
HAL Id: hal-04566500
https://hal.science/hal-04566500

Preprint submitted on 3 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Chronoblox: Chronophotographic Sequential Graph
Visualization

Quentin Lobbé, Camille Roth, Lena Mangold

To cite this version:
Quentin Lobbé, Camille Roth, Lena Mangold. Chronoblox: Chronophotographic Sequential Graph
Visualization. 2024. �hal-04566500�

https://hal.science/hal-04566500
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Chronoblox: Chronophotographic Sequential Graph Visualization
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Sequence of yearly graph snapshots of the Impact Investing retweet network spatialized with ForceAtlas2
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Chronophotography of the Impact Investing retweet network spatialized with Chronoblox

Figure 1: Chronoblox performs the chronophotography of a sequence of graphs (B). By using a single inter-temporal embedding
space, Chronoblox lays out each snapshot in relation with the preceding or following ones. The motion of the whole graph sequence
can thus be interpreted in terms of micro to meso structural evolution. Both the temporal sequence (A) and its chronophotography
(B) have been constructed from a retweet network where nodes are clusters of Twitter/X users detected via the Louvain algorithm
(see section 5). Colors represent the most frequent home country of each node group. Explore the interactive version.

ABSTRACT

We introduce Chronoblox, a system for visualizing dynamic
graphs. Chronoblox consists of a chronophotography of a sequence
of graph snapshots based on a single embedding space common to
all time periods. The goal of Chronoblox is to project all snapshots
onto a common visualization space so as to represent both local and
global dynamics at a glance. In this short paper, we review both the
embedding and spatialization strategies. We then explain the way in
which Chronoblox translates micro to meso structural evolution vi-
sually. We finally evaluate our approach using a synthetic network

before illustrating it on a real world retweet network.

Index Terms: Dynamic graph visualisation, chronophotography,
inter-temporal embedding, dimension reduction.

1 INTRODUCTION

Dynamic Graph Visualization can be categorized into two main
streams, depending on whether the evolution of a sequence of
graphs is depicted at the micro-level of nodes and links [6], or
at the meso-level of node groups (such as clusters, communities,
blocks) [26]. In either case, layouts integrate an explicit longitudi-
nal dimension to avoid losing the sense of the inter-temporal con-
nection between the elements of the various phases, as would, for
instance, be the case with a simple series of graph snapshots triv-
ially displayed one after the other (as in Figure 1A).

https://lobbeque.github.io/chronoblox_examples/impact_investing_louvain.html


These layouts, however, all have limitations when it comes to
jointly grasping graph dynamics locally (from one phase to the
other) and globally (over the whole sequence of graphs). Limi-
tations also apply in terms of spatial scale. At the micro level,
animation layouts succeed in revealing local changes [2] or sim-
ple transitions between phases [4], but are by design hardly able
to render global processes without using a summary view in isola-
tion [9]. At the micro-to-meso-level, superimposed layouts trans-
late long-term evolution by stacking subsequent phases on top of
each others [8, 12]. However, they remain very sensitive to struc-
tural changes, making it difficult to scale up: they implicitly rely on
the assumption that there is a sizable proportion of stable nodes
across phases, which serve as fixed anchors over the graph se-
quence. Absent this stability, layout alignment across phases be-
comes an issue. Although they fall outside the node-link scope of
our paper, we remark that some matrix-based approaches have been
able to solve this issue by following a piling metaphor [5, 3]. At the
meso-level, so-called alluvial layouts represent a frequent strategy.
They have made the choice to go without the intra-temporal struc-
ture of each graph so as to focus instead on inter-temporal streams
of nodes [21, 23]. Some hybrid techniques yet try to enrich allu-
vial charts with topological information by displaying parts of the
sequence of graphs alongside [15, 25]. But as these approaches lay
out each individual phase into an independent visualization space,
they induce discontinuities such as scaling inconsistencies, spurious
shifts or meaningless rotations which may confuse the analysis.

Our proposal aims at uniting the various scales, both spatial (mi-
cro and meso) and sequential (local and global). More precisely,
we argue that the movement of the entire sequence of graphs can
be fully and concurrently integrated into a unified layout whose
space meaningfully reflects the inter-temporal similarities of graphs
across phases. Put differently, our goal is to project all the sin-
gle phases onto a common visualization space so as to represent
both local and global dynamics at a glance, thus making it possible
to empirically interpret the whole sequence in terms of micro and
meso-structural evolution.

To do so, we have been inspired by a photographic technique
called chronophotography: a process that aims at revealing the suc-
cessive phases of an object in motion. A set of snapshots are first
taken from a fixed spot before being printed on the same piece of
film. The way in which each snapshot is laid out in relation to
the previous/next ones enables the viewer to study the evolution of
the observed object through time and space. With this in mind,
we introduce Chronoblox, a novel layout designed to perform the
chronophotography of a sequence of graphs, shown in Figure 1B.

2 CHRONOBLOX

Our network visualization proposal consists of a chronophotogra-
phy of a sequence of graphs based on a single embedding space
common to all time periods. This admittedly requires an embed-
ding principle likely to reflect the main features of the temporal
evolution of the graph. This, in turn, requires that nodes are labeled
with metadata proper to each phase which, as we shall see, is al-
ways possible, irrespective of whether the input data is originally
equipped with metadata of its own or not.

2.1 Metadata Definition
We first and foremost consider the standard aim of visualizing
the evolution of the meso-level structure of a sequence of graphs
(G1, ...,Gn) representing n phases. The structure of each graph
Gt = (Vt ,Et) at phase t may typically be depicted by gathering
nodes into groups (for instance, via cluster detection [7] or stochas-
tic blockmodeling [19]). This makes it possible to build a sequence
of meta-graphs (Γ1, ...,Γn) describing the level of node groups
and their connections. More formally, applying a node grouping
method at each phase t yields a meta-graph Γt = (Bt ,εt) where

Bt ⊆ P(Vt) is the set of node groups and εt can be defined by
aggregating edges of Et over node groups: for instance, by triv-
ially merging edges between nodes of a group pair (b,b′)∈ Bt

2 i.e.,
Et ∩ (b× b′). Now, each node b ∈ Bt of the meta-graph may be
labeled by the set of nodes of Vt that it contains. In other words,
the metadata associated with the node group represented by b is
straightforwardly the corresponding subset of Vt .

This focus on node groups, or possibly blocks, led us to name
this approach “Chronoblox”. Without loss of generality, note that
we may also apply it to represent the evolution of the micro-level
structure of the graph sequence (G1, ...,Gn) if natively equipped
with metadata evolving through time — for instance, if the data
describes the evolving set of interests of scientists in a longitudinal
co-authorship network, or of hashtags in a social media context.

To summarize, a crucial element of Chronoblox is that each
node v, of any of the graph sequence to be represented, may be
labeled with metadata denoted as m(v).

2.2 Common Embedding Space
The key idea of Chronoblox consists in fitting within a common em-
bedding space all nodes across all phases, and thus all graphs. By
doing so, we ensure that the spatialization of each phase occurs in
relation to the whole sequence. We are thus following in the foot-
steps of the emerging field of inter-temporal embedding layouts.
Unlike existing works however, the subsequent phases will not be
reduced to simple points [24] or hidden behind summary views [9].
With Chronoblox, the intra-temporal structure of each phase will
always be visible in order to figure the micro to meso-level move-
ments of the whole sequence of graphs.

In the context of this short paper we practically restrain ourselves
to the evolution of meta-graphs of node groups. In this respect, we
adopt a processual view of social structures [1] and consider the
way in which node groups change at the meso-scale to bear strong
explanatory power with regard to the overall network evolution.

As said above, each node b of each meta-graph Γt represents
a node group of the corresponding graph Gt and is labelled as
such: mt(b) ⊆ Vt . We then compute the similarity of each pair
b,b′ ∈ ∪t∈{1,..,n}Bt by means of a classical Jaccard index |m(b)∩
m(b′)|/|m(b)∪m(b′)|, subsequently populating a matrix M of sim-
ilarities between all node groups encountered at any phase. Embed-
ding S into a common space implies that similar node groups shall
be located in similar areas, thus ensuring an inter-temporal consis-
tency of the graph spatializations of each phase — graphs exhibit-
ing similar node groupings shall be positioned closeby to one an-
other and, likewise, significant structural transitions shall result in
the corresponding graphs being located in different areas. In prac-
tice, we construct a 64-dimensional embedding space from S via
the Node2Vec algorithm [13]. Random walks generate sentences
from M (i.e. lists of node groups) that are later used to calculate an
embedding vector for each node group of each phase.

2.3 Chronophotographic Projection
The 64-dimensional space wherein nodes are inter-temporally em-
bedded eventually requires a two-dimensional projection before vi-
sualization. While dimension reduction methods are good at reveal-
ing salient cluster structures and distributional features, respect-
ing both the local and global structure of high-dimensional objects
has long been challenging [28]. Linear approaches (such as PCA
or MDS) struggle to jointly preserve both raw local distances and
graph structure, whereas non-linear approaches (such as t-SNE or
UMAP) are prone to create spurious clusters of points at a global
scale. The recent PaCMAP algorithm [27] appears to solve this
dilemma by focusing on mid-near pairs of data in order to preserve
local and global properties. We deem this feature important to or-
ganize the chronophotographic spatialization at both scales — in
particular, to preserve the notion that, in this reduced visualization
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Figure 2: The Chronoblox interface. (A) Layer tab, (B) Alluvial view, (C) Timeline, and (D) Chronophotographic view. It shows the evolution of
Ξ, the Impact Investing retweet network with node groups computed, here as stochastic blocks of Twitter/X users (see the interactive version).
For illustrative purposes we circle country groups in 2014 and UK lineages over the whole sequence, see text in Sec. 5.

space translation or rotation can figure meso-scale changes while
overlap can be interpreted as structural stability.

We here use the default PaCMAP parameters and obtain pairs of
coordinates attached to each node group b at any phase. Note that as
PaCMAP introduces some randomness during its initialization step,
distinct chronophotographic projections are likely to be produced
upon each run; nonetheless each projection should by construction
similarly satisfy the above-mentioned constraints and properties.

3 THE CHRONOBLOX INTERFACE

We now present the Chronoblox interface where users can explore
and interact with chronophotographic projections of sequence of
meta-graphs (Γ1, ...,Γn), where we highlight three main features:1

- Chronophotographic View. This is the main view (Figure 2D)
where node groups Bt are represented by circles and placed using
the PaCMAP coordinates. Intra-temporal edges Et connect these
groups with solid black lines. The focus on a given phase and
meta-graph Γt is visible on the timeline (Figure 2C) and moves to
an adjacent phase t −1 or t +1 using arrow keys. The meta-graph
in focus is painted in black and highlighted with red convex hulls
(we use a state of the art standard [4]). Each meta-graph Γt is
slightly transparent to underscore overlaps with adjacent phases.

- Inter-Temporal Lineages. The matrix M of similarities provides
inter-temporal similarities of node groups across periods. In par-
ticular, it makes it possible to relate node groups with similar node
groups of immediately preceding and following phases, which de-
note parent/children lineage relationships across phases. Going fur-
ther, and inspired by previous works which have introduced a no-
tion of inter-temporal lineage [17, 10], we enrich the interface by
modeling such lineages as connected components in the network of
lineage relationships. In Figure 2B and Figure 2D, node groups be-
longing to the same connected component are circled with a dashed
stroke, and connected through a solid white line; clicking on a node
group reveals the lineage it belongs to.2

1The source code of both the Chronoblox layout and interface are avail-
able at https://anonymous.4open.science/r/chronoblox-BE82.

2For readability, inter-temporal similarity links have first been filtered

- Alluvial View. Chronoblox endeavors at spatializing similar node
groups nearby — accordingly, sequences of similarly groups are
likely to follow visually consistent curvilinear trajectories. We con-
tend that this property provides the basis for an optimized alluvial
chart for free. In effect, reducing further the PaCMAP coordinates
to unidimensional coordinates via PCA which should not vary too
much from a phase to the other. The alluvial view of Figure 2B il-
lustrates just that, by vertically placing node groups according to
this single coordinate, while the horizontal axis represents time.
It also features the inter-temporal similarity links connecting pairs
of node groups. Node groups and lineages appear to be naturally
sorted so as to minimise inter-temporal link crossings.

4 EVALUATION

The field of graph node grouping methods not only helps to build
the metadata necessary to Chronoblox in the meta-graph case, but
also to design a controlled environment against which to bench-
mark it. This field includes two main types of approaches [20].
First, descriptive methods often aim at describing node groupings
according to context-dependent partition-optimization criteria, such
as modularity in the so-called Louvain algorithm [7] which princi-
pally uncovers cohesive node groupings or clusters. Second, infer-
ential techniques posit a generative process responsible for struc-
ture of the observed graph, by fitting a model to real data. Among
those, Stochastic Block Models (SBM) [19] are increasingly used
to infer a graph’s block structure, whereby nodes of a given block
are deemed to fulfill a similar role vis-à-vis nodes of other blocks
– this includes clusters, as well as more generic meso-level graph
configurations, such as core-periphery [14].

Moreover, SBMs can be used to generate synthetic graphs obey-
ing specific behaviors [16]. For evaluation purposes, we thus rely
on a recent SBM variant [16] enabling the parameterized joint gen-
eration of both cluster and core-periphery structures, to create a syn-
thetic graph sequence (S0, ...,S10). Each phase consists of roughly
3-4,000 nodes, out of a potential of 11,000 (node labels), and obeys

by means of a symmetrical Herfindahl-Hirschman Index [22], which helps
focus on the most important links while removing the comparatively negli-
gible links, both from the perspective of one node and from the perspective
of the other (hence the symmetrical).

https://lobbeque.github.io/chronoblox_examples/impact_investing_sbm.html
https://anonymous.4open.science/r/chronoblox-BE82


the following scenario: S0 has two node groups, a core and a periph-
ery; until S3, group populations slightly change (i.e., some nodes
enter or leave the graph, while others move from the periphery to
the core); with S4 and S5 a higher proportion of periphery node pop-
ulation changes; a second periphery appears in S6; with S7, 75% of
each of the three node groups are renewed while preserving the
meso-level structure; S8 witnesses the emergence of a cluster; S9
features again a 75% renewal of each node group; finally with S10,
the population of each group slightly changes as was the case with
(S1, ...,S5). On the whole, this scenario configures a variety of pos-
sible changes —from conserving the graph structure while chang-
ing node labels, to changing the graph structure while keeping node
labels— in order to illustrate and validate the expected behavior of
Chronoblox in such cases.

For node group detection, we use both inferential and descrip-
tive approaches to showcase the genericity of Chronoblox. We
compute two meta-graph sequences: Σ (using a minimal descrip-
tion length degree-corrected SBM unbiased towards cluster struc-
tures [18]) and Σ′ (using Louvain [7]).

Figure 3A shows the chronophotography of Σ. The initial pe-
ripheral group occupies the upper part of the visualization while
the core is placed at the bottom. Chronoblox reflects the popula-
tion changes from S0 to S3 with a slight shift from left to right.
The rotation starting with S4 conveys the turnover affecting the first
peripheral group and also foreshadows the emergence of the sec-
ond one with S6. Significant population changes in S4 to S6 induce
a macro-scale modification of the composition of the node groups
of the corresponding Σ meta-graphs, correctly resulting in a visi-
ble change in the areas where these newer meta-graphs are posi-
tioned. The subsequent major population turnover in S7 triggers a
pronounced jump to the right, with S8 marking a further expansion
to the left to integrate the fourth group. The second major turnover
of S9 once again leads to a big jump. Overall, Chronoblox manages
to depict the transition from a core-periphery structure to a more
assortative (clustered) system and to meaningfully translate graph-
ically all the events described in its generative scenario.

The chronophotography of Σ′, in Figure 3B, is less straightfor-
ward to interpret, for good reason too. Indeed, being less suited
to the chosen core-periphery synthetic structure, Louvain breaks it
down into a multitude of clusters that undergo changes which are
weakly aligned with the graph overarching structure and the se-
quence scenario. We nonetheess still observe marked jumps that
correspond to the population changes, first of S4 and S5, then of S7
and S9, with the meta-graphs occupying distinct areas. These differ-
ences highlight the importance of carefully selecting a node group-
ing approach which likely matches the underlying group struc-
ture of the graph, as they naturally affect the resulting chronopho-
tography, eventually telling distinct evolutionary stories. As we
shall now see with our empirical application, a Louvain-based node
grouping approach would be more adapted to a sequence of graphs
dominated by a cluster rather than a core-periphery structure.

5 APPLICATION

We next use a real-world Twitter/X retweet network of users dis-
cussing the topic of “Impact Investing” (II) [11], based on a collec-
tion of 1.89M tweets posted between 2009 and 2021 using any term
belonging to a set of II-related hashtags. After removing weakly
active users (posting less than a tweet a month on average or less
than a year apart), we infer likely home countries from geoloca-
tion shared in users’ profiles and focus on the vast majority of
users coming from English-speaking countries — USA, UK, Aus-
tralia and Canada. We end up with a dataset of 8267 users and
over 100k timestamped links, that we divide into a sequence of
yearly snapshots: (X2009, ...,X2021). We finally construct two se-
quence of meta-graphs using SBM (Ξ2009, ...,Ξ2021) and Louvain
(Ξ′

2009, ...,Ξ
′
2021), shown respectively in Figure 2 and Figure 1.
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Figure 3: Chronophotographies of the synthetic graph sequences.
(A) Nodes are grouped via the SBM method (interactive version), (B)
Nodes are grouped via the Louvain algorithm (interactive version).

This retweet network reflects an online counterpart of a social
world that has historically been built up locally, whereby differ-
ent versions of the II movement originated in the US and the UK
and later circulated and spread country by country [11]. We can
thus hypothesise geographical homophily to be a core element of
the graph structure, reflecting the geographical consistency of these
regional worlds. The chronophotography of Ξ′ in Figure 1B ap-
pears to confirm this. First, each node group is colored according
to the most frequent country of its nodes, which very often repre-
sents the majority as well: node clusters are geographically homo-
geneous, while enjoying a certain amount of connection with other
clusters. Moreover, the curvilinear motion of the sequence of phase
graphs reveals that these communities underwent a gradual popula-
tion change — in parallel, as the smooth rotation dynamics exhibits.
Finally, the analysis of distances in the common visualization space
yields further insights on the sequence. On the one hand, the lack
of sudden jump indicates that this online, regionally fragmented
world, has developed without major upheaval. On the other hand,
the external arc, which is generally made of node groups dominated
by the US (also the highest node population in the network), occu-
pies and travels more space, hints at a further benefit whereby the
resolution of the common embedding space increases when under-
lying node group populations are bigger and more diverse.

The chronophotography of Ξ additionally suggests that there is
more at stake than just assortativity. For instance, the Canadian (or-
ange) and British (light blue) node groups of Figure 2D exhibit the
same core-periphery pattern that had been observed in Σ, evolving
on parallel trajectories, belonging each to one lineage (one core, one
periphery) that reflects the inter-temporal consistency and gradual
change of both core and periphery populations, respectively.

6 CONCLUDING REMARKS

The chronophotographies produced by Chronoblox show just how
crucial the choice of a node grouping method is when it comes to vi-
sualizing dynamic graphs: each method reveals distinct and specific
evolutionary processes. In this respect, one of Chronoblox’s main
strengths is that it is totally agnostic about the initial structural prop-
erties of the observed network, as well as those of the node groups
shaped afterwards. This modularity allows Chronoblox to easily
address a wide variety of research questions by swapping grouping
methods or similarity measures at will. However, we would like
to point out that Chronoblox cannot currently display more than a
thousand node groups at a time. Future works will lead us to con-
sider zooming and intra-temporal aggregation systems in order to
visualize the evolution of larger or longer networks.

https://lobbeque.github.io/chronoblox_examples/toy_model_sbm.html
https://lobbeque.github.io/chronoblox_examples/toy_model_louvain.html
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