phase
information, we show that an arbitrary input wavefront (e.g., a uniform
one) achieves only 69.81 % of the ideal focusing. Since we are able to
accurately identify the ideal wavefront for any metasurface config-
uration, we can also combine control over the input wavefront and the
metasurface configuration. By selecting the best metasurface config-
uration out of the 105 ones used for phaseless calibration, we achieve a
deposited energy of 0:0198arb: units using our PR-model, compared
to 0:0201 arb: units with ideal ground-truth knowledge. Another ico-
nic example of coherent wave control is coherent absorption: by tai-
loring the input wavefront, the energy absorbed within the system can

be maximized such that as little energy as possible exits the system45.
As in the previous example, without ever having measured phase
information, we closely match the ideal performance and significantly
outperform that with an arbitrary input (Fig. 3f). Again, we can also
combine wavefront shaping with structural control and identify the
metasurface configuration that yields the largest absorption in com-
bination with a suitable input wavefront. Our PR-model points toward
the same metasurface configuration as the ideal ground-truth knowl-
edge, such that both achieve a minimal reflected power of �42:0dB
which is very close to zero and hence to achieving coherent perfect
absorption46 (CPA) in the system. To the best of our knowledge, no
prior work proposed or experimentally achieved the tuning of a
complex system to CPA at a desired frequency without ever having
measured phase information.

Based on phaseless calibration data, we are also able to identify
metasurface configurations that enable phase-modulated backscatter
communications. In the latter, Alice encodes her message into stray
ambientwaves bymodulating themwith themetasurface such that the
phase of the signal received by Bob carries Alice’smessage47. In Fig. 3g,
we present the four metasurface configurations and corresponding
phases measured by Bob. They closely match the ideal ones for
quadrature-phase-shift-keying backscatter communications.

Green’s function retrieval
Finally, we now demonstrate that our physical model can even predict
scattering coefficients for which no calibration data was ever available.
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Fig. 3 | Physical-model-based coherent wave control with phaseless
calibration data. a–d Measured ground truth and phase-retrieval physical-model
(PR-Model) predictions for four selected scattering coefficients (for ten random
unseen metasurface configurations). The PR-Model was calibrated for the 4 ×4.
scatteringmatrixwithout any phase information. eDeposited energy atport 1 upon
injecting a coherent wavefront through the remaining three ports (for 50 random
unseen metasurface configurations). ψopt

in (blue) is the benchmark (and provably
optimal) wavefront obtained via phase conjugation given perfect knowledge of the
relevant scattering coefficients,ψmod

in (red) is obtained with the same approach but
using the PR-Model, and ψuni

in (yellow) is a uniform wavefront (see Methods for

details). f Reflected power upon injecting a coherent wavefront through all four
ports (for 50 random unseen metasurface configurations). High absorption cor-
responds to low reflected power. ψopt

in (blue) is the benchmark (and provably
optimal) wavefront obtained via an eigendecomposition of SyS assuming perfect
knowledge of S, ψmod

in (red) is obtained with the same approach but using the PR-
Model, and ψuni

in (yellow) is a uniform wavefront (see “Methods” for details).
g Identification using the PR-Model of four metasurface configurations (shown as
insets) that enable quadrature-phase-shift-keying (QPSK) backscatter communica-
tions when port 2 radiates a continuous-wave signal and port 4 detects the received
phase (or vice versa) (see “Methods” for details).
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This is yet another previously unforeseen type of frugalwave control in
MPCMs that is inaccessible unless a physics-based model is used. Of
course, this is only possible if some information about the involved
antennas is available. For concreteness, we exclude one 2 × 2 receive
block from our 4 ×4 scattering matrix in the calibration data. Specifi-
cally, our physical model thereby sees information about signals
received by antennas 3 and 4 that were injected via antennas 1 and 2,
but not about the transmission between antennas 3 and 4, nor about
the reflection coefficients of antennas 3 and 4. Clearly, the benchmark
models could not make any meaningful prediction of a scattering
coefficient that was excluded from the calibration data. Our Green’s
function retrieval physical model (GFR-model), on the other hand,
successfully predicts the scattering coefficients up to a systematic
offset, as seen in Fig. 4. The systematic offset must correspond to
inaccurately captured paths that never bounce off any of the other
primary scattering entities17. There is no ambiguity that could justify
this systematic offset, but since these paths were only probed very
indirectly in the available calibration data, our GFR-model’s difficulty
to capture them is understandable. In some applications such as the
QPSK backscatter scheme, the static component of the scattering
coefficient not affected by the metasurface does not matter anyway
(see “Methods”). In any case, this systematic offset is easily corrected
via a single additional calibration measurement of the unseen scat-
tering coefficients for one known metasurface configuration. The
achieved ζ values (which are independent of the systematic offset)
exceed 23dB, implying that our GFR-model predicts unseen scattering
coefficients more accurately than the benchmark models predict seen
scattering coefficients. Coherent wave control experiments similar to
the ones from Fig. 3 are shown for the present case of Green’s function
retrieval in Fig. S2. Particularly noteworthy is the QPSK backscatter
communication therein which is established based on the unseen
scattering coefficient.

Our GFR-model’s ability to retrieve all essential information about
unseen Green’s functions is reminiscent of algorithmically very dif-
ferent techniques that cross-correlate two time-domain recordings of
a diffuse wave field at different receivers to recover the Green’s func-
tion between these receivers48,49. The noise can be emulated via

different realizations of disorder in a chaotic cavity50, which has even
been realized by randomly configuring a programmablemetasurface51.
These cross-correlation techniques require by construction broad-
band calibration data and typically only retrieve information about
short (i.e., few-bounce) paths. Our GFR-model is hence distinct and
complementary, being (i) a monochromatic approach and (ii) very
efficient at retrieving all multi-bounce paths but struggling to retrieve
the single-bounce path.

Discussion
Onemight wonder why our physical model describes our experiments
so well even though the utilized dipole antennas and programmable
meta-atoms are not very small compared to the wavelength. The rea-
son is that structural scattering of the antennas and meta-atoms is an
indistinguishable part of the background scattering in the radio
environment. The dipole size that matters is the separation of the
conductors in the coaxial cables in the case of the antennas, and the
size of the tunable lumped elements in the case of the programmable
meta-atoms; both are electrically very small. Detailed recent discus-
sions about the role of structural scattering for physics-compliant
models ofmetasurface-programmable complexmedia can be found in
refs. 52,53.

To summarize, we have introduced open-loop experimental wave
control in unknown MPCMs by estimating the parameters of a highly
compact and accurate physics-based model from very few calibration
examples. We have discovered a previously unrecognized favorable
inductive bias of physics-based channel estimation, enabling orders of
magnitude higher accuracy than benchmark linear and DL models,
while using hundred times fewer parameters than the latter.Moreover,
the required calibration data set size decreases as the number of
considered scattering coefficients increases, which is very favorable
given trends towardmassive MIMO systems. Most remarkably, thanks
to naturally built-in constraints, our physics-based model can predict
information about relative phases and/or scattering coefficients that
were not seen during calibration. Thereby, our model unlocks pre-
viously unimagined frugal wave control protocols for MPCMs that are
inaccessible based on closed-loop experiments or linear or DL forward

)))

Measured Ground Truth
GFR-Model Predic�on

)+
)

e f

a b c

= 25.2 dB = 23.1 dB

Systema�c
Offset

)

d = 23.4 dB

Measured Ground Truth

Offset-Corrected
GFR-Model Predic�on

Fig. 4 | Prediction of dependence on metasurface configuration for scattering
coefficients not included in calibration data. a–c Measured ground truth and
Green’s-function-retrieval physical-model (GFR-Model) predictions for three
unseen scattering coefficients (for ten random unseen metasurface configura-
tions). The GFR-Model was calibrated with transmit and receive information from
ports 1 and 2, but receive-only information from ports 3 and 4, i.e., without any

information about S33, S34, S43, S44. The predictions of the unseen scattering
coefficients suffer from a systematic constant offset (independent of the meta-
surface configuration), indicated by the line connecting the centers of the ground-
truth cloud and the predicted cloud. d–f Upon correction of the systematic offset,
the physical model predicts the unseen scattering coefficients with high fidelity.
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models. For instance,we tuned anMPCMtoCPAat a desired frequency
and identified the CPA wavefront without ever measuring phase. The
discovered frugal wave control is of high technological relevance
because it alleviates the hardware cost of channel estimation in
metasurface-programmable radio environments by enabling opera-
tion with non-coherent detection and/or partial channel sounding.
Beyond this specific application, our model enables the real-time
optimization ofwave devices based onMPCMs, such as reconfigurable
holographic antennas and routers, across the EM spectrum.

Looking forward, on theonehand,we anticipate extensions of our
physical model to scenarios involving broadband operation and
dynamic radio environments. The latter will enable the inevitable54

integration of sensing and communications in next-generation net-
works based on a compact and accurate physical model. On the other
hand, we expect our present work to unlock the door toward for-
mulating fundamental bounds on the transfer functions that can be
achieved in an MPCM, building on current theoretical works targeting
physical limits of inverse-designed static structures for which the
entire interaction matrix is designable55,56.

Methods
Experimental setup
Scattering environment. Ourmain experimental setup is basedon the
irregularly shaped and electrically large metallic cavity of dimensions
0.385m×0.422m×0.405m that is shown in Fig. 1. Two metallic
objects perturb the regular shape of the underlying metallic box in
order to break its symmetries: a long cylinder piercing into the volume
of the cavity, as well as a sphere octant placed inside the cavity. Four
monopoleWiFi antennas (ANT-W63WS2-ccc) are placed therein in two
pairs of twoparallel antennas separatedby9 cm, and the orientationof
the two pairs is mutually orthogonal. These four antennas are con-
nected to monomodal coaxial cables, such that the 4 ×4 scattering
matrix S of our system is defined in an obvious manner. A four-port
vector network analyzer (Rhode& Schwarz ZVA 67) is used tomeasure
S (settings: 15 dBm emitted power, 1 kHz intermediate-frequency
bandwidth). A programmable metasurface (detailed in the next sub-
section) covers parts of the cavity walls.

Based on the decay rate of the inverse Fourier transform of
transmission spectra measured between different pairs of ports and
for different random metasurface configurations, we estimate the
system’s composite quality factor as Q = 62057. Based on Weyl’s law,
we find that around N ∼ 8πV

c3Q f 30 =
8π
Q

V
λ30

= 14 modes overlap at a given
frequency within the considered interval, implying that we are oper-
ating in the multi-resonance transport regime.

Our supplemental experimental setup is based on the meeting
room of dimensions 6:57m×3:18m×2:49m that is shown in Fig. S3a.
Two horn antennas (ETS-3115) are placed therein on opposite sides of
the room, facing the metasurface. These two antennas are connected
tomonomodal coaxial cables, such that the 2 × 2 scatteringmatrix S of
our supplemental system isdefined in anobviousmanner.Wemeasure
S using a vector network analyzer (Keysight M9005A chassis with
M9374A modules) (settings: 15 dBm emitted power, 1 kHz
intermediate-frequency bandwidth). We estimate the meeting room’s
composite quality factor as Q = 342 and we find that around
N ∼ 2:2× 103 modes overlap at a given frequency.

Programmable metasurface. The programmable metasurface pro-
totype (purchased from Greenerwave) consists of 68 electrically
thin meta-atoms (ignoring the 8 broken meta-atoms). The spacing
between neighboring meta-atoms is on the order of half a wave-
length (see Fig. S1b). Each meta-atom offers independent 1-bit
control over the two independent field polarizations. The meta-
surface design follows that outlined in ref. 58 which is based on the
coupling between a fixed resonator and a resonator whose reso-
nance is controlled via the bias voltage of a PIN diode. Under normal

incidence, the two possible configurations of a meta-atom roughly
mimic Dirichlet and Neuman boundary conditions in the vicinity of
our working frequency of 5.2 GHz, as seen in Fig. S1. Throughout this
work, we only use the metasurface’s control over one polarization,
and we keep its configuration for the other polarization fixed in its
“0”-state throughout. Themethods for estimating the parameters of
our physics-based model presented in our work apply to any linear
programmable metasurface, irrespective of the design, the
arrangement, and the number of its programmablemeta-atoms (see
Supplementary Note 4).

Modeling
Physical-model calibration. Our physical model (see Fig. 1) contains
Nparams = 2ð3+ ðN + 1ÞN=2Þ parameters,whereN =NA +NS is the number
of primary scattering entities (utilized antennas and meta-atoms). The
first and second term in this expression account for the local and non-
local scattering properties (see Fig. 1). The second term accounts for
the symmetry of W due to reciprocity. The prefactor of two accounts
for the fact that complex-valued parameters have separate real and
imaginary parts.

In Fig. 2, we calibrate our model for three cases: (i) a single trans-
mission coefficient (NT =NR = 1, NA = 2), (ii) a 2 × 2 transmission matrix
(NT =NR = 2, NA = 4), and (iii) a 4 ×4 scattering matrix
(NA =NT =NR = 4). Let HðcÞ 2 CNR ×NT be the ground-truth experimen-
tallymeasured scalarormatrixof interest formetasurfaceconfiguration
c, and ĤðcÞ denotes our model’s prediction thereof. We use the Ten-
sorFlow library to calibrate via gradient descent with an error back-
propagation algorithm our physical model’s Nparams parameters given a
calibration data set comprising Ndata pairs of random metasurface
configurations c and the corresponding experimentalmeasurements of
HðcÞ. We define our cost function to be minimized as
C = min

θ
hjy� eiθŷji, where y=HðcÞx and ŷ= ĤðcÞx are the true and

predicted vectors of measured signals, respectively, upon coherent
injection of a pilot signal x 2 CNT × 1 into the system with metasurface
configuration c. We use NT pilot signals drawn from a complex-valued
randomdistributionwith normally distributed real and imaginary parts,
and the pilot signals are the same for all metasurface configurations in
the calibration data set. Future work can refine the utilized pilot signals.
Theminimization of θ in the definition of the cost function ensures that
no effort is spent on learning a global phase constant without physical
meaning. The averaging in the cost function is over the different pilot
signals, the differentmetasurface configurations contained in the batch
of calibration data used to evaluate C, and the different scattering
coefficients contained in H. All model parameters are initialized ran-
domly with values from a truncated normal distribution (mean: 0;
standard deviation: 0.2). This initialization method can be refined in
future work. We use a batch size of 1000 and the Adam method for
stochastic optimization with an initial step size of 10−2 that is gradually
reduced over the course of the optimization. We use 8/9th of the
available calibration data for training and the remainder for validation.
Training is stopped when the last 7500 iterations did not yield any
further improvement, and the parameter settings corresponding to the
best validation cost function value are restored.

To invert the interaction matrix, for each slice (i.e., each meta-
surface configuration) the indices of the primary scattering entities are
rearranged so that entities with the same polarizability are grouped
together. This yields a 3 × 3 blockmatrix (the blocks being “A”, “0”, and
“1”) to which the block matrix inversion lemma is applied multiple
times until S= ½W�1�AA is obtained. This multi-step procedure is com-
putationallymore efficient becauseweonly partially evaluateW�1 and,
more importantly, it avoids problems that arise whenever W is ill-
conditioned (e.g., whenever the magnitudes of αA, α0 and α1 are sig-
nificantly different).

In Fig. 3, we follow the sameprocedure as in Fig. 2 except for using
the modified cost function CPR = hjjyj � jŷjji and a batch size of 10000.

Article https://doi.org/10.1038/s41467-024-46916-2

Nature Communications |         (2024) 15:2841 7



Whereas for Fig. 2 the same results could have been obtained using
pilot signals in the canonical basis (e.g., [0 1] and [1 0] forNT = 2), in the
phaseless case in Fig. 3 the relative phase relations between scattering
coefficients can only be retrieved if the pilot signals are chosen such
that non-zero wave amplitudes are coherently injected through mul-
tiple antennas simultaneously. This condition is trivially satisfied with
random pilot signals.

In Fig. 4, we follow the sameprocedure as inFig. 2 except for using
the modified cost function CGFR = min

θ
hjA �H� eiθA � bHji, where �

denotes element-wise multiplication and A is a NR ×NT matrix with
Boolean elements that indicate if a specific scattering coefficient is
included or excluded from the calibration data set.

Linear model. The simplest model of how a scattering coefficient Sij
depends on the metasurface configuration c assumes a linear relation

between the two: Ŝij = S
0
ij + τ

T
ijc. (To be precise, this relation is affine

rather than linear due to the non-zero constant term S0ij , but for sim-

plicity we refer to it as linear throughout this paper.) Ŝij denotes the
approximation of Sij by the model. Within the signal-processing lit-

erature, the cascaded model Ŝij = S
TX�RX
ij +HMS�RX

ij
T
diagðcÞHTX�MS

ij

which postulates that transmitter (TX) and receiver (RX) are linked via
one direct path and one path that bounces off the metasurface (MS)
once is widespread. This cascaded model can be collapsed to the
above-cited linear model because in our case without any knowledge
of the setup’s geometry there is no unambiguous distinction between

HMS�RX
ij andHTX�MS

ij . A linearmodel clearly neglects any structural non-

linearity that arises from paths that bounce off multiple meta-atoms
due to proximity-induced mutual coupling or reverberation17.

The linear model has Nparams = 2ðNS + 1Þ parameters (separating
each complex-valued parameter into real and imaginary part) per
scattering coefficient. Given a calibration data set comprising Ndata

pairs of random metasurface configurations and the corresponding
measurements of the scattering coefficient, we calibrate these Nparams

parameters using the linear regression function from the sklearn
library in Python. Real and imaginary parts are predicted indepen-
dently by the linear model.

The linear model also predicts each scattering coefficient inde-
pendently. When multiple scattering coefficients are to be modeled,
e.g., a transmission or scattering matrix, then the above procedure is
independently performed for each scattering coefficient.

Deep-learning benchmark. Our deep-learning model is a standard
multilayer-perceptron feedforward artificial neural network that is
widely used for blind function approximation without any a priori
knowledge (see ref. 19 in the MPCM context). It consists of n = 5 fully
connected layers, each made up of 6NS neurons with bias terms and
non-linear ReLU activation, and an output layer with bias terms but
without activation. The number of parameters is
Nparams = ðNSM +MÞ + ðn� 1ÞðMM +MÞ + 2ðMNcoeff + 1Þ, whereM =6NS

and Ncoeff is the number of scattering coefficients to be learned. The
cost function (loss) is C = min

θ
hjH� eiθ bHji and we use the Adam opti-

mizer with its default learning rate of 10�3 and a batch size of 10. Three
quarters of the calibration data are used for training, and the remain-
der for validation. We train until the validation loss has not improved
for three epochs, and we restore the weights that corresponded to the
best validation loss. We found that the results are not very sensitive to
the exact choice of hyperparameters. Note that by construction this
deep-learning model cannot converge to the physics-based model
because of its feedforward nature in contrast to the recurrent scat-
tering occurring in the physical setup that is encoded in the matrix
inversion of the physics-compliant model. Of course, this insight is
only possible in hindsight given the results of our present work which
establish the validity of the physics-based model.

Wave-control experiments
Coherent focusing.We consider the problemof focusingwave energy
on one of the four antennas by injecting a coherent monochromatic
wavefront ψin at 5.2 GHz through the remaining three antennas. The
metasurface is in a known configuration c that is chosen randomly and
has not been part of the calibration data set. ψin is normalized so that
its 2-norm is unity. Let t denote the transmission vector from the three
input ports to the output port. The wave energy deposited at the
output port is tTψin: The provably optimal input wavefront for
coherent focusing is ψopt

in = t*=jjt*jj2 and constitutes our benchmark
(blue) in Fig. 3e and Fig. S2a. This benchmark is known as phase con-
jugation (or monochromatic time reversal) in wave physics and as
maximum-ratio transmission in signal processing. Because of the rich
scattering in our setup, this is not an instance of beam-forming. For
physical-model-based wave control, we do not have access to t but
only to our model’s prediction tmodðcÞ thereof such that we use
ψmod

in = t*modðcÞ=jjt*modðcÞjj2 as coherent input wavefront (red). To illus-
trate the importance of wavefront shaping, we also show a benchmark
with a uniform wavefront ψuni

in = ½1 1 1�=
ffiffiffi
3

p
(yellow). Figure 3e and Fig.

S2a show the deposited energy upon injecting ψopt
in (blue), ψmod

in (red)
and ψuni

in (yellow) for 50 random and previously unseen metasurface
configurations. Note that the fact that the deposited energy is almost
identical for ψopt

in and ψmod
in is remarkable because the physical model

was calibrated without phase information for Fig. 3e and without
information about one of the transmission coefficients for Fig. S2a.

In addition to this wavefront-shaping based wave control for
coherent focusing, we also consider the possibility of controlling
both the input wavefront and the metasurface configuration to
maximize the deposited energy. To that end, we use the physical
model to select a metasurface configuration out of the 105 con-
figurations from the training data set that we expect to yield the
largest deposited energy. Even though these configurations were
part of the calibration data, because the training data was pha-
seless in the case of Fig. 3e and lacked one relevant transmission
coefficient in the case of Fig. S2a, our ability to identify a meta-
surface configuration that maximizes the deposited energy is
remarkable. Our dictionary-search-based inverse-design algo-
rithm consists in (i) establishing the dictionary by running the
physics-based forward model for the 105 configurations, (ii)
evaluating the cost function (focused intensity) for each dic-
tionary entry, and (iii) selecting the dictionary entry with the best
cost function. By realizing that the interaction matrices for the
105 configurations only differ regarding parts of their diagonal,
we can evaluate the corresponding scattering matrices by
updating a previous interaction matrix inverse using the Wood-
bury identity, as opposed to evaluating the interaction matrix
inverse from scratch (see Sec. IV.A in ref. 38). For our Matlab
implementation of this inverse-design algorithm, the CPU times
are 25.1 s, 0.7 s and 0.002 s for these three steps on a laptop with
an AMD Ryzen 7 PRO 4750U processor and 64 GB RAM.

Coherent absorption. We consider the problem of maximizing the
wave energy absorbed in our scattering system by injecting a coherent
monochromatic wavefront ψin at 5.2 GHz through all four antennas.
The main absorption mechanism of our system is Ohmic loss on the
metallic walls; the absorption is hence distributed rather than spatially
localized. Themetasurface is in a known configuration c that is chosen
randomly and has not been part of the calibration data set. ψin is
normalized so that its 2-norm is unity. Let the eigenvalues of the
Hermitian matrix SyS be denoted by sn, where 0≤ s1 ≤ s2 ≤ s3 ≤ s4 ≤ 1,
and the corresponding eigenvectors are vn. The reflected wave energy
exiting the scattering system is R= jSψinj2 and the absorbed energy is
1� R. The provably optimal input wavefront for coherently enhanced
absorption is ψopt

in = v1, i.e., the eigenvector of SyS that is associated
with the eigenvalue of smallest magnitude45. This constitutes our
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benchmark (blue) in Fig. 3f and Fig. S2b. For physical-model-based
wave control, we do not have access to S but only to our model’s
prediction SmodðcÞ thereof with associated eigenvectors vmod

n such that
we useψmod

in = vmod
1 as coherent input wavefront (red). To illustrate the

importance of wavefront shaping, we also show a benchmark with a
uniform wavefront ψuni

in = ½1 1 1�=
ffiffiffi
3

p
(yellow). Figure 3f and Fig. S2b

show the reflected energy upon injecting ψopt
in (blue), ψmod

in (red) and
ψuni

in (yellow) for 50 random and previously unseen metasurface con-
figurations. Note that the fact that the reflected (and hence also the
absorbed) energy is almost identical for ψopt

in and ψmod
in is remarkable

because the physical model was calibrated without phase information
for Fig. 3f and without information about one of the transmission
coefficients for Fig. S2b.

In addition to this wavefront-shaping based wave control for
coherently enhanced absorption, we also consider the possibility of
controlling both the input wavefront and the metasurface config-
uration to maximize the absorbed energy. To that end, we use the
physical model to select a metasurface configuration out of the 105

configurations from the calibration data set that we expect to yield
maximal absorption of energy. Even though these configurations
were part of the calibration data, because the latter was phaseless in
the case of Fig. 3f and lacked one relevant transmission coefficient
in the case of Fig. S2b, our ability to identify a metasurface
configuration that maximizes the coherently enhanced absor-
bed energy is remarkable. Details for the dictionary-search-based
inverse-design algorithm are similar to those described for coher-
ent focusing above.

QPSK backscatter communications. We consider the problem in
which Alice seeks to transfer information to Bob by encoding her
message into already existing ambient waves via the metasurface
configuration using quadrature-phase-shift-keying (QPSK). For sim-
plicity, we chose the antenna with index i as the source of the ambient
continuous waves at 5.2GHz which are emitted with constant ampli-
tude (i.e., without any modulation), and we choose the antenna with
index j as the intended receiver (Bob). To transmit information to Bob,
in backscatter communications Alice controls the metasurface con-
figuration c (rather than modulating the signal emitted by antenna i).
Because some paths from antenna i (transmitter) to antenna j (recei-
ver) are in general not impacted by the metasurface, hSjiðcÞic ≠0, Bob
considers Sji � hSjii to decode Alice’s message. Specifically, to perform
QPSK backscatter communications, Alice switches between four
carefully chosen metasurface configurations c00, c01, c11, and c10 such
that Sji � hSjii has the same amplitude for all four configurations, but
the phase of Sji � hSjii takes the values of eiθ, eiðθ+

π
2Þ, eiðθ+πÞ, or eiðθ+

3π
2 Þ if

Alice wants to send ‘00’, ‘01’, ‘11’, or ‘10’, respectively47. Here, θ is a
global phase constant without physical meaning. For ease of visuali-
zation, θ is set to zero to display the constellation diagrams in Fig. 3g
and Fig. S2c. As shown in ref. 47, with these four metasurface config-
urations it is also possible to implement QPSK massive backscatter
communications if the emitter radiates modulated WiFi waves rather
than continuous waves.

Using our physical model, the four metasurface configurations
c00, c01, c10, and c11 are chosen out of the 105 configurations from the
training data set. Our ability to identify four suitable metasurface
configurations for backscatter QPSK is remarkable in the case of
Fig. 3g because the calibration data was phaseless, and in the case of
Fig. S2c because the utilized transmission coefficient Sji was not
included in the calibration data. Details for the dictionary-search-
based inverse-design algorithm are similar to those described for
coherent focusing above.

Data availability
All data needed to evaluate the conclusions in the paper are present in
the paper and/or the Supplementary Materials.

Code availability
The codes underlying the presented work are available from the cor-
responding author upon request.
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