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Abstract—In this article, we present a framework ABOS based
on a collaborative multi-agent system (MAS) for multi-skill health
care scheduling using metaheuristics. In this framework, each
agent preforms his actions autonomously in the search space of
a scheduling optimization problem. Information about patient
scheduling is shared between agents who collaborate through
the dynamic environment. The objective is to allow the agents to
adapt their decisions using the Reinforcement Learning approach
according to the acquired experience with the interaction with
the other agents and the environment. The aim of this interaction
between agents is to enhance the quality of the solutions provided
by the agents from the search space. Experiments were performed
using real data provided by the adult emergency department
(AED) of Lille university hospital center (LUHC). The simulation
results confirm that the integration of Machine Learning in
agent behaviors impacts the quality of the scheduling solution.
Collaboration between agents in ”friend” or ”enemy” mode
influences the quality of the solution as well and thus impacts
the health care patient pathway.

Index Terms—Collaborative optimization, Multi-agent system,
Reinforcement Learning, Q-Learning, Hybrid metaheuristics

I. INTRODUCTION

Emergency departments (EDs) are often the first point of
admission to provide urgent care to urgent patients without a
prior appointment [1]. As a result, ED operations are more
challenging and resources are limited due to diverse patient
needs, different levels of treatment, and unexpected patient
arrival times that differ from other hospital departments.
The random nature of patient arrivals leads to malfunctions,
overcrowding situations, increased waiting times, increased
length of stay, increased medical errors, and increased patient
mortality. Indeed, new health care needs have emerged [2], and
patients are looking for a fast and better service. In addition,
reducing patients’ treatment and waiting timesfto be perfor can
minimize financial losses because the faster patients get out
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of the service, the more patients a given physician can see.
Because EDs are often concerned with overcrowding problem
and limited human and material resources, optimizing health
care tasks scheduling can be a key solution to address this
problem [3].
The management of hospital systems in general involves
three issues: their design, planning and control. Design is the
definition/prediction of the future characteristics of the hospital
system. In this phase, questions about the design of the system,
the human and material resources used, or the order in which
patients receive treatment are addressed. Planning relates to
the determination of the different resources used by the health
care operations to be performed on patients and to define
how and when these operations are to be performed. Finally,
control is concerned with correcting any inherent disruptions.
These disruptions may be a worsening of a patient’s state
of health, new patients to be treated, and therefore new care
tasks to be carried out, or more generally, any random event
that impairs the achievement of the health care treatment
plan determined by the scheduling. These three key steps are
executed according to the frequency of problems encountered
during the execution of the scheduling. In order to optimize the
management of EDs, the optimization approach must provide
methods that can be adapted to the dynamic aspect of the
hospital system and that can improve the quality of a solution.
Metaheuristics allow to easily define methods with a strong
power of intensification and provide good quality solutions
rapidly. Some of the previous works in the literature [4] use
metaheuristics to solve hospital scheduling problems. Patients’
waiting time can be significantly reduced through providing a
better workplan. In our previous work, an ABOS framework
(Agent-Based Optimization Systems) based on a reactive
MAS was proposed in [5]. This system is characterized by
a distributed control between several entities called reactive
agents. The idea in this paper is to set up a cooperative process



to coordinate the performance of metaheuristics, that is, the
genetic algorithm (GA), the simulated annealing algorithm
(SAA) and the taboo algorithm (TA). Each agent is charged
to explore the advantages of a metaheuristic. The overall
performance of the system is evaluated from a global utility
function defined a priori and characteristic of the problem to
be solved. It is then up to the agents to exhibit individual
behaviors in such a way that the fitting of these behaviors
at runtime succeeds in developing a collective behavior that
optimizes this global utility function. Indeed, agents have
only partial perceptions of their environment: they cannot
directly access the global utility function and only have a
local perception of the solutions found. The agents must then
cooperate and adapt during the execution of the system to
take into account possible new perceptions and the evolving
behaviors of the other agents. This cooperation is based on
two criteria to make the best use of metaheuristics (the details
of this cooperation are published in our previous work [6]) :

• Competition (enemy mode): In order to achieve effective
cooperation, it is necessary for the process to be driven by
a competition between metaheuristics. This competition
is established through the calculation of the system’s
performance indicators. This evaluation helps to choose
the metaheuristics to be carried out at each decision point.

• Collaboration (friend mode): In order to enhance the
quality of the solutions, it is useful to associate the
concept of competition with that of collaboration between
the resolution methods. This is implemented by the
mechanism of communication of the solutions found.
Indeed, at the end of the execution of each metaheuristic,
the collaboration between agents system must save the
best solution found in order to communicate it to the
next metaheuristic to be executed, allowing this latter to
be more efficient.

This is a complex problem because the control of the system
is carried out at the individual level whereas its evaluation is
carried out at the collective level. We wish to take advantage
of the multiplicity of agents in order to bring out collective
behaviors that are qualitatively different from individual be-
haviors. When evaluating metaheurisctics, a Reinforcement
Learning algorithm is used to carry out the task of choosing
optimal solutions in the search space. This algorithm aims
to optimize output parameters which are the step of fitness
optimisation for the input of metaheuristics and generate a
good value for optimisation at the output. We propose in this
work entirely decentralized learning techniques that allow the
agents to automatically adapt their behavior to the collective
task to be solved without having a global vision of the system.
As we wish to make decentralized learning, each agent must
have a good evaluation of the long-term consequences of a
decision, in particular with regard to the impacts of his actions
on the other agents. Several methods using machine learning
techniques have been developed to optimize tasks scheduling.
For example, a 2-stage strengthening training algorithm is
defined in [7] for task planning. The authors propose an

algorithm which uses a profoundly intensive learning phase to
construct a deployable resource mapping strategy. A stochastic
gradient descent based method is proposed in [8]. The authors
modeled the average completion time decreasing problem. In
the selection of the best strategy for task scheduling, authors
in [9] extend the work of [10] and employ Monte Carlo Tree
Search (MCTS). The effectiveness of the algorithm is proved.
A framework based on a deep-neural networking programmer
inspired by CNN was proposed in [11]. The authors use a
two-dimensional convergence approach to plan tasks. Many re-
searchers have focused on the use of Reinforcement Learning
associated with metaheuristics to solve optimization problems
[12] but it is to be noted that most of the proposals do not
use Reinforcement Learning among their structures for solving
optimization problems [13]. The originality of our work is
to use conjointly metaheuristics, MAS and Reinforcement
Learning for the sake of optimization. This work is part
of OIILH project supported and financed by the National
Research Agency and is performed in the AED of LUHC
(Lille, France).

II. ABOS FRAMEWORK DESCRIPTION

The current article presents an improvement of our ABOS
framework already published in [5] by using the multi-agent
approach allowing the hybridization of metaheuristics and
Reinforcement Learning to solve multi-skill health care tasks
scheduling in ED. In [5], our framework presents a communi-
cation protocol between agents for solving combinatorial opti-
mization problems. In this previous work, the communication
protocol is a generic and evolutive structure, in which each
metaheuristic is defined as an autonomous agent who interacts
with each other following a predefined collaborative process.
The main contributions of this paper are to:

• Develop the self-adaptive approach of the ABOS agents,
integrating the Q-Learning algorithm in the behavior of
the agents to better adapt their metaheuristics to solve the
patient scheduling problem.

• Improve collaboration between agents by using a shared
memory space (SMS) containing good solutions stored
and improved by agents during the iterations ensuring a
wide diversity of solutions.

• Show how the self-adaptive skills of agents allow to
improve directly their performance to search optimal
solutions.

A. The Multi-agent metaheuristic approach

The adaptive muti-agent metaheuristic optimization de-
scribed in this paper is integrated as a main part of the ABOS
framework. In this framework, each agent integrates in his own
behavior a metaheuristic and has the objective of finding the
solution for a given multi-skill health care tasks scheduling
problem. The intelligence of ABOS agents depends on a
coherent definition of their environment, a necessary condition
for their autonomy. This environment is characterized by the
search space of the addressed problem. Therefore during the



Fig. 1. ABOS architecture improvement

search process of the scheduling solution, the metaheuristic-
agents in the ABOS framework should access to the global
MAS environment. The new architecture of ABOS framework
is defined in Fig.1.

Each agent has actions that define his global vision that he
will have of the environment. He does not have a complete
knowledge of the environment. The objective of ABOS is to
use, at the same time, the strengths and advantages of each
metaheuristic through the collaborative work of the agents.
The architecture of ABOS is scalable because it will be able
to add new optimizing agents without impacting the existing
ones. These new agents are equipped with other algorithms
and heuristics to enrich the environment and increase the
diversity of SMS solutions. The ABOS agents interact with
the environment by collaborating with other agents either as
friends or as enemies (considering other agents as competi-
tors). These interactions allow agents to exchange and share
information about their state and the environment. The initial
ABOS conceptual and development model is described in [5].
In this paper, we improve this framework by including the fol-
lowing MAS entities: (i) Environment; (ii) Initiator Agent; (iii)
Metaheuristics Agents (Genetic agent, Simulated annealing
agent, Tabou agent) and (iv) Communication protocol Agents.
The collaborative optimization structure of ABOS architecture
is improved in this paper. A SMS is used for exchanging
information. The main objective of this ABOS improvement
is the need to increase the autonomy and self-adaptation of the
agents. The new structure of ABOS framework is composed
of four principle steps which are presented in this paper:

i Environment: defined mainly by the search space of
the studied problem. Therefore, it provides all informa-
tion needed for solving the multi-skill health care tasks
scheduling problem, for example the number of patients
to be scheduled in the ED, the number of health care
professionals in this department, the number of care rooms
available, and so on;

ii SMS of Solutions: its main task is to provide a shared
solutions for all agents at each iteration;

iii Metaheuristic Agents: in charge of monitoring the search
for the good solutions;

iv Finally, new self-adaptive agents, incorporating the Rein-
forcement Learning approach.

Fig. 2. Four-dimensional hypercube model

B. ABOS : model patient scheduling solution

The most appropriate way to facilitate the multi-skill health
care tasks scheduling analysis and decision-making is a mul-
tidimensional solution modeling. The latter represents the
solution as points in a multidimensional space. The subjects of
analysis (Patient, Medical Staff, Time, Location) are studied
along several axes (the dimensions). In ABOS the patient
scheduling solution is modeled through four-dimensional (hy-
percube) whose axes are: Medical staff, Patients, ED structure
and Time (Fig.2). The time axis is divided into intervals. Each
interval has a different size. The time schedule is divided into
several periods that do not necessarily have the same length.
When two periods have the same length, the number of slots
in each period may differ. In general, a period has several
slots. Thanks to the division of time axis into many slots, each
medical staff member is assigned to a patient in a specific slot
belonging to a specific period. For example, as it is shown in
Fig.2, medical staff m2 treats patient j′ in the second slot of
period 2 in operation roomj′ . In the same figure, we have a
parallel assignment of 2 medical staff members m1 and m2,
respectively, to patients j and j′ in the periods 2 and 3, in
operation roomj and operation roomj′ . Fig.2 also describes
the multi-skill hybercube assignment which is possible in our
approach thanks to the choice of the chromosome which can
be adapted to the problem treated. Here the patient j needs 2
different skills for his treatment, m1 and m3 assigned in the
same period 3 and the same slot in operation roomj .

III. PATIENT SCHEDULING ENVIRONMENT
This section focuses on scheduling patients in the AED of

LUHC according to the priority of patients’ healthcare tasks
determining by the triage process. This problem is similar to
a Flexible Job Shop Scheduling problem with jobs are patient
health care tasks, machines are human and material resources
(physicians, boxes, beds, . . . ) and operating sequences are
patients’ pathways which depend on patients’ pathologies.
The ABOS is an adequate framework to solve conjointly the
problems of patients scheduling and coordination in the emer-
gency service. Solving these problems efficiently is crucial
to improve the performance of the ED and insure a more
reliable framework. In this way, we model the solution by a
4-dimentional hypercube whose axes are : Time axis, Patient
axis, Medical Satff axis and Location axis. Time axis is divided
in 5 minutes slots (Fig.2).

A. Notations

The main indices and decision variables of the patient
scheduling are defined as follows:



Fig. 3. Example of four patients scheduling solution

Indices
J : emergency patient index, j ∈ {1 .. J},
I : emergency care tasks index, j ∈ {1 .. I},
i, j : the care task i of patient j,
M : emergency medical staff index, m ∈ {1 .. M},
L : emergency operation room index, l ∈ {1 .. L},
T : slot period index, t ∈ {1 .. T}, where the slot T + 1
indicates the slot period outside the current scheduling
horizon H ,
Decision variables,
St
i,j : boolean, set to 1 if the care task i of patient j is

scheduled in the slot period t and set to 0 otherwise,
M t

m: boolean, set to 1 if the medical staff m is assigned to
slot period t and set to 0 otherwise,
Lt
l : boolean, set to 1 if the operation room l is available in

the slot period t and set to 0 otherwise,
WH,j : the waiting time of scheduled patient j in horizon H
tar,j : the arrival time of patient j
tfc,j : the first consultation time for the patient j

Based on these notations, the patient schedule is admissible
if only checks the equation 1.

1 ≤
T∑

t=1

n∑
j=1

St
i,j =

T∑
t=1

card(B)∑
l=1

Lt
l ≤

T∑
t=1

m∑
k=1

M t
k,j (1)

The equation above checks the feasibility of the scheduling
by verifying that, in each time a care task i of a patient j
is scheduled in the time slot t, we have at the same time
an assigned medical staff m in a room l in the same slot
t to perform this task. Let the waiting time of scheduled
patient j (W ) be the sum of patients’ waiting time between
the registration time and the first consultation time, where:

W = Min (

∑n
j=1(max(0, t1,j − taj) +

∑Ij
i=1 max(0, ti+1,j − fi,j))

n
)

(2)
The objective is to minimize the sum of waiting time for all

patient j scheduled in the horizon H . This is subject to the two
types of constraints. The set of hard and flexible constraints
presented in our previous work [1].

B. Patient scheduling neighborhoods

Many neighborhoods scheduling functions were developed
and generated by the algorithm 1 to explore the search space
of solutions in our ABOS framework instantiation. These
neighborhood functions define the set of states integrated in

the agent learning approach (presented in the section IV).
We denote NS an enumerate type containing four-
neighborhood structure:

• NS = (MID,MIS, SDMS,SSMS) four neighbor-
hood structure;

• MID: multiple insertion in different medical staff;
• MIS: multiple insertion in the same medical staff;
• SDMS: swap between different medical staff;
• SSMS: swap between same medical staff.

Algorithm 1: generate neighborhood solutions (SS,
Nmax, H)

Input
SS: current solution respecting the hypercube model
Nmax : maximum number of required neighborhood solutions
H: scheduling horizon
NS = (MID,MIS, SDMS, SSMS)
0utput
SNS : set of neighborhood solution with card(SNS) = Nmax
begin
N ← 0; SNS ← ∅;

1 while (N < Nmax ) do
mode = random(NS);
if mode = MID then

SS1 ← multiple insertion of care task (i, j) chosen randomly in SS from one medical
staff m to another one

update St
i,j ,M

t
m,Lt

l ;
check the equation 1

else if mode = MIS then
SS1 ← multiple insertion of care task (i, j) chosen randomly in SS in the schedule of

the same medical staff m
update St

i,j ,M
t
m,Lt

l ;
check the equation 1

end
else if mode = SDMS then

SS1 ← exchange move of one care task (i, j) chosen randomly in SS of medical staff
with an (i, j) from another medical staff

update St
i,j ,M

t
m,Lt

l ;
check the equation 1

end
else if mode = SSMS then

SS1 ← exchange move of one care task (i, j) chosen randomly in SS of medical staff
with another (i, j) of the same medical staff ;

update St
i,j ,M

t
m,Lt

l ;
check the equation 1

end
N ← N + 1
SNS ← SNS ∪ {SS1}

end
return SNS
end

Example: neighborhood functions generated by the
algorithm 1
Fig.3 shows a scheduling solution of four patients. The
treatment of patient 1 requires four care tasks and for each
of 3 other patients only 3 care tasks are required. We have
4 medical resources (4 doctors) and 4 consultation rooms.
We note that the scheduling in Fig.3 is admissible because it
verifies the equation 1. In addition, we also note that when
the care tasks are scheduled in successive slot periods, they
are carried out in the same operation room with the same
doctor.

After several executions of algorithm 1, we select the five
neighborhood functions:

1) care task assignment to different medical staff members
(A): This function realizes the re-assignment of patient
care task from one medical staff to another medical staff.
For example, in Fig.3, the third care task of patient 3 who
is assigned to doctor m4 can be re-assigned to doctor m3.

2) successive care tasks assignment to different medical staff
members (B): This function realizes the re-assignment
of successive patient care tasks to another medical staff
member. For example, in Fig.3, the three health care tasks



of patient 3 who has been already assigned to doctor m3
can be re-assigned to doctor m2.

3) care task insertion in the same medical staff member work
schedule (C) : this neighborhood function performs the
move of one care task to another position in the medical
staff schedule. For example, in Fig.3, the first care task of
patient 2 changes position from the period slot [30-35] to
the period slot [20-25]. Therefore the period slot [30-35]
of doctor m2 as well as room 2 are updated (period slot
[20-25]).

4) swap two care tasks between different medical staff
members (D): this neighborhood function performs the
swap of one care task from one medical staff member
to another. For example, in Fig.3, the first two care
tasks of patient 1 will be assigned to the medical staff
member m1. Therefore the first two care tasks of patient
4 will be assigned to the medical staff m2, rooms change
accordingly.

5) swap between the same medical staff member (E): this
neighborhood function performs the change of position of
one or more care tasks in the work plan of the medical
staff member. For example, in Fig.3, the last care task of
patient 4 changes position from the period slot [90-95]
to the period slot [80-85] with the same medical staff
member m4.

IV. SELF-ADAPTIVE AGENTS: REINFORCEMENT
LEARNING

A. Shared memory space (SMS)

The main idea of the ABOS framework is to build agent
metaheuristic architecture in order to produce new optimiza-
tion schemes. Thanks to the collaboration and to the collective
interaction structure, agents have the ability to guide their
search in the solutions’ space toward the most promising
region, and thus, to improve the final results and reduce
the computational time needed to solve the problem. The
interaction between agents occurs through the exchange of
information about the patient scheduling search space. The
current scheduling solutions are stored in the SMS being
available to be shared by the agents at the end of each iteration.
The maximum size of the SMS is a parameter of the problem
and the addition of new scheduling solutions is controlled
by the algorithm 2, in order to regulate the SMS updating
and maintain the diversity of solutions. The main goal of
the algorithm 2 is to make the metaheuristic agents avoid
premature convergence by diversifying as much as possible
the solutions shared in the SMS. At the same time, the best
existing (elite) solution in the SMS is always updated at each
insertion, and its elimination is forbidden.

B. Self-adaptive agents

This section shows the self-adaptive agents approach using
Reinforcement Learning, based on the Q-Learning algorithm,
in order to improve the local search by the choice of an
adequate neighborhood solutions. In the Reinforcement Learn-
ing model, there is no input/output data; the idea is that the

(a) A complete graph
with five states

(b) Initial Q-table used in Q-
learning algorithm

Fig. 4. A complete states graph and Q-table

agents take advantages of their experiences to improve their
performances. Taking the advantage of discretization of the
patient scheduling in a dynamic environment such as the ED.
We can structure this problem into a Markov decision process
(MDP). A Markov decision process framework is described by
the tuple of (SS,AS,R, TP, γ), namely state space, action
space, reward collection, transition probability matrix, and
discount factor.

In this paper the MDP is defined as follows :
1) Set of States Space SS: states space are composed by

the 5 neighborhood functions (subsection III-B), available
for the patient scheduling problem to be handled by the
ABOS framework. In the case of the test problems used
here, we have: SS = {A, B, C, D, E };

2) Set of Action Space AS : an action is represented by
an arc that connects two nodes. A node is represented
by a state (neighborhood function). The set of actions
can correspond to a complete graph whose vertices are
adjacent two by two, i.e. any pair of disjoint vertices
is connected by an arc. An example of a complete
graph modeling the relationship between neighborhood
functions (states) and actions is shown in Fig.4(a). the Q
table corresponding to this example is shown in Fig.4(b).
The dimensions of Q-table is in the form of square matrix
with dimensions (N ∗N ), in which N is the number of
states (the number of neighborhood functions of patient
scheduling problem);

3) Reward R : based on the fitness value reward(x) of the
solution x and is evaluated on the basis of the objective
function f(x) of the problem.

4) Transition probability TP : for the probability of tran-
sition from a state s into a new state s′ by an action
a we use the control policy defined by Π(s, a). This
latter represents the probability of performing the action
a in the state s. Π(s, a) evolves according to the expe-
rience the agent acquires through interactions with the
environment and with other agents. The learning process
in the Reinforcement Learning is therefore expressed by
the convergence to the optimal policy Π∗.

Π(s, a) = Pr(at = a\st = s)

5) Discount factor γ : γ shows the importance of future
reward to the current state.

C. Q-leraning algorithm

In our neighborhood complete graph, we deal with transition
probability. It is not necessary to have an initial model of



Fig. 5. Jade Sniffer Tool: Communication between GAA, SAA and TAA

the environment, we can then use Q − Learning which is a
model free learning algorithm to cope with the uncertainty of
patients’ arrival flows at any time in the ED. Our goal is to
find an optimal policy for the patient scheduling problem in
order to minimize patient waiting time. This Q − Learning
algorithm allows us to follow a policy which indicates what
action a to take in which state s of the system. This works
by a learning a state-action value function, denoted Q which
defines the potential gain i.e., the long turn reward brought by
the fact of carrying out a certain action a in a certain state s
by following an optimal policy π.

Qπ(s, a) = Eπ{
∞∑
i=0

{γtrt+k+1\st = s, at = a}} (3)

In (3) , Eπ is the reward expected by following the policy π.
When this value state action is known by the agent, the optimal
policy can be constructed by selecting the action with the
maximum value for each state, i.e., by selecting the action
a that maximizes the valu Q(s, a) when the agent is in the
state s. The agent follows any policy in order to update its
value function. This algorithm allows, for any finite Markov
Decision Process (MDP) to find an optimum policy of actions.
The goal is, at each step of an episode, to maximize the value
of the function Q(s, a) defined as :

Q′(s, a) = Q(s, a) + α(r + γmax
a′

(s′, a′)−Q(s, a)) (4)

The learning factor α represents the learning rate and
determines how much the new calculated value function Q
will outperform the old one. If α = 0 the agent learns nothing,
and if α = 1 the agent considers only the last information he
learnt. ( 0 < α < 1). The discount factor γ determines the
importance of future rewards. The factor of 0 makes the agent
myopic by considering only current rewards while a factor
close to 1 would involve more future rewards. If the discount
factor is close to 2 or equal to 1, the value of Q may diverge.

As shown in the algorithm 3, the Q− Table will converge
to optimal Q − Function. In fact, the algorithm will plan
the next action for the next state according to Q(s, a) during
iterations and update the new Q(s′, a′). The iteration of the
Q − Learning will maximize the reward and produce the
optimal policy.

V. COMPUTATIONAL EXPERIMENTS

In this section we present the computational experiments per-
formed in order to evaluate and test the ABOS framework. For

Algorithm 2: Algorithm Regulate SMS Diversity
(CS,NB,R,DT )

Input
CS: current solution to be inserted in SMS
NB: number of solutions in SMS
R: minimum number of different slots (containing different care tasks) for one solution to be considered

different to the other
DT : diversity threshold
MaxSMS : maximum number of solution can be included in SMS
Output
possible insertion of CS in SMS
Begin
d ← 0 // number of solution in SMS different to CS
for k = 1 to NB do

// browse all SMS solutions;
λ slot = 0 // number of slots containing different care tasks in the SMS solutions compared to

CS ;
for t = 1 to T do

for j = 1 to J do
for i = 1 to I do

if (|CSt
i,j − St

ki,j
| = 1) then

λ slot = λ slot + 1
end

end
end

end
if (λ slot ≥ R) then

d = d + 1
end

end
if (λ slot = 0) then

The solution is already exist in the SMS;
else

if (d/NB ≥ DT ) then
if (fitness(CS) is better then the fitness of the worst solution in SMS) then

if (NB < MaxSMS ) then
insertion the CS in the SMS;

else
eliminate the worst solution in SMS ;
insert CS in SMS;

end
end

end
end
end

Algorithm 3: Self Adaptive Agent (x0) // based on
Q-Learning Algorithm

Input
x0 : current solution
α: is the rate of learning
γ: is the discount factor
Output
x : learning solution
begin
Use (Q(s, a) , ∀s, a)
∀a , (Q(Sterminal, a)← 0
xmin ← x0 ; x← x0

1 while (Solution not improved) do
▷ Start Episode;

initialize the state s;
r = 0;

2 while ( s is not a terminal state) do
if r > 0 then

s′ ← SelectAction (s, True) (algorithm 4);
// an action a′ from s by using the specific policy by Q (example : ϵ-greedy)

else
s′ ← SelectAction (s, False) (algorithm 4);
// no improvement: exploration other solutions

end
x ← bestNeighbour (s′, x)
if x is better than xmin then

r ← ((xmin .getwaitingTime)-(x. getwaitingTime));
xmin ← x ;

end
Q(s′, a′) = Q(s, a) + α(r + γ max

a′ (s
′a′) − Q(s, a));

s ← s′ ;
a ← a′ ;

end
end
return x
end

Algorithm 4: SelectAction (e, b)
Input
e: current state
b: boolean parameter
Output
next e : next state
Begin
if (b = true) then

next e ← MaxAction(e); // ϵ greedy exploitation
else

next e ← randomAction(e); // exploration
end
return next e
end



TABLE I
COMPARISON BETWEEN WAITING TIME USING GA, SAA AND TA WITH LEARNING AND WITHOUT LEARNING AND THE PRACTICAL CASE

Days Number of patients Genetic algorithm simulated Annealing Algorithm Tabeau Algorithm
Practical W (min)

Scheduled
patients

Unscheduled
patients

W
without
learning
(min)

W with
learning
(min)

W
without
learning
(min)

W with
learning
(min)

W
without
learning
(min)

W with
learning
(min)

1 8 48 205.3 108.2 242.2 242 218.4 215.9 245.72
2 17 50 212.6 171.3 216.4 173.5 216 213.5 218.47
3 20 44 230.5 228.5 267.8 195 241.9 239.4 266.39
4 28 31 375 363.7 379.8 367.2 378.1 364.5 359.08
5 6 58 197.5 180.5 215.2 197.9 205.6 203.1 215.65
6 12 105 209.2 188.3 303.4 201.6 300.4 297.9 285.05
7 12 70 222.6 222.9 230.2 208 229 226.5 231.04
8 14 38 223.5 208.5 265.4 229 249 246.5 270.18
9 10 29 278.4 276.4 296.2 215.7 289.6 287.1 305.26
10 18 24 187.6 183.2 198.5 182.5 193.5 191 209.63

Fig. 6. The waiting time as a function of the number of patients

Fig. 7. The waiting time given by agents’ collaboration and individual work

the development, we use the JADE (Java Agent Development
Framework) platform based on java oriented-object language.
This platform provides several packages practical for the
development of MAS and provides graphical tools such as the
sniffer agent to debug messages exchange between the agents
(Fig.5). We use a real database of the AED provided by the
LUHC. Data are collected thanks to ResUrgence, a software
implemented in LUHC. We analyzed our computational results
through the investigation of the effectiveness of the proposed
self-adaptive system and its validation. Then, we evaluate its

Fig. 8. Waiting time given in different scenarios

performance. For tests, we applied our approach to solve 10
problem instances, generated randomly, with different numbers
of patients. These instances were generated on the basis of
real data provided by the medical staff of LUHC. All patients
coming to the AED should be treated in the current scheduling
horizon or the next scheduling horizon H . In the present work,
we assume that the duration of the scheduling horizon is 4
hours. The different tests are carried out using the same test
conditions. In these tests, our Self Adaptive Algorithm is called
in order to perform the local search. For the experiments,
in the Q-Learning, we choose γ = 0.87, α = 0.13 and
ϵ = 0.07. The objective of these simulations is to analyze
the proposed algorithm performance, and thus to evaluate
if the learning approach, which is integrated into the agent
behavior, impacts the performance of ABOS framework in
regards to the quality of the final output from an individual
and a collaborative perspective. In order to evaluate the level
of performance of our approach, we start to evaluate the
individual learning added to the behavior of each agent in
order to check if it improves the performance of our ABOS
framework, that is, regarding individual learning, we report
the results given when a single agent uses the Q-Learning
algorithm. Then, we analyse the quality of the solutions
obtained and we compare the results given by each agent
that explores the advantages of a metaheuristic individually
without using the Q-Learning algorithm to the results given
by the individual learning. We did a comparison of the results
obtained in practice (according to the ED database used by
the medical staff) with those generated by the 3 metaheuristics
(GA, SAA, TA). Table I shows the real AED data related to
the test problem scheduling, together with the results obtained
with the 3 metaheurisctics based approach, and the practical
case. The gap between the solutions (related to patients’
mean total waiting time per instance corresponding to several
horizons H per day is shown in (Fig.6). Table I shows that
the use of metaheuristics is associated with the minimization
of the total mean waiting time, especially when using the
learning algorithm. Fig.6 shows that the values of Q-Learning
solutions are significantly better than solutions found by using
metaheuristics only. For the different instances, the average
waiting time of patients has markedly decreased thanks to the



use of metaheuristics and our proposed adaptive algorithm.
The gap between the solutions is around 15%. However for the
2 instances 4 and 6, the mean practical waiting time is better
than the mean waiting time given by the simulations because of
the interferences between scheduled and unscheduled patients
(particularly those requiring urgent treatment) arriving at the
ED, which prompt real-time rescheduling. This is mainly due
to the current mode of operation in the AED. In fact, the
medical staff interrupts the ongoing care of a patient to treat
a more serious unscheduled patient and he does not become
available again until the treatment of this unscheduled patient
is completed. The performance of the individual learning and
the collaborative learning of the agents in the presented multi-
agent environment were also assessed. Table I presents this
analysis. We analyze the influence of learning in the coop-
erative process (Fig.7). Simulations show that Self Adaptive
Algorithm when metaheuristic agents collaborate is better than
the individual learning (without interaction). Regarding the use
of two or 3 agents in collaboration to solve the problem,
simulations show that there is a clear evidence that Self
Adaptive Algorithm is better than using metaheuristics only.
We also compared the given mean waiting time of patients in
the AED of LUHC regarding the scenario in which an agent
works individually exploring a metaheuristic (GA), with the
solutions given by the two other scenarios of collaboration( 2
agents, then 3 agents). The figure 8 shows that in collaboration,
the more agents we have, the better the solution is. That is, the
values of the total mean waiting time given by Self Adaptive
Algorithm are better than those found individually, whether
considering a single agent or considering two or more agents.
In addition, the values get better when the number of agents
involved in the search for the solution increases.

VI. CONCLUSIONS AND FUTURE WORKS

This paper presented a framework ABOS based on a col-
laborative multi-agent system (MAS) for multi-skill health
care scheduling in the AED of LUHC using metaheuristics. 3
metaheuristics (GA, SAA, TA) are embedded in agents collab-
orating together in order to explore the research space and find
out the optimal solutions. Each agent explores autonomously
the advantages of a metaheuristic and interact with the other
agents for the solution improvement. We also proposed in this
article a self adaptive approach based on a learning process in
order to allow the agents to adapt their actions according to
their environment, their experiences and their interactions with
each other. We adopted a Q-Learning algorithm. Simulations
show that our approach has improved the AED performance
by reducing the waiting time of patients. The results obtained
show that the collaborative Learning approach leads to better
results compared to the scenario in which agents work individ-
ually or without learning. In our future work, we will extend
the neighborhood structures which will produce augmented
states. Because it is crucial to accurately provide a correct
decision for patients care in emergencies, we will explore the
advantages of Deep Reinforcement Learning for improving
the robustness and performance of ABOS framework. It will

also be possible to study the impact of different learning
approaches embedded simultaneously in agents’ behaviors.
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