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1 Introduction

A key entry in the AdS/CFT dictionary [1–3] is the relation between the bare mass, m0,
of a point particle in the bulk and the scaling dimension, ∆, of the dual CFT operator.
For a free scalar particle in AdSd+1

∆ = d

2 +

√
(m0ℓ)2 + d2

4 = m0ℓ + d

2 + d2

8m0ℓ
+ · · · (1.1)

where ℓ is the AdS radius which we set henceforth equal to one. In the world-line formalism
one finds ⟨O(x)O(y)⟩ ∼ e−m0D, where O is the dual CFT operator inserted at the points x and
y on the Poincaré boundary, D = 2 log(|x−y|/ϵ) is the geodesic distance between these points
and ϵ is the boundary cutoff. This explains the leading term in the expansion (1.1). The next
term comes from Gaussian quantum fluctuations,1 and subleading ones from the non-linearities
of the point-particle action which are conveniently resummed by the Klein-Gordon equation.

Such corrections are negligible if the Compton wavelength of the particle is much smaller
than the AdS radius, m−1

0 ≪ 1. In addition, for the point-particle description to stay valid
the AdS radius must be much larger than the Schwarzschild radius, r d−2

S ∼ GN m0 ≪ 1.
In the language of ref. [4] one may refer to the range 1 ≪ m0 ≪ 1/GN as that of heavy
but not huge operators. The latter correspond to black-hole micro-states for which the
world-line approximation breaks down and the geometry thickens, as illustrated in figure 1.
Whether or not the dual ‘banana-shaped’ geometry is a smooth horizonless fuzzball [5], a

1Which in general depend on the particle’s spin.

– 1 –



J
H
E
P
0
8
(
2
0
2
4
)
0
2
8

yx x y

Figure 1. A ‘banana-shaped’ geometry (right) replaces the geodesic world-line (left) when GN m0 ⪆ 1.
The AdS boundary is in grey. The broken line on the left is a virtual graviton that screens the bare
mass parameter of the point-particle action.

bound state or a black hole, mass cannot be defined locally anymore. In the world-line
formalism virtual gravitons screen the bare mass parameter m0. But an invariant energy
does exist in global AdS [6, 7], and it coincides (up to a Casimir subtraction) with the
dilatation charge ∆. The existence of this invariant charge makes it possible to count the
microscopic bulk states in the dual CFT.

All this is well known. The question that we would like to address here is whether the
holographic dictionary contains a similar entry for the tension of p-dimensional branes. A
brane in AdS can be compact, in which case its only gravitational charge is energy, but it may
also have infinite extent and intersect the boundary along a p-dimensional defect [8–11]. It
should in this case be possible to give an invariant definition of tension on the AdS boundary.
When a dual Defect Conformal Field Theory (DCFT) exists, the definition should only
depend on its data.2 As for point particles, it must also reduce to the bare Nambu-Goto
tension, T

(0)
p , in the limit of a thin, heavy but not huge brane (i.e. when 1 ≪ T

(0)
p ≪ GN T

(0)
p ).

We will argue that two natural candidates fit the bill:

(I) The integrated one-point function of the dilatation current,

T (I)
p :=

(
d − 1

d − p − 1

)‹
dsj⟨⟨Jj⟩⟩ (1.2)

(II) The norm, CD, of the displacement operator

T (II)
p := CD

πp/2Γ(p
2 + 1)

(p + 2)Γ(p + 1) . (1.3)

Here ⟨⟨· · · ⟩⟩ denote DCFT correlation functions in Rd, the defect spans a Rp subspace, and the
integral is over the (hyper)sphere around the defect in the transverse R(d−p). The dilatation
current is Jj = xmTmj , and the CFT stress tensor obeys the conservation equation

∂mT mj = δ(d−p)(x)Dj (1.4)

with j labelling transverse directions. Eq. (1.4) fixes unambiguously the norm of the dis-
placement operator Dj , which becomes a piece of DCFT data [12]. The two definitions
are illustrated in figures 2 and 3.

2But the existence of such a dual is not necessary — DCFT language is just a proxy for the asymptotic
AdS data.
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S(d−p−1)

ℝd

ℝp𝒥

Figure 2. The gravitational tension is the integral of
the dilatation current J over a sphere around the defect.

ℝp

Di

Dj

ℝ
(d − p)

Figure 3. The inertial tension, or
‘stiffness’, is given by the 2-point,
function of the displacement.

Definition (I) is the natural extension of the dilatation charge ∆ ≃ m0, to which it
reduces for p = 0. It is obtained from the graviton one-point function in AdS, so we refer to
it as the gravitational tension. Note that for p > 0 the integral in (1.2) is not a topological
charge, and that contrary to local operators planar extended defects do not break scale
invariance. Note also that in the case of domain walls both ⟨⟨Jj⟩⟩ and d − p − 1 are zero,
so the gravitational tension is not defined.

Definition (II), on the other hand, only makes sense for extended defects (p > 0). It is a
measure of stiffness and we refer to it as kinematic or inertial tension. For line defects (p = 1)
it is a multiple of the Bremsstrahlung function [13–15], and in the special case d = 2, where
a line defect is also an interface, it is proportional to the energy reflection coefficient [16].
Our interest in the definition of tension was spurred by holographic calculations in this latter
context [17–20], and part of our motivation for the present work was to generalise them
to higher dimensions. We will not discuss boundaries in this work — viewed as limits of
interfaces they have infinite tension [17].

We should stress that definition (I) is reminiscent of earlier proposals for an invariant
tension [21–26] which also involve the asymptotic behaviour of the metric. These authors
considered spacetimes whose asymptotics were ‘transverse flat’ or ‘planar empty AdS’, and
they assumed the existence of an (exact or asymptotic) spacelike Killling isometry. Such an
isometry is not required for our definitions. Although the AdS boundary in figures 2 and 3
is flat and the defect linear, all one really needs is that the radius of the sphere and the
separation of the two displacement insertions be much smaller than all other DCFT scales.

Our main technical result will be to show, using Witten diagrams, that the right-hand
sides of (1.2) and (1.3) reduce to the bare Nambu-Goto tension for classical probe branes. In
this calculation normalisation factors matter and are subtle. We will fix them by verifying
that the two-point function ⟨⟨T mnDk⟩⟩ obeys, in the above limit, the Weyl and diffeomorphism
Ward identities [12] of the (putative) dual DCFT.

For defects of dimension p = 2 or 4 the displacement norm and one-point function of the
stress tensor are related to Graham-Witten anomalies, see [27] for an updated summary. In
the Nambu-Goto limit these can be obtained from the renormalised volume (alias ‘Willmore

– 3 –
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energy’) of minimal submanifolds [28, 29]. The use of Witten diagrams is a lowbrow method
for computing such volumes for all p and d.3

The inertial and gravitational tensions are not, in general, equal beyond the thin-classical-
probe limit. But for certain Wilson-line and surface defects in d = 4 theories, superconformal
Ward identities lead to a linear relation between CD and the expectation value of the stress-
energy tensor [30, 31]. This in turn implies, as we will see, that the relation T

(I)
p = T

(II)
p

is exact. Extrapolating all known results the authors of ref. [31] proposed a linear relation
between CD and ⟨⟨T mn⟩⟩ for all superconformal defects with sufficient (though unspecified)
supersymmetry. When expressed in terms of the tensions defined in the present paper this
conjecture acquires the transparent physical meaning T

(I)
p = T

(II)
p .

The rest of the paper is organised as follows. In section 2 we show using Witten diagrams
that (1.2) and (1.3) reduce to the Nambu-Goto tension for thin classical probes. We assume
a natural but adhoc normalisation for the displacement source. In section 3 we calculate in
the same limit the two-point function ⟨⟨T mnDk⟩⟩, and show that it obeys the DCFT Ward
identities [12] which relate it to the displacement norm CD and to ⟨⟨T mn⟩⟩. This confirms the
normalisations of the previous section. In section 4 we consider some specific defects, check
that our calculations are consistent with results obtained by other methods, and comment
on the quantum and gravitational corrections. Section 5 explains how supersymmetry can
protect the relation T

(I)
p = T

(II)
p from such corrections and compares this relation to the

conjecture of ref. [31]. This part deserves further study. The constraints on DCFT correlation
functions are reviewed, for the reader’s convenience, in appendix A.

2 Nambu-Goto probes

To show that the right-hand sides of (1.2) and (1.3) reduce to the Nambu-Goto tension
for thin classical probes we will use Witten diagrams [3, 32]. These have been applied to
DCFT [33–41] mostly in order to compare to exact results (from localisation and integrability)
for superconformal Wilson lines. Our calculations are simpler but the focus is different. We
are mainly concerned with the normalisation of bulk and defect sources.

2.1 Inertial tension

We begin with the definition (1.3). The norm of the displacement operator is read from
the two-point function4

⟨⟨Di(τ⃗)Dj(τ⃗ ′)⟩⟩ = CD δij

|τ⃗ − τ⃗ ′| 2p+2 , (2.1)

where τ⃗ and τ⃗ ′ are points on the defect. Both the norm of Dj and its scaling dimension,
∆ = p + 1, are part of the DCFT data. The first task is to compute them on the gravity side.

The metric of Euclidean AdSd+1 in Poincaré coordinates is

ds2 = δµνdyµdyν

(y0)2 with µ, ν = 0, 1, · · · , d. (2.2)

3It also allows in principle the systematic calculation of quantum corrections.
4Double brackets will always stand for normalised correlation functions in the background of the defect,

both for bulk and for defect operators.
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The static brane sits at yj = 0 for j = p + 1, · · · , d. It breaks the AdSd+1 isometries to
SO(1, p+1)×SO(d−p), but this residual symmetry does not act simply on the coordinates yµ.
As realized in [33], the system of coordinates in which the residual isometries are manifest is5

y0 = x0
(
1− 1

4 |x⊥|2

1 + 1
4 |x⊥|2

)
, ya = xa for a = 1, · · · , p

and yj = x0
(

xj

1 + 1
4 |x⊥|2

)
for j = p + 1, · · · , d (2.3)

with |x⊥|2 =
∑

j xjxj . The metric in these coordinates reads

ds2 = δαβdxαdxβ

(x0)2

(
1 + 1

4 |x⊥|2

1− 1
4 |x⊥|2

)2

+ δijdxidxj

(1− 1
4 |x⊥|2)2 . (2.4)

The unbroken SO(1, p + 1) acts now only on the xα, not the xj .
Let Xµ(τ) be the embedding of the p-brane in AdSd+1. The Nambu-Goto action is

proportional to the bare tension T
(0)
p ,

ING = T (0)
p

ˆ
d p+1τ

√
det(ĝαβ) where ĝαβ = gµν(X)∂Xµ

∂τα

∂Xν

∂τβ
(2.5)

is the induced world-volume metric. Working in the static gauge, Xα = τα, and expanding
in small transverse fluctuations gives

ING = T (0)
p

ˆ
d p+1τ

√
ḡ

1 + 1
2
∑

j

(ḡαβ∂αXj∂βXj + (p + 1)XjXj) + · · ·

 . (2.6)

Here ḡαβ = δαβ/(τ0)2 is the metric of AdSp+1 and the dots are terms quartic or higher in
Xj . These contribute quantum corrections to the invariant tension that are suppressed by
inverse powers of T

(0)
p . The action (2.6) describes (d − p) scalar fields with mass m2 = p + 1

living in AdSp+1. From the relation m2 = ∆(∆− p) one sees that the dual operators have
∆ = p + 1, which is the expected dimension of Dj [33].

We extract CD following the standard AdS/CFT recipy [32]. The on-shell p-brane
coordinates are given at leading order by

Xj(τ0, τ⃗) =
ˆ

dpτ ′K∆(τ0, τ⃗ ; τ⃗ ′)Xj(0, τ⃗ ′), (2.7)

where τ⃗ , τ⃗ ′ are p-component vectors and

K∆(τ0, τ⃗ ; τ⃗ ′) = Γ(∆)
π

p
2 Γ(∆− 1

2p)

[
τ0

(τ0)2 + |τ⃗ − τ⃗ ′|2
]∆

(2.8)

5Here and in what follows we use letters from the beginning of the Greek and Latin alphabets for the
directions along the brane, respectively the defect; early middle Latin letters (i, j, k) for the transverse
directions; and late middle Greek and Latin letters for all AdS directions, respectively those of the AdS
boundary. Context will hopefully help avoid confusion. A quick mnemonic is the Greek/Latin correspondence
xµ = (x0, xm) and xα = (x0, xa).
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is the usual bulk-to-boundary propagator normalised in order to approach ϵp−∆δ(p)(τ⃗ − τ⃗ ′)
in the limit τ0 = ϵ → 0. The generating functional of the DCFT is found by inserting (2.7)
in the Nambu-Goto action,

Z = 1
2T (0)

p

(2∆− p)Γ(∆)
πp/2Γ(∆− 1

2p)

ˆ
dpτ

ˆ
dpτ ′Xi(0, τ⃗)Xj(0, τ⃗ ′) δij

|τ⃗ − τ⃗ ′| 2p+2 , (2.9)

with Xj(0, τ⃗) the renormalised sources for the dual operators which we take to be the Dj .
Eq. (2.9) differs from the naive on-shell action by an extra factor (2∆ − p)/∆ which will
be important for us here. It was first noticed in homogeneous CFTs by insisting that the
regulated action be consistent with conformal Ward identities [32], and it was later shown to
arise from the boundary limit of the bulk-to-bulk propagator [42, 43].

Setting ∆ = p + 1 in (2.9) leads to the following relation between CD and the Nambu-
Goto tension

CD = T (0)
p

(p + 2)Γ(p + 1)
πp/2Γ(p

2 + 1)
+ · · · (2.10)

with dots standing for the quantum and gravitational corrections that we neglected.6

Comparing eq. (2.10) to eq. (1.3) we see that T
(II)

p = T
(0)
p + · · · , as announced in the

introduction.
But there are reasons to feel uneasy about this calculation. How do we actually know

that Xj(0, τ⃗) is the properly-normalised source of the displacement operator ? This should
be fixed by the conservation eq. (1.4) which relates Dj to T mn, and hence the brane
coordinates to the graviton. The relative normalisation of these latter is fixed by their
transformation under diffeomorphisms, δgµν = ∇µξν + ∇νξµ and δXµ = ξµ(X). But the
Fefferman-Graham expansion of the metric is singular in the coordinates xµ, and the existence
of an invariant regulator is not clear. Alternatively, one may argue following ref. [32], that the
normalisation of the sources in (2.9) is determined by conformal Ward identities in AdSp+1.
But contrary to the homogeneous CFTs considered in this reference, the defect does not
have its proper stress-energy tensor.

Despite these doubts eq. (2.10) turns out to be correct. We will show this using the
DCFT Ward identities in section 3.

2.2 Gravitational tension

First we turn to the calculation of the gravitational tension. This depends on the one-point
function of the bulk stress tensor which is fixed, up to an undetermined parameter aT, by
the unbroken conformal symmetry. The result [12] (see also appendix A) reads

⟨⟨T ab⟩⟩ = aT

(
d − p − 1

d

)
δab

|x⊥|d
, ⟨⟨T aj⟩⟩ = 0, (2.11a)

⟨⟨T ij⟩⟩ = aT

[
xixj

|x⊥|d+2 −
(

p + 1
d

)
δ ij

|x⊥|d

]
. (2.11b)

6Note that the leading term only depends on the defect dimension p, not on d.

– 6 –
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One can verify that ⟨⟨T mn⟩⟩ is traceless and conserved. Positivity of the energy density in the
Lorentzian theory requires aT to be negative. From eq. (2.11b) we find the radial component
of the dilatation current in the transverse space

xmxj

|x⊥|
⟨⟨T mj⟩⟩ =

aT
|x⊥|d−1

(
d − p − 1

d

)
. (2.12)

Integrating over the sphere in the definition (1.2) gives

T (I)
p = −aT

2π(d−p)/2(d − 1)
Γ(1

2(d − p))d
. (2.13)

This expresses T
(I)

p in terms of the DCFT parameter aT. As already noted in the introduction,
aT = 0 for defects of codimension-one for which the above definition of tension fails.

We want now to calculate aT in the thin-brane limit. To this end let gµν = ḡµν + hµν

with ḡµν the metric of the bulk AdS. To ensure a smooth Fefferman-Graham expansion we
must use the Poincaré coordinates yµ for the graviton. The Fefferman-Graham expansion
of defect fields, on the other hand, is regular in the coordinates xµ, whence the difficulties
of regularisation mentioned in the previous subsection. Fortunately at the order at which
we will work the change of coordinates (2.3) is simple,

yα = xα(1 + O(x2
⊥)) and yj = x0xj(1 + O(x2

⊥)). (2.14)

Thus, up to corrections of order O(x2
⊥), the static-gauge parametrisation is unchanged and

we only need to rescale the transverse brane coordinates, Y j = τ0Xj . Furthermore, the usual
ultraviolet cutoffs of AdSd+1 and AdSp+1 are the same at this leading order, x0 = y0 = ϵ.
Expanding the Nambu-Goto action (2.5) in powers of hµν and Y j , and keeping only the
terms of order O(h) and O(hY j), we find

ING = 1
2T (0)

p

ˆ
d p+1τ

√
ḡḡαβδĝαβ

with δĝαβ = (1 + Y j∂j)hαβ + hαj∂βY j + hβj∂αY j + · · · . (2.15)

Note that after replacing Y j by τ0Xj manifest covariance is lost. This is because the metric
perturbation transforms non-covariantly under the isometries of AdSp+1.

The leading contribution to ⟨⟨T mn⟩⟩ comes from the graviton tadpole in (2.15). This
simplest Witten diagram is shown in figure 4. It has a bulk-to-boundary graviton prop-
agator integrated over the world-volume of the static p-brane. The graviton propagator
reads [3, 32, 44]

K mn
µν (x, y) =

C
[2]
∆

(y0) 2

(
y0

|x − y|2

)∆

Jµr(x − y)Jνs(x − y)P rs; mn (2.16)

where x = (0, x⃗) is the point on the boundary,

C
[2]
∆ = 2(∆ + 1)Γ(∆− 1)

πd/2Γ(∆− d/2)
, Jµν(z) = δµν − 2zµzν

z2 (2.17)

and P rs; mn = 1
2(δ

rmδsn + δrnδsm)− 1
d

δrsδmn. (2.18)
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x∥

τ0

x⊥

Figure 4. The Witten diagrams calculated in this and the following section. The graviton propagator
(broken black line) and the displacement-field propagator (broken blue line) stretch from the thin
brane in the AdS interior to a boundary point in the bulk, respectively on the defect. When the only
external leg is the graviton, x∥ can be set to zero.

Recall that in our conventions µ, ν ∈ [0, d] are bulk indices whereas m, n, r, s ∈ [1, d] are
boundary ones. The above propagator is valid for a spin-2 field of any mass, the massless
graviton has ∆ = d.7

The tadpole in (2.15), with the AdSp+1 metric ḡαβ = (τ0)−2δαβ, gives

⟨⟨T mn(x)⟩⟩ = −T
(0)
p

2

ˆ
dp+1τ

(τ0)p−1 δαβK mn
αβ (x, τ). (2.19)

Without loss of generality we take the boundary point to be at xa = 0. The point in the
interior lies on the brane at yµ = (τα, 0). We perform the index contractions in two steps. First

δαβJαr(x − y)Jβs(x − y) = δ ∥
rs +

4zrzs|τ |2

|z|4
+ 2(τrzs + zrτs)

|z|2
, (2.20)

where δ
∥
rs is the Knonecker symbol in the subspace spanned by the defect, zµ = xµ − yµ =

(−τα, xj) and |z|2 = |τ |2 + |x⊥|2. Contracting next with the tensor P rs; mn and noting that
δrszrzs = |z|2 − (z0)2 gives

δαβJαrJβs P rs; mn = δ mn
∥ + 4zmzn|τ |2

|z|4
+ 2(τmzn + zmτn)

|z|2

− 1
d

δmn

[
p + 8|τ |2

|z|2
− 4(τ0)2|τ |2

|z|4
− 4(τ0)2

|z|2

]
.

(2.21)

For the transverse components ⟨⟨T ij⟩⟩ the above tensor structure reads

4xixj |τ |2

|z|4
− 1

d
δij

[
p + 8|τ |2

|z|2
− 4(τ0)2|τ |2

|z|4
− 4(τ0)2

|z|2

]
. (2.22)

7There is a factor of 2 missing in eq. (43) of ref. [44]. The bulk-to-boundary propagator of a field dual to
an operator of dimension ∆ is (2∆ − d) times the bulk-to-bulk propagator instead of (∆ − d/2) as in [44].
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The mixed components ⟨⟨T aj⟩⟩ vanish by SO(p) symmetry, and in computing ⟨⟨T ab⟩⟩ one
can replace for the same reason

τaτ b → δab

p
|τ⃗ |2.

The integrand in eq. (2.19) thus only depends on |τ⃗ |2 and τ0.
It is simplest to extract the DCFT parameter aT by looking at the term proportional to

xixj . Inserting (2.22) in (2.19) and comparing with the one-point function (2.11b) gives

− aT
|x⊥|d+2 = 2T (0)

p C
[2]
d

ˆ
dp+1τ

(τ0)p−d+1
|τ |2

(|τ |2 + |x⊥|2)d+2 . (2.23)

The integral is computed using Schwinger’s trick as follows:

− aT
|x⊥|d+2 = 2T (0)

p C
[2]
d

ˆ
dτ0 d pτ

(τ0)p−d+1
(τ0)2 + |τ⃗ |2(

(τ0)2 + |τ⃗ |2 + |x⊥|2
)d+2

= 2T
(0)
p C

[2]
d

Γ(d + 1)

ˆ
dssd

(
1− |x⊥|2s

d + 1

)
e−s|x⊥|2̂ dτ0dpτ

(τ0)p−d+1 e−s(τ0)2−s|τ⃗ |2

= T
(0)
p C

[2]
d

Γ(d + 1)Γ
(

d − p

2

)
πp/2
ˆ

dssd/2
(
1− |x⊥|2s

d + 1

)
e−s|x⊥|2

= 1
|x⊥|d+2

T
(0)
p C

[2]
d

Γ(d + 1)Γ
(

d − p

2

)
πp/2Γ(

d
2 + 1)d

2(d + 1) .

Inserting the expression for C
[2]
d from (2.17) leads after a little algebra to

−aT =
T

(0)
p Γ(d−p

2 )d
2(d − 1)π(d−p)/2 + · · · (2.24)

This expresses the DCFT parameter aT in terms of the Nambu-Goto tension in the classical
thin-brane probe limit. Comparing to eq. (2.13) we see that T

(I)
p = T

(0)
p + · · · as announced.

The terms in ⟨⟨T mn⟩⟩ proportional to δab and δij can be computed similarly and have the
general form (2.11a), (2.11b) dictated by conformal symmetry. We leave this as an exercise for
the reader, and move on to the more involved calculation of the two-point function ⟨⟨T mn Dj⟩⟩.

3 Ward identities

We have explained in section 2.1 why normalising the displacement operator in Witten
diagrams is tricky. We will now settle the issue by checking the DCFT Ward identities that
have been derived in ref. [12]. They are of the form ⟨⟨TD⟩⟩ ∼ ⟨⟨T ⟩⟩+ ⟨⟨DD⟩⟩ and fix therefore
unambiguously the normalisations of both Dj and T mn.

3.1 The DCFT identities

The two-point function ⟨⟨T mn Dj⟩⟩ is determined by the unbroken conformal and rotation
symmetry modulo three unknown parameters b1,2,3 (which are called b1,2,3

TD in ref. [12]). This
is most easily derived in the lightcone formalism as reviewed in appendix A. The result is

⟨⟨T mn(x)Dj(0)⟩⟩ = |x⊥|p−d

|x|2p+2 F mn; j(x) (3.1)

– 9 –
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with

F ab; j(x) = 1
d
[(d − p − 1)b2 − b1]δabxj + 4b1

xaxbxj |x⊥|2

|x|4
, (3.2a)

F bi; j(x) = − b3δijxb |x⊥|2

|x|2
+ [4b3 − 2b1]

xixjxb

|x|2
+ 4b1

xixjxb|x⊥|2

|x|4
, (3.2b)

F ik; j(x) = − 1
d
[(p + 1)b2 + b1]δikxj + b3

2 δj(ixk)
(
1− 2|x⊥|2

|x|2

)

+ (b1 + b2 − b3)
xixkxj

|x⊥|2
+ [2b3 − 4b1]

xixkxj |x⊥|2

|x|2
+ 4b1

xixkxj

|x|4
. (3.2c)

Recall that in our notation a, b = 1, · · · , p and i, j, k = p+1, · · · , d. Note also that because of
the Dj insertion we cannot here set xa = 0 as before, see figure 4. Thus |x|2 = |x∥|2 + |x⊥|2.

Eqs. (3.1) and (3.2) follow from the unbroken SO(1, p + 1)× SO(d − p). But there are
also constraints coming from the fact that the displacement operator encodes the action
of the broken SO(1, d + 1) symmetries on the defect. These relate the one-point function
of any primary operator O to its two-point function with the displacement operator Dj ,
schematically ⟨⟨OD⟩⟩ ∼ ⟨⟨O⟩⟩. When O is the stress tensor these identities imply [12]

(p + 1)b2 + b1 = d

2b3 , b3 = 2 p+2π−(p+1)/2Γ
(

p + 3
2

)
aT. (3.3)

The remaining free parameter is determined by the conservation (1.4) which relates a specific
combination of ⟨⟨TD⟩⟩ to ⟨⟨DD⟩⟩ . This gives [12]

2p b2 − (2d + p − 2)b3 =
(d − p)Γ(d−p

2 )
π(d−p)/2 CD. (3.4)

Together eqs. (3.3) and (3.4) can be used to express b1, b2 and b3 in terms of the DCFT
data aT and CD. We want to verify that these relations are satisfied when the AdS fields
sourcing T mn and Dj are normalised as in section 2.

3.2 The gravity calculation

The leading-order Witten diagram for ⟨⟨TD⟩⟩ has one bulk-to-boundary propagator for the
graviton and one for the displacement field. They meet at a quadratic vertex (∼ hX) on the
p-brane, as shown in figure 4. Using the vertices in (2.15) and recalling that Y j = τ0Xj gives

⟨⟨T mn(x)Dj(0)⟩⟩ = −T
(0)
p

2

ˆ
dp+1τ

(τ0)p−1 δαβ

[
τ0 Kp+1(0, τ) ∂

∂wj
K mn

αβ (x, w)
∣∣
w=τ

+ K mn
αj (x, τ) ∂

∂τβ
(τ0Kp+1(0, τ)) + K mn

βj (x, τ) ∂

∂τα
(τ0Kp+1(0, τ))

]
. (3.5)

Here Kp+1(0, τ) is the scalar propagator for weight ∆ = p+1, and in the top line wµ should be
set equal to (τα, 0) only after having taken the derivative of the propagator in the direction j.

The computation of the above diagram is straightforward but tedious. Below we present
a sample calculation of the xixjxk terms in (3.2c). All other terms can be handled in the
same way.
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The contraction δαβK ik
αj was already performed in eq. (2.22). Only the first term in

this expression will make a contribution proportional to xixjxk. Inserting the propagators
in (3.5) and replacing ∂/∂wj by −∂/∂xj we find

⟨⟨T ik(x)Dj(0)⟩⟩ = −4T (0)
p C

[0]
p+1C

[2]
D xixjxkI(x), (3.6)

where I is the integral

I(x) =
ˆ

dp+1τ(τ0)d+1
[

(d + 2)|τ |2

(|τ |2 + |x⊥|2)d+3((τ0)2 + |τ⃗ + x⃗∥|2)p+1

+
(p + 1)(|τ |2 − |x⃗∥|2)− ((τ0)2 + |τ⃗ + x⃗∥|2)
(|τ |2 + |x⊥|2)d+2((τ0)2 + |τ⃗ + x⃗∥|2)p+2

]
, (3.7)

and

C
[0]
p+1 = Γ(p + 1)

πp/2Γ(p
2 + 1)

, C
[2]
d = 2(d + 1)Γ(d − 1)

πd/2Γ(d
2)

(3.8)

are the prefactors in the scalar and spin-2 propagators. One can decompose I(x) into a
sum of primitive integrals

IA,B,C =
ˆ

dp+1τ

(τ0)p+1
(τ0)A

((τ0)2 + |τ⃗ − x⃗∥|2 + |x⊥|2)B((τ0)2 + |τ⃗ |2)C
(3.9)

= 1
Γ(B) Γ(C)

ˆ
dp+1τ

(τ0)p+1−A

ds

s1−B

dt

t1−C
e−(s+t)(τ2

0 +|τ⃗ |2)e−s|x⊥|2e−st |x⃗∥|2/(s+t).

Here we have used Schwinger’s trick, and the last exponential in the lower line arises from
completing the squares of τ⃗ and x⃗∥. Doing the τ integrations and inserting 1 =

´
dρδ(ρ −

s − t) gives

IA,B,C =
πp/2Γ(A−p

2 )
2Γ(B)Γ(C)

ˆ
ds

s1−B

dt

t1−C

dρ

ρA/2 e−st|x⃗∥|2/ρe−s|x⊥|2δ(ρ − s − t).

Rescaling the dummy integration variables s and t by ρ, and then doing the ρ integration gives

IA,B,C =
πp/2Γ(A−p

2 )Γ(B + C − A
2 )

2Γ(B)Γ(C)

ˆ
dsdt sB−1tC−1

(st|x⃗∥|2 + s|x⊥|2)B+C−A/2 δ(1− s − t)

=
πp/2Γ(A−p

2 )Γ(B + C − A
2 )

2Γ(B)Γ(C)

ˆ
dt

(1− t)A/2−C−1tC−1

(t|x⃗∥|2 + |x⊥|2)B+C−A/2

=
πp/2Γ(A−p

2 )Γ(B + C − A
2 )Γ(

A
2 − C)

2Γ(B)Γ(A
2 )|x|2(B+C)−A 2F1

(
A

2 − C, B + C − A

2 ,
A

2 ,
|x⃗∥|2

|x|2

)
. (3.10)

In the last step we used Euler’s representation of the hypergeometric function, valid under
the assumptions Re(A− 2C) > 0 and Re(C) > 0. For all IA,B,C in the decomposition of (3.7)
these hypergeometric functions reduce to simple functions.

Putting together eqs. (3.6) to (3.10) gives the xixjxk term of ⟨⟨T ik(x)Dj(0)⟩⟩. After some
straightforward algebra the result can be shown to agree with the lower line of (3.2c) for
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the following values of the coefficients:

b1 = p + 2
2 η, b2 = d2 − p − 2

2(p + 1) η, b3 = dη (3.11)

with η = −T (0)
p

2p+1Γ(d−p
2 )Γ(p+3

2 )
(d − 1)π(d+1)/2 (3.12)

It takes a little more algebra to check that the above parameters b1, b2, b3 and the leading-order
values of CD, aT computed in the previous section, eqs. (2.10) and (2.13), satisfy the Ward
identities (3.3) and (3.4) on the nose. This confirms the source normalisations, as announced.

As a check of consistency we have computed the full Witten diagram (3.5) and verified
that it reproduces the expressions (3.1), (3.2) with the above values of the parameters bi.

4 Examples

We consider now some holographic defects whose parameters CD and aT have been computed
by other means. We will check that these reduce to (2.10) and (2.24) in the appropriate
limit, and comment on the quantum (∼ 1/T

(0)
p ) and gravitational (∼ GN ) corrections to

the invariant tensions.

4.1 Maldacena-Wilson lines

The best-studied holographic defect is the half-BPS Maldacena-Wilson line of N = 4 super
Yang-Mills [8]. Its displacement norm is related to many interesting quantities, in particular
to the Bremstrahlung function B(λ, N) which controls the energy emitted by an accelerating
heavy quark. Here N is the rank of the gauge group U(N), and λ is the ’t Hooft coupling.
As shown in refs. [14, 15] the following relations hold:

CD = 12B = 6
π2 λ∂λ log⟨W⊙⟩ , (4.1)

where W⊙ is the circular Wilson loop whose expectation value was computed exactly as
a matrix integral [45–47]

⟨W⊙⟩ =
1
N

eλ/8N L
(1)
N−1

(
− λ

4N

)
= 2√

λ
I1(

√
λ) + λ

48N2 I2(
√

λ) + · · · . (4.2)

In this expression L
(a)
n are the Laguerre polynomials and I1, I2 the modified Bessel functions

of the first kind. Using supersymmetric localisation [47] one can derive similar expressions for
the displacement norm of many other superconformal line defects in both d = 4 and d = 3.

In the planar (N → ∞) limit one finds

CD = 3
√

λI2(
√

λ)
π2I1(

√
λ)

= 3
√

λ

π2 − 9
2π2 + O

( 1√
λ

)
. (4.3)

Now the relation between the ’t Hooft coupling and the bare fundamental-string tension is
2πTF ℓ2 =

√
λ, with ℓ the AdS radius that we have set equal to one .8 Inserting this relation

8This is derived by expressing the D3-brane tension and Newton’s constant in terms of the string coupling
and TF [1]. Here TF = T

(0)
1 is the bare string tension.
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in eq. (4.3) gives at the leading order CD = 6TF /π+ · · · , in agreement with our Nambu-Goto
calculation, eq. (2.10), for the case p = 1.

In this example all corrections to the inertial tension defined in eq. (1.3) are known
exactly. Quantum fluctuations of the string, in particular, make contributions that are down
by powers of 1/TF ∼ 1/

√
λ, as expected. They are resummed by the Bessel functions in (4.3).

Gravitational corrections, on the other hand, can be seen from (4.2) to be suppressed by
powers of λ/N2. This is a milder suppression than the naively expected inverse Schwarzschild
radius, r−1

S ∼ (GN TF )−1 ∼
√

λ/N2. The emergence of this new scale is due to S duality.
It can be understood by noting that

λ/N2 ∼ 1/λ̃ ∼ 1/TD,

where λ̃ is the ’t Hooft coupling of the S-dual gauge theory and TD is the D-string tension.
When λ, N ≫ 1 the Compton wavelength of the D-string is larger than the Schwarzschild
radius of the F-string, so corrections of the former to the effective supergravity dominate.

Consider next the gravitational tension defined in terms of the one-point function of the
stress tensor in eq. (2.13). The latter has been also computed exactly [48, 49] with the result
aT = −CD/18. This linear relation follows from superconformal Ward identities [30] which we
will discuss in more detail in section 5. Inserting the above in eq. (2.13) with d = 4, p = 1 gives

T
(I)
F = −3πaT = πCD

6 = T
(II)
F (4.4)

where in the last step we used the definition (1.3). Thus the inertial and gravitational
tensions of the F-string in AdS5×S5 are exactly equal.

4.2 Interfaces in d = 2

The only extended defects in d = 2 CFTs are line defects. Since these have codimension one,
only inertial tension is defined. Integrating eq. (1.4) shows that the displacement operator is
in this case the discontinuity of the stress tensor across the interface. The norm of the former
can therefore be expressed in terms of the two-point function of the latter [12]. Explicitly9

CD = 1
2π2 (cL + cR − 2cLR) (4.5)

where cL, cR are the central charges of the CFTs that live on either side of the interface,
and cLR controls the two-point function of the stress tensor across the interface [50]. As
shown in [16], cLR also controls the (universal) fraction of energy transmitted across the
interface: cLR/cL is the transmitted fraction of energy for excitations coming from the left,
and cLR/cR for those incident from the right.

Although CD can be readily computed in many I(nterface)CFT2 models, much less is
known about it in theories with exact holographic duals.10 One can however compute it in a

9The extra factor of 4π2 in this reference comes from a different definition of the energy-momentum tensor,
Tab = 4π√

g
δS

δgab
as opposed to 2√

g
δS

δgab
. The extra 2π is convenient in two dimensions, but we use the canonical

convention for arbitrary d.
10In the simplest example of Janus interfaces, cLR has been computed in gravity [20] as well as at the

symmetric-orbifold point of the conjectured dual CFT [51]. But how to extrapolate between these two
calculations is unclear.
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bottom-up model of a thin back-reacting 1-brane in AdS3 with the result [17, 18]

cLR = 3
GN

( 1
ℓL

+ 1
ℓR

+ 8πGN T
(0)
1

)−1
, (4.6)

where ℓL and ℓR are the AdS radii on either side of the brane. The brane is here treated
as classical and thin, but its full back reaction is accounted for by solving Israel matching
conditions.

Taking the zero-tension limit of these conditions can be tricky (for a recent discussion
see [52]), but we avoid such subtleties by setting ℓL = ℓR = ℓ, as appropriate for probe
branes. Using the Brown-Henneaux formula [53] c = 3ℓ/2GN and inserting (4.6) in (4.5)
gives (in units ℓ = 1)

CD = 6T
(0)
1 /π

1 + 4πGN T
(0)
1

. (4.7)

This agrees with the Nambu-Goto formula (2.10) for GN → 0. Note also that the Israel
matching conditions repackage the gravitational screening of the bare tension into a simple
denominator.

4.3 Graham-Witten anomalies

As one last check, consider even-p defects which are known to have new Weyl anomalies
of both type-A and type-B [28, 54]. For surface defects (p = 2) in particular there are
three irreducible anomalies

T m
m

∣∣
Defect=

1
24π

(
a(2)R + d (2)

1 K̄i
abK̄

ab
i − d (2)

2 W ab
ab

)
. (4.8)

Here R is the Ricci scalar on the defect, Ki
ab is the traceless part of the extrinsic curvature, and

Wabcd is the pullback of the bulk Weyl tensor. The coefficients d (2)
1 and d (2)

2 are proportional,
respectively, to CD and to aT.11 DCFT calculations give [55–57]

CD = 4d (2)
1

3π2 (d = 4); aT = −
dΓ(d

2 − 1)d (2)
2

12(d − 1)πd/2 (∀d > 3), (4.9)

while from the probe-brane holographic calculation of ref. [28] one finds

d (2)
1 = d (2)

2 = 6πT
(0)
2 (4.10)

for all d > 3. Eliminating the anomaly coefficients gives the p = 2 relations (2.10) and (2.24),
which we obtained from Witten diagrams. Note that the mathematical construction of [28]
fixes the normalisation of the displacement operator consistently with the Ward identities at
leading order; but we don’t know if the cutoff subtleties discussed in sections 2 and 3 can be
incorporated so as to compute quantum and gravitational corrections. Besides giving in one
stroke the leading result for all values of p and d, the expansion in terms of Witten diagrams
is presumably the first step towards a systematic calculation of such corrections.

11This is consistent with the fact that the Weyl tensor vanishes identically in d = 3 where the surface is an
interface and thus aT is zero.
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We can also compare with the results of [27] for p = 4 defects. There are in this case
22 B-type anomalies, two of which are proportional to CD and aT, as in the p = 2 case.
We quote from this reference:

CD = −72
π4 d (4)

1 ; aT =
dΓ(d

2 − 1)
(d − 1)πd/2 d (4)

2 . (4.11)

Furthermore the calculation of the Willmore energy of 5-dimensional submanifolds gives
in the holographic probe limit [27, 29]

d (4)
1 = −π2T

(0)
4 ; d (4)

2 = −π2T
(0)
4

d − 4 . (4.12)

By eliminating d (4)
1 we recover our (d-independent) relation (2.10) for p = 4. Eliminating

likewise d (4)
2 gives

−aT =
dΓ(d

2 − 1)π2T
(0)
4

(d − 1)(d − 4)πd/2 =
dΓ(d−4

2 )T (0)
4

2(d − 1)π(d−4)/2 (4.13)

which matches our eq. (2.24) for p = 4 at leading order.

5 Outlook and a conjecture

The take-away message of this paper is that one can define two invariant notions of holographic
tension: gravitational tension, which is the analog of the ADM mass, and stiffness or inertial
tension. Both reduce to the bare tension T

(0)
p for classical probes coupled to Einstein gravity,

but in general (when they are both defined) they are different.
These tensions are proportional to the DCFT parameters −aT and CD, both of which

are positive in a unitary theory.12 They vanish for topological defects, which do not couple
to the CFT stress tensor and can be deformed freely. An interesting question that we did not
explore is whether these tensions obey a BPS bound when the defect couples to a conserved
p-form current, i.e. when the dual brane is charged.

Another question worth investigating is how tension behaves under fusion. In the thin-
brane model of section 4.2 tensions simply add up [19], but we have checked with d = 2
free-field interfaces [59–61] that the difference between the tension of the fusion product
and the sum of the constituent tensions can have either sign. Note however that in these
examples the tension is inertial since gravitational tension is not defined for 2d line defects.
Such issues may be also relevant for the swampland conjectures that feature extended objects,
see e.g. [62–64].

Here, however, we will conclude by coming back to the observation of section 4.1 that the
inertial and gravitational tensions of the F-string in AdS5×S5 are exactly equal at all orders.

This is related to an interesting physics conundrum, as explained by Lewkowycz and
Maldacena [65]. The Bremstrahlung parameter B = CD/12 controls the energy emitted by

12It was pointed out in ref. [27] that aT is positive for n-fold cover boundary conditions. This is consistent
with the fact that a surplus-angle defect has negative tension, and suggests that such defects might be
pathological. A similar question has been raised in ref. [58].
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an accelerating quark, while the parameter aT controls the energy collected at a distance. If
the two were unrelated, the emitted and collected energies would not be the same. Ref. [65]
attributes this to the difficulty of separating the radiated energy from the self energy of the
quark, and suggests why such a separation might be possible in the case of supersymmetric
Wilson lines.

Whatever the resolution of the conundrum, the technical reason behind the relation (4.4)
is understood [30, 66] and can be sketched as follows. The DCFT Ward identities relate the
one-point function of any primary operator O to its two-point function with the displacement
operator, schematically ⟨⟨O⟩⟩ ∼ ⟨⟨OD⟩⟩. For a scalar operator this determines ⟨⟨OD⟩⟩ completely,
but for a spin-2 primary an unknown parameter remains (see appendix A for details). When
the spin-2 is the stress tensor, the conservation equation eq. (1.4) gives an extra relation of
the form ⟨⟨DD⟩⟩ ∼ ⟨⟨TD⟩⟩ which determines this residual parameter in terms of CD. So in
general ⟨⟨TD⟩⟩ is completely fixed, but CD and aT are unconstrained. Suppose however that
T mn has a scalar superconformal partner whose two-point function, as we saw, is fixed by its
one-point function. Supersymmetry may in this case relate the missing parameter in ⟨⟨TD⟩⟩
also to aT, and thus relate this latter to the displacement norm CD.

Bianchi and Lemos [31] realised that the above argument can apply to superconformal
defects other than Wilson lines. They considered half-BPS surface defects (p = 2) in
d = 4,N = 4 super Yang-Mills and found that in this case CD = −12aT. Using the
definitions (1.3) and (2.13) it is easy to check that the dual membranes have T

(I)
2 = T

(II)
2 .

Another example are BPS surface defects in d = 6 for which ref. [67] found CD = −40πaT/3.
This implies again T

(I)
2 = T

(II)
2 .

It is then natural to conjecture that whenever the superconformal Ward identities relate
CD and aT, the inertial and gravitational tensions coincide,

T (I)
p = T (II)

p ⇐⇒ CD = −aT
2(d − 1)(p + 2)Γ(p + 1)
d πp−d/2 Γ(p

2 + 1)Γ(d−p
2 )

. (5.1)

The authors of [31] made a similar guess by extrapolating known results on the parameters
CD and aT of superconformal defects. They proposed that

CD = h
2p+1(d − 1)(p + 2)Γ(p+1

2 )π(d−p)/2

(d − p − 1)π(p+1)/2Γ(d−p
2 )

(5.2)

where h = −aT(d − p − 1)/d.13 The two conjectures look different, but they are actually
the same. This follows from the identity

Γ(p + 1)
√

π

2pΓ(p
2 + 1)Γ(p+1

2 )
= 1 ∀ integer p , (5.3)

which one can prove by using the following identity for integer k:

Γ
(

k + 1
2

)
=

√
π
1× 3× · · · × (2k − 1)

2k
=

√
π
(2k)!
k!22k

=
√

π Γ(2k + 1)
22k Γ(k + 1) .

Stating the conjecture as T
(I)
p = T

(II)
p is elegant and economic, but the deeper significance,

if any, of this observation is not clear.
13We thank Lorenzo Bianchi for a communication on this issue.
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As we have seen, the two tensions are equal to the bare tension in the thin-classical-probe
limit, but both receive quantum and gravitational corrections. More generally, they may
depend on all the bulk and defect DCFT moduli. We expect however the superconformal
Ward identities to act homogeneously in the moduli space, as in the examples of refs. [30, 31].
So if T

(I)
p and T

(II)
p are equal at some point they should stay equal everywhere.

A first step towards an exhaustive proof would be to classify (possibly along the lines of
ref. [68]) all superconformal DCFTs in which the Ward identities lead to a linear relation
betweeen CD and aT.
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Note added. It was pointed out to us by Shira Chapman that the considerations of this
paper could be applied to the p = d − 2 twist defects, τn, which enter in the calculation
of Rényi entropies [69]. Using the results in [70, 71] one finds T (I) ̸= T (II) for general n,
but T (I) = T (II) in the limit n → 1. This is consistent with the fact that, contrary to the
‘cosmic brane’ duals of general twist defects [72], the Ryu-Takayanagi branes that calculate
entanglement entropy [73] do have a classical-probe limit.

A Constraints on DCFT correlators

To make the paper self-contained, we derive here the general form of the DCFT correlation
functions used in the main text. The convenient tool is the embedding-space or light-cone
formalism. This appendix is based on ref. [12] but we work with tensor indices (as in [74] for
the homogeneous case) rather than with the auxiliary vector as in [12].

In the embedding-space formalism Rd is identified with the projective (d+2)-dimensional
lightcone

XM XM = −X+X− + XmXm = 0 , XM ∼ λXM . (A.1)

Here m = 1, · · · , d. The relation of XM to the physical coordinates is

XM = X+(1, x2, xm) ⇐⇒ xm = Xm/X+. (A.2)

One may choose the section X+ = 1, but Lorentz transformations of the embedding space
need not respect this gauge.

To impose the projection XM ∼ λXM , one limits attention to tensors in the ambient
space that obey the scaling relation

T M1···Mr(λX) = λ−∆T M1···Mr(X) (A.3)
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for some real ∆. We also impose the transversality conditions

XM1T M1···Mr(X) = · · · = XMr T M1···Mr(X) = 0. (A.4)

The physical-space tensor is obtained by the pullback

T̂ m1···mr(x) = (X+)∆+r ∂xm1

∂XM1
· · · ∂xmr

∂XMr
T M1···Mr(X). (A.5)

The pullback is first defined in the ambient space before restricting to the lightcone, i.e. X−

is treated as an independent variable so that

X+ ∂xm

∂XM
= (−xm, 0, δm

n ). (A.6)

Since (A.5) is invariant under rescalings XM → λXM , the physical-space tensor T̂ m1···mr

only depends on the coordinate xm as it should. Furthermore XM (∂xm/∂XM ) = 0, so
T̂ m1···mr is unaffected by shifts

T M1···Mr(X) → T M1···Mr(X) + XM1ΩM2···Mr(X) (A.7)

for any tensor Ω with r − 1 indices. This explains why only d out of the d + 2 components
for each index M are physical. A straightforward but tedious calculation shows that T̂ m1···mr

transforms as a conformal (quasi-)primary tensor field with scaling dimension ∆ [74].
One can also show that any partial trace of T̂ m1···mr is proportional to the corresponding

trace of T M1···Mr . Using for instance η+− = −1
2 and the transversality condition XM T M+ = 0

for a 2-index tensor, one finds

δmnT̂ mn = (X+)∆+2ηMN T MN . (A.8)

Furthemore the pullback (A.5) preserves the (anti)symmetrization of the ambient-space tensor,
so irreducible tensor representations of SO$(1, d + 1) descend to irreducible representations
of SO(d).

The formalism is easily adapted to accommodate a planar p-dimensional defect. The
defect breaks the symmetry to SO(1, p + 1) × SO(d − p), so we write M = (A, i) where
A = +,−, 1, · · · , p labels the directions along the defect lifted to the ambient space and
i = p + 1, · · · , d labels the transverse directions. There are now two invariant tensors, ηAB

and δij . Following [12] we denote the corresponding inner products X ◦ Y := XiY jδij and
X • Y := XAY BηAB. Clearly X ◦ X + X • X = 0 since the ambient space vector X is null.

Let us see how the unbroken symmetry constrains the one-point function of a spin-2
primary The most general ansatz allowed by the symmetries and by the scaling (A.3) is

(X ◦ X)∆/2 ⟨⟨T AB⟩⟩ = a1 ηAB + a2
XAXB

X ◦ X
, (A.9a)

(X ◦ X)∆/2 ⟨⟨T Ai⟩⟩ = a3
XAXi

X ◦ X
, (A.9b)

(X ◦ X)∆/2 ⟨⟨T ij⟩⟩ = a4 δij + a5
XiXj

X ◦ X
, (A.9c)

– 18 –



J
H
E
P
0
8
(
2
0
2
4
)
0
2
8

where the ai are arbitrary coefficients. Transversality, eq. (A.4), implies

a1 − a2 + a3 = 0 and a3 − a4 − a5 = 0. (A.10)

Eliminating a2 and a5 in (A.9) gives

(X ◦ X)∆/2 ⟨⟨T AB⟩⟩ = a1

(
ηAB + XAXB

X ◦ X

)
+ a3

XAXB

X ◦ X
, (A.11a)

(X ◦ X)∆/2 ⟨⟨T Ai⟩⟩ = a3
XAXi

X ◦ X
, (A.11b)

(X ◦ X)∆/2 ⟨⟨T ij⟩⟩ = a4

(
δij − XiXj

X ◦ X

)
+ a3

XiXj

X ◦ X
. (A.11c)

The terms proportional to a3 combine to a contribution ⟨⟨T MN ⟩⟩ ∝ XM XN which can be
dropped by using the shift symmetry (A.7). Finally the zero-trace condition gives one
more relation

(p + 1)a1 + (d − p − 1)a4 = 0 =⇒ a1 =
(
1− d

p + 1

)
a4. (A.12)

Thus the one-point function depends on a single parameter, say a4.
To pull back to the physical stress tensor, eq. (A.5), we use the identities

∂xa

∂XA
XA = ∂xa

∂X i
Xi = 0, − ∂xi

∂XA
XA = ∂xi

∂Xj
Xj = xi (A.13)

where we separated parallel and transverse indices, m = (a, i), see section 2 for conventions
and notation. The result reads

⟨⟨T̂ ab⟩⟩ = a1
|x⊥|∆

δab, ⟨⟨T̂ ij⟩⟩ = a4
|x⊥|∆

δij − (a4 − a1)
|x⊥|∆+2 xixj (A.14)

with |x⊥|2 =
∑

i xixi. As a check one can verify that ∂m⟨⟨T̂ mn⟩⟩ = 0 if and only if ∆ = d,
the canonical dimension of the stress tensor. Note that the one-point function vanishes
identically in the special case d = p + 1, i.e. when the defect is an interface or boundary.
Eqs. (A.14) are the same as (2.11) with the identification aT = a4 − a1 = a4d/(p + 1), and
with hats dropped from the physical stress tensor.

We turn next to the two-point function ⟨⟨T̂ mn(x)Dj(y)⟩⟩ and its ambient-space precursor
⟨⟨T MN (X)Dj(Y )⟩⟩, where Dj is the displacement operator. Since Y is a point on the
defect, Y j = 0 and hence X◦Y = Y ◦Y = 0. The only non-zero scalar products are
X◦X = (X+)2|x⊥|2 and

X • Y = −1
2X+Y +|x − y|2. (A.15)

Dj has dimension p + 1, and we again leave the dimension of the spin-2 free for now. The
most general form with the correct scaling symmetries is

⟨⟨T MN (X)Dj(Y )⟩⟩ = (−2X • Y )−p−1(X ◦ X)
1
2 (p+1−∆)P MNj (A.16)
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with P MNj built from the scale-invariant tensors

ηAB, δij , XM = XM

(X ◦ X)1/2 and YA = Y A(X ◦ X)1/2

(−2X • Y ) . (A.17)

The most general eleven-parameter ansatz for this tensor is

P ABj = b1ηABXj + b2X
AXBXj + b3Y

(AXB)Xj + b4Y
AYBXj , (A.18a)

P iBj = b5δijXB + b6δijYB + b7X
iXBXj + b8X

iYBXj , (A.18b)

P ikj = b9δikXj + b10δj(iXk) + b11X
iXkXj , (A.18c)

where parentheses denote symmetrization.
The three shift symmetries δP MNj∝ XMXNXj , or X(MYN)Xj or X(M δN)j allow us to

set b3 = b7 = b10 = 0 without affecting the physical correlator. Transversality, XM P MBj =
XM P iMj = 0, then requires

b1 − b2 + b5 = 0 , −1
2b4 + b6 + b8 = 0 ,

−b5 −
1
2b6 = 0 , −1

2b8 + b9 + b11 = 0. (A.19)

Solving for b2, b4, b5 and b11 leaves four free parameters,

P ABj = b1ηABXj +
(

b1 −
b6
2

)
XAXBXj + 2(b6 + b8)YAYBXj , (A.20a)

P iBj = −b6
2 δijXB + b6δijYB + b8X

iYBXj , (A.20b)

P ikj = b9δikXj +
(

b8
2 − b9

)
XiXkXj . (A.20c)

The zero-trace condition

b1(p + 1) + 1
2(b6 + b8) + b9(d − p − 1) = 0 (A.21)

eliminates one more leaving three.
To compute the pullback (A.5) one needs, in addition to (A.13), the following pullback

identity (in the X+ = Y + = 1 gauge)
∂xm

∂XA
Y A = ym − xm := −zm. (A.22)

The physical correlation functions read

⟨⟨T̂ ab(x)Dj(y)⟩⟩ = zj |z⊥|p−∆

|z|2p+2

[
b1 δab + 2(b6 + b8)

zazb|z⊥|2

|z|4

]
, (A.23a)

⟨⟨T̂ ib(x)Dj(y)⟩⟩ = zb |z⊥|p+2−∆

|z|2p+4

[
−b6δij − b8

zizj

|z⊥|2
+ 2(b6 + b8)

zizj

|z|2

]
, (A.23b)

⟨⟨T̂ ik(x)Dj(y)⟩⟩ = |z⊥|p+2−∆

|z|2p+2

[
b9δik zj

|z⊥|2
+ b6

2 δj(izk)
( 1
|z⊥|2

− 2
|z|2

)

+
(

b1 −
b6
2 + b8

2 − b9

)
zizkzj

|z⊥|4
− 2b8

zizkzj

|z⊥|2|z|2
+ 2(b6 + b8)

zizkzj

|z|4

]
,

(A.23c)
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where the scalar invariants are |z⊥|2 = zizi and |z|2 = zµzµ = zαzα + |z⊥|2. We may
choose the displacement operator insertion at y = 0, so that zm = xm. The parameters
defined in ref. [12] are

b1 = 1
2(b6 + b8) , b2 = b1 − b9 , b3 = b6 , (A.24)

where b8 can be eliminated with the help of condition (A.21). One can now check that (A.23)
reduce to the expressions (3.1), (3.2) of the main text. Note that the tensor structure in (A.23)
is independent of the dimension ∆ of the spin-2 operator.

As explained in ref. [12], broken-conformal Ward identities constraint the parameters bj .
The first set of identities is universal, i.e. valid for all primary bulk operators. It translates
the fact that the displacement operator encodes the effect of conformal transformations on
correlation functions in the presence of a flat defect. For a scalar operator O this determines
completely ⟨⟨ODj⟩⟩ in terms of the one-point function ⟨⟨O⟩⟩. Explicitly

⟨⟨O∆⟩⟩ = aO
|x⊥|∆

, ⟨O∆(x)Dj(y)⟩ = bODzj

|z⊥|∆−p|z|2p+2 , (A.25)

with ∆aO = π(p+1)/2

2p Γ(1
2(p + 1))

bOD. (A.26)

For a spin-2 these identities fix only two of the three parameters bi:

(p + 1)b2 =
(∆
2 b3 − b1

)
and b3 = 2

( 2√
π

)p+1
Γ
(

p + 3
2

)
aT. (A.27)

The remaining free parameter can be fixed by supersymmetry if the spin-2 has a scalar-primary
superpartner and for suitable superconformal defects. When the spin-2 is the CFT stress
tensor the integrated conservation eq. (1.4) gives an extra constraint [12]

2p b2 − (2d − p − 2)b3 = (d − p)π(p−d)/2 Γ
(

d − p

2

)
CD. (A.28)

This constraint is special to the stress tensor and hence requires ∆ = d. As noticed by the
authors of [30, 31], it can be used to relate CD to aT when supersymmetry fixes all three
bj in terms of the one-point function.

Open Access. This article is distributed under the terms of the Creative Commons Attri-
bution License (CC-BY4.0), which permits any use, distribution and reproduction in any
medium, provided the original author(s) and source are credited.
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