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ON NON-DISTRIBUTIVE LOGICAL CONNECTIVES FOR FUZZY SETS THEQRY

by

C. Alsina (*), E. Trillas (+%) and L. Valverde (%)

INTRODUCTION.

As it was proved by Bellman and Gfertz (1973), it Is wel] known that,
under reasonable hypotheses (especially distributivity) the onfy truth-functio-
nal logical connectives for fuzzy sets are the usual Min and Max. The following

and easy argument proves that distributivity and boundary conditions are essen-

tial assumptions:
x = F(x,1) = F(x,6(1,1)) = G(F(x,1),F(x,1)) = 6(x,x),

F and G béing, respectively, functions from [0,1] x.fo,l] into [0,1] generating

the 'meet!' and the '"join'" by means of
(AnB) (x) = F(A(x),8(x)); (AUB)(x) = G(A(x),B(x)),

for every xe& X and A,Beg(x).

L.A. Zadeh (1965}, the founder of the theory, is the first who intro~

duces non-distributive and dual connectives by considering the couples
Gm(x,y) = Min{x+y,1} , Fm(x,y) o Max{x«f-y-l,O};
Gp(x,y) = x+y-xy , Gp(x,y) s X.y.

Afterwards some authors (for instance, Hamacher (1975)) have considered some

classes of non-distributive connectives.

Obviously the loss of global idempotency causes the losé of the la-
ttice structure in B(X) when F # Min or G ¥ Max. This is the natural possibi-
lity for mantaining the lattice structure in‘ﬁ(x) and, for arbitrary connec-
tives F and G, the only subltattice is the boolean algebra of characteristic
functions (classical subsets). It is also interesting to'observe that the
idempofents for the couples-Gm,Fm and Gp,Fp are 0 and 1,and that the former veri-

fies universally the ex;luded middle and non-contradiction laws. On the other
hand these laws are satisfied by the couple Gp,Fp only In the case of classi-

cal sets.
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In this paper it is given a general functional form for logical connec-
tives "or'' and "and" {non-distributive but associative) using additive genera-
tors. We also study the Kleene's character of the obtained logic and the connec-
tive's relation by DeMorgan laws (with adequate strong negation functions, if
they exists) and give further characterizations of the Min-Max pair. Finally, in
the way of controlling relative and absolute classicity of such connectives, so-

me parameters are introduced.

1.. PRELIMINARIES ON' FUZZY CONNECTIVES,

Let F and G be two binary operations on [b,1]..ln Bellman-Giertz {1973)

it was showed that F = Min, G = Max are the unique soiutions of the 8 conditions

below:

(1) Associativity: F(x,F(y,z)) = F(F(x,y),z);G(x,G(y,z)) = G(G(x,y),z};

(2) Commutativity: F(x,y) = F(y,x), G(x,y) = G(y,x), ’

(3) Non-decreasing: F(x,y){ F{x',y'), G(x,y)€G(x",y'}, if x¢x",ygy"';

(4) Fx,x)< F{x',x'), G{x,x)< G(x',x'), if x<x';

(5) F(1,1) =1, G(0,0] = 0;

(6) Flx,y)g& Minlx,y); G{x,y)» Max(x,y),

{(7) F,G are continnous,

(8) Distributivity: F(x,G(y,z))
G(x,F(y,z))

G(F(x,y),F(x,2)),
F(G(x,y),6(x,2)).

Hamacher (1975) proved that conditions 1,3,4,6 and 8 are enough in
order to conclude that Min-Max are the unique solutions. Thus it is clear that
if we want to study fuzzy connectives, different from the classical Min-Max, it
would be necessary to avoid some of the above requirements. Several authors ha-

ve treated this problem {see, e.g., Dubois-Prade (1979)}.
We first note that if (5) is substituted by
(5') (a) F(x,1) = F(1,x) = x, (b) G(0,x) = G(x,0) = x, for all xe[0,1].

then (3) and (5') impty (6) and (3),(5'), together with (8), given Min-Max as
solutions. Thus we will exclude (6) and (8) and we can avoid also (2} and (4).

More precisely, in this paper we will restrict our attention to the following

classes of connectives
Fop= {F: [a,b]z—a[:a,b]/ F satisfies (1),(3),(5'a) and (7)} ,

G = {G:[a,b_]z——>[a,b]/ G satisfies (1),(3),(5'b) and (7)} ,
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and
F§b= {Fe Fab/ Fis Archimedean, i.e., F{x,x)< x, for al?)(é(a,b)} ,
G‘:b= {Ge Gab/ G is Archimedean, i.e., G(x,x)> x, for all x& (a,b)} .
. i A
In the sequel we will write F = F01, G =-G01, FA = Fg1 and GA = GO!T

These. functional sets have a long distinguished histoty in the field of
functional equations (Acz&l (1966)) because they are related to the classical pro=-
blem of the associativity equation. Such sets have been analyzed with detail and
have become a basic toal in the theory of probabilistic metric spaces (Schweizer=
Sklar (1960)) and in the theory of information (Kampé de Fériet (1969)).

From Acz&l (1966), Ling (1965) we have the following important charac-

. . ., A
terization of the operations in ng and Gab‘
. ‘ A,
Theovem 1.1 Let HEF, (resp. HEG, ). Then HEFA, (resp. HECN ) IF and only

if there exists a conﬁnnousand_étrict!y_decreasing function h {resp. continous
and strictly Increasing) from [é,ﬁ] into [0f+uﬂ , such that H is representable

in the form
Hix,y) = b () +h(y)),

where h(-r) is tHe pseudo-inverse of h, that is,
b, if 0L xgh(b) (resp. a, if 0&xg h(a)),
h ) ={h71 (), 1F hib)g xgh(a), (resp. h(x), if h(a)g x&h(b)),
a, if h{a)g x (resp. b, if h{b)g x),
where h-ljs the usual inverse of h on [h(b),h(a)] (resp. [h(a),h(b}).

The function h is called an additive generator of the Archimedean ope-

ration H and it is unique up to a positive constant, i.e., k.h (k>0) generates
also H. We remark that if f generates FEF, then f(1) = 0, and if g generates
GE.GA then g(0) = 0.

“We also have from Paalman de Miranda (1964) a characterization for the

cperaticns Fe& Fab-ng and GE;Gab-ng. if H is one of such operations, let be

E{H) ={xe[a,b] / H{x,x) = x};
then [é,ﬁ] - E(H) = U (ai’bi)’ where {(ai’bi) / i€ J} is a finite or countable

i€
collection of disjoint open intervals. Let H, be the restriction of H to [ai,b;]2
X.-a, Yy -a,
: _ - - i P . -
given by Hi(x,y) =a; + (bi ai)Hi(bi-ai , bi"ai) .Then ([ai’bi]’ Hi) is an Ar

chimedean semigroup and we have the representation (ordimal sum):
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_ M(x”),if(xm)e[épbﬂz,forsmm i€ Js
. . 2 ;
H{x,y) = Min(x,y), if (x,v)eF.U fa;,b.]" and HeFab-FA 5o

Max(x,y), if xy¢U[a ,b] and HE G, -G Ab;

i.e., H consists of Archimedean ”blocks“ a!ong the diagonal of [a, b] and H = Min

(resp. Max) outside of these' blocks.

In the literature about fuzzy connectives other couples of operations
different from the classical couple Min-Max have been considered. We summarize

in the next table some of these operations, together with its additive generators:

: Fm(x,Y) =;Max(x+y-l,0) fm(x) = 1-x,
(1 1) {Gm(x,y) =-.Min(x+y,1) gm(x) = X
{ Fp(x,Y)_= X,y fp(x) = -1n x,
1.2 6, (x,y) = xty-xy gp(x) = ~In(1-x)
Fo(*’y} =‘X+:ny' f (x) = li;i,
(1.3) ]
| G.fx,y) = xT-x\Z/xy | 5o = x5
= Xy - -(a=1)x
(1.4) Fa(x,y) a+(1-a) (x+y~xy) fa(x) = 1n a__x_ (a»0),
1.
6, (x,y) = Lb_T_)_xx_z_tw_ | g, (x) = In 2L (6>-1);

Examples (1.1) and (1.2) were used by Zadeh (1965) and the operations
(1.3) and (1.4) were considered by Hamacher (1975). Another interesting couple

introduced by Frank (1979) is given by
(s> 0),

Fs(x.y) = log ; fs(x) = Tlog,
s =1

(1.5)

Gs(x,‘/) =

f
Q
[fa]

(s»0);

In a remarcable paper (Frank (1979)) it has been proved that (1.1),
~{1.2} -and  (1.5) are the only possible Archimedian solutions of the func-

_tional equation F{x,y)+G(x,y) = x+y .
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2. ON STRONG. NEGAT!ONS AND DE MORGAN'S LAWS.

The classical equality IK = 1-X.A has its natural generalization in
the realm of fuzzy sets. theory: A(x) = 1-A(x), where A denotes any fuzzy set.
This last equality can be written as A =N o A, where N(x) = 1~x is the standard
negation function on [0,1] . In Bellman-Giertz (1973) it was pointed out that it
would be interesting to study the functions n from fb,l] into [b,l] with A(x)
= n(A(x)), satisfying only some of the classical DeMorgan's laws. We will pay
attention to this problem.

To begin with we remark that the condition A = A whenever A(x) = n(A(x))
yields that the function n from [0,1] into [0,1] must satisfy the condition n:o n
= j (where j{x) = x denotes the usual identity function). Thus we will restrict

our attention to the set S([0,1]) of strong negations, i.e.,

S([O,l]) ={n:[0,1]~—)[0,1]/ n is continous and strictly decreasing, n{0) = 1,
n(1) =0and nons= j} .
A functional characterization of strong negations was given by one of

us (Trillas (1979)) in the recent past:

Theorem 2.1 1f n is any map from [0,1] into [b,l], then né S([0,1J) if and on-
ly if there exists a function t from [0,1] into [o,+a:) such that t is increa-
sing, t(0) = 0 and n admites the representation
nix) =t {t{x)+tly)).
Such function is called a generator of the negation n. Note that k.t
(k > 0) generates also n. For example:

(1} the classical negation N(x) = 1-x is generated by t(x) = x,

(i1} the round negation nc(x) =y 1-x2 is generated by te(x) = xz,

T-x

Trax (s» =1) is generated by

(iii) the Sugeno's negation ns(x) =

ts(x) = (1/s)In{14sx).

In many uses, some ''nice' additional conditions to that of strong ne-
gation are required; then, N{x) = 1-x is the only possible one, e.g., N is the
unique element in S([0,1]) satisfying the Lipschitz's inequality ’n(x)-n(y”
£ k|x-y}(0< k< 1), for all x,ve& [0,1].

We turn now our attention to the standard DeMorgan's law N o (A U B)

= (N o A)N(N o B},
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Definition 2.1. Let FEF, GEG and neS([0,1}). Then F and G will be called n-duals

if Fo{(hnxn) =no G, i.e.,

T F(n(x),n(y)) = n{alx,y)), for all x,ye[0,1].

It is easily seen that the connectives Min-Max, as well as the examples

{(1.1),(1.2),(1.3) and (1.5), are examples of N-duality.
In order to built more collections of n=duals connectives we note that
Theorem 2.2. If £ is an additive generator of FEFA and ne $([0,11), then g'= fon

generates additively a function GeGA which is n-dual of F. Analcgeusly, if Ge,GA

is generated by g and ne $([0,1]), then f' = g o n generates an n-dual operation

FE 7y

We will give now a functional characterization of the n-duality in
terms of the additive generators of Archimedéan connectives. If p>» 0, let 1p(x)

= PeX,

Theorem 2.3. Let F& FA and GE.GA be generated by f and g, respectively. Then F
and G are n-duals, if and only if there exists a positive constant p such that

&y ('1) = ('1)
(*) f o lpo g=g ollfpo f,

and "a fortiori' n is given by the left-hand side (or by the right-hand side)

of the equality {(*).

Proof. The condition n o F o {nxn) = G, can be written in terms of the additive

generators as follows:
(o FM) (F ) +Fn(y)) = ¢ (gl+a(y)),

but this equation states that n o f generates G as well as g. Consequently n o f

and g must differt only in a positive constant p , i.e., fon= lpo g, and

o =1 _ (-1
n=f o Ipo g=g 0 11/po f.

Remark. We note in view of (%) that if f(0)< +co and g(1)}< +00, then (¥*) yields
p=f(0)/q{1), i.e., the constant p is unique. [f f{0) (resp. g{1)) is finite
and g{1) {resp. f(0)) is infinite, then there exist no constant p satisfying (*)
i.e., the corresponding connectives F and G generated by f and g respectively
will be never n-duals. But if f(0) = g(1) = +e0, then several possibilities are

avalaible, e.g., p can be unique and there will exist a unique negation n sa-



2h

tisfying the n-duality or p is not fixed and there exists a large collection of
negations stablishing the n-duality. Next examples will clarify this remark.

Example 2.1. Consider the connectives F, and G given by (1.4). Then we have,

considering the generators ?é(x) = tfa(x) and §b(x) = t'gb(x),

- N _aPt'/t
(?610 lpo gb) (x) = a(1-x) , and

(bx-1)PE /s (a-1) (1-x)PE'/t

1
xt/pt

t/pt!
)00 = fazlasl T

=1 .

(g, o1 o
b 1/p .

(a—(a-!)x)t/ptl+ bxt/pt'

and (*) ‘holds for p = t/t'. In this case the operations F, and G are n_-duals,

beig n_ the Sugeno's negation (1-x}/(1+sx), where s = (b-a+1)/a.

Example 2.2. Consider Fy and G_, given by (1.3). Then

1 - x

"l . i - -1 . ) =
(fo o lpO-' g_x)(x) = (9_10 ]1/p° fo) (x) T+ (p-1)x °

i.e., (*) holds for any p»> 0 and the n-duality is given by anyone of the Suge-
no's negation np(x) = (1-x)/(1+(p-1)x), py 0.

We study now the relation between n-duality and ordinal sums. Note first

that if F& F-F’A and G€G’-GA are n-duals, then necessarily n{E(F)) = E(G).

Theorem 2.4. Let Fe& F-FA be an ordinal sum determined by a family of Archimedean
semigroups {(fal..,bl.] )',Fi) / 1€ J} and let ne S([0,1]). Then the function G{x,y)
= n(F(n(x},n{y))} is a n-dual operation of F which is an ordinal sum of the Ar-
chimedean semigroups {([n(E{),n(ai)] ’Gi) / iEJ} ,where Gi =no V‘FI. o (nxn).

Let FE F-FA and GEG-G, be ordinal sums determined by the Archimedean
semigroups{_([ai,b’.] , Fi) / iEJ}, and {(Eci’dil , Gi) / EeJ} , respectively
(both collections with identical index set). Let fi and g, (ieJ) be additive

generators of Fi and Gi’ respectively. Assume the additional condition

(rey A< bpgag Kby and ciedigc; jedpy
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tf F and G are n-duals for some n& S([0,1]), then n{E(F)) = E(G),
n(al.) =d and n(bi) =c:, for all i€ J and there. exists a sequence (pi)ieJ in

{0,+02) such that, for all i€J

-1 [pifl(__’f_i__f_f_.)] , for all xe[ai,bi].

ni{x) = Ci + (d-'c-)g- i’ b -3
i i

Note that in this case n is determined only in igJ(ai’bi] .

3. FURTHER CHARACTERIZATIONS OF THE CLASSICAL GONNECTfVESu

It is well khdwn that Min and Max are n-duals fof all ngS([0,1}). We

will show first that this fact characterizes these classical connectives:

Theorem 3.1, |If FEF and G& G are n-duals for all n&S([O,ﬂ), then necessa~

ly F = Min and G = Max.

Proof. It is sufficient to show that G(xo,xo) = X for all x & {0,1). Let xoe('o,l)
and consider two negations nyoN,E 5(f0,1]1) such that n (xo) = nz(xo) = X3 and
n, (x) < nz(x) for all x& [0,1] -{0,1,‘x0} . Then the duality conditions yields

n (G(x ,x))) = Fla (x ),n, (x)) = Flxgox,) = Flny(x )ony(x )} = "2(6.("0"‘0))’
i.e., G(xo,xo)e(O,T,xo} . But G(xo,xo)‘;,' xo7 0, i.e., G(xo,xo) is either 1 or X
| f G(xo,xo) = 1, we would have, taking the sequence of strong negations,

t,

— 1, If 0< x§ 1= ¢

T=K
n (x) = 1
(1K) (x=1),1f 1= =¢xg 1,

for all kg N, O=s nk(1) = nKG(xo,xo)‘ = F(nk(xo),nﬂ(xo));consequently,

0= L::o F(nk(xo),nk(xo)) = F(lllr:onk(x ),:(ir:‘nk(xo)) = F(1,1) = 1.

This contradiction implies that G(xo,xo) = X and "'a fortiofi'" G = Max

and F = Min,

Now we will give an equation which characterizes at the same time Min,

Max and N = 1~].
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Theorem 3.2. Let FE F and ne S([0,1]). Assume that G=no F o (ngn), i.e., G

is the dual operation of F via n. Then

(3.1) F(x,y) +G(x,y) - F(x,y).G(x,y) = 1= n(x).n(y),
~for all x,yg[0,1], if and only if F = Min, G = Max and n = N.
Proof. Substituting'y = 0 in (3.1) we obtain n(x) = 1-x. Thus (3.1) can be wri-
tten as follows

Fx,y) +G(x,y) +x.y = x +y + F(x,y).6(x,y),

| which is equivalent (G(x,y} =1 = F(1-x,1~y)) to

(3.2) T+ xy = F(1-x,1~y) = x + y = F(x,y).F(1-x,1-y).
Choose any t € (0,1). The substitution x = y = t on (3.2) yields

(3.3) 1+ t2F(1-t,1-t) = 2¢ - F(t,t) .F(1-¢,1-t),
and the substitution x =y = 1-t on (3.2) gives

(3.4) 1+ (1-02- F(t,t) = 2 = 2¢ = F(1-t,1-6) .F (¢, t).

- Thus by (3.3), we have

(3.5) F(1-t,1-t) = 1+t -2t ,
1 - F(t,t)

and (3.5) together (3.4) yields:

F(t,t)z- 2tF(t,t) + t2 = 0,

Whence F(t,t) = t and F = Min. Note that this proof does not require neither con-

tinuity assumptions nor associative hypotheses.
Using a similar argument to that of theorem 3.2 it is easy to prove the
following characterization.
Theorem 3.3. Let FE Fand let GEG be its N-dual , G(x,y) =1 = F{1-x,1-y), Then
F(x,v).6(x,y) = x.y , for all x,ye[0,1]

if and onfy if F= Min and G = Max.

Another characterization of the classical couplte Min-Max, which is in-

dependent of the hypotheses on n-duality, is the following:

Theorem 3.4. Let FE Fand GEG . Then
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Fx,y) + G(x%,y) = x + y
: , for all xgfo,1},
F(x,y).G(x,y) = x.y

if and only if F = Min and G = Max.

Proof. Using the result of M.J. Frank (1979) this theorem follows as a trivial

corollary. We will give a short argument. Take x =y = t. Then by hypotheses we

have

F(t,t) + G(t,t) = 2t
Flt,t).G(t,t) = ¢2

Wnence Jusing the fact that F(t,t))» O, for all t»0) we have:

2
Fle,t) + ?'(E_Dg 2t,
»

and it follows F(t,t}) =t, i.e., necessarily F = Min and a "fortiori' G = Max. ,

4, SOME PARAMETERS ASSOCIATED WITH NON-CLASSICAL CONNECTIVES.,

In the last section we have analyzed some strong conditions about con-
nectives which characterize the classical couple Min-Max, but there is a large
family of logical conditions with more solutions. For example Kleere's inequality

"xAx&YyvVYy , for all x,y" is satisfied universally when A-v is substituted by

any couple of connectives.

Theorem 4.1. |If - Fe_l-v" , GEG  and ng S([0,11) then Kleene's inequality F(x,n(x))_
£ Gly,n(y)) holds for all x,y € [0,1] .

Proof. Let X be the fixed point of n. Then we have for all x,ve [0!,1_.]:

F(x,n(x))& Min(x,n(x))g x & Max(y,n(y))g Gly,n(y)).

In view of this inequality we can consider the parameter
k(Fin) = inf {n(Flx,n(x)) = Flx,n(x)) 7 xe [0,1}
for given FE F and ng S([0,1}). Then it easy to prove:

(a) 0gx(Fn) K15

(b) K(F;n) =0 if and only if F(xn,xn) = x_, i.e., the fixed point x_
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of nis én idempotent eiement of F;
() If F€FA then K(F;n) > 0;
(d) If Fe_FA and F is strictly increasing,then K{F;n)< 1;
(e) K(Fm;n) =1 if and only if ngN

fn the other hand, given F€F and G&(G we can introduce a different parameter in

order to evaluate the ''degree of cilassicity“ of the couple F,G. Dafine C:FxG—>R by

c(F,G) = lf(G(x,X)-F(x,x))dx,

and consider

1
CI(F) L(Mm{x x)=F(x,x))dx,
1

(G(x x}-Max(x,x})dx.

c, (6)

C{F,G) evaluates the 'degree of cTassicity“ of (F,8) and C].(F),CZ(G) evaluate the
degrees of Archimedéanity ofF and G respectively. Then we can show easily the fo-

llowing properties?
(i) 0¢C(F,G)g 1, 0.$C1(F)$ 1, 0£ CZ(G)S 1
(iiy c(F,6) = C;(F) + ¢, (a);

(ii1) C](F) =0, if and only if F = Min: C,(G) = 0, if and only if G = Max;

2(
(ivy c(F,G) = 0, if and only if F = Min and §

]

Max;
{v) If F and G are N-duals then CI(F) = CZ(G) and consequently C(F,G)
= 2c1(F) = 2C2(G).

{vi) If F and G are N-duals and F is an ordinal sum determined by a fami-
ly of Archimedean semigroups{([ai,bi] ,Fl.) / ieJ} , then

¢, (F) = c,(e) = 2 (b.-a.)zc1(F.

ied I 1 1

(F,6) =27 (b c (F.)

ieJ

),
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