
HAL Id: hal-04566184
https://hal.science/hal-04566184v2

Submitted on 29 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Light-weight prediction for improving energy
consumption in HPC platforms

Danilo Carastan-Santos, Georges da Costa, Millian Poquet, Patricia Stolf,
Denis Trystram

To cite this version:
Danilo Carastan-Santos, Georges da Costa, Millian Poquet, Patricia Stolf, Denis Trystram. Light-
weight prediction for improving energy consumption in HPC platforms. Euro-Par 2024, Carretero, J.,
Shende, S., Garcia-Blas, J., Brandic, I., Olcoz, K., Schreiber, M., Aug 2024, Madrid, Spain. pp.152-
165, �10.1007/978-3-031-69577-3_11�. �hal-04566184v2�

https://hal.science/hal-04566184v2
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


Light-weight prediction for improving energy
consumption in HPC platforms

Danilo Carastan-Santos1[0000−0002−1878−8137], Georges Da
Costa2[0000−0002−3365−7709], Millian Poquet2[0000−0002−1368−5016], Patricia

Stolf2[0000−0001−5169−1831], and Denis Trystram1[0000−0002−2623−6922]

1 Univ. Grenoble Alpes, CNRS, INRIA, Grenoble INP⋆⋆, LIG, Grenoble, France
{danilo.carastan-dos-santos,denis.trystram}@univ-grenoble-alpes.fr
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Abstract. With the increase of demand for computing resources and
the struggle to provide the necessary energy, power-aware resource man-
agement is becoming a major issue for the High-performance computing
(HPC) community. Including reliable energy management to a super-
computer’s resource and job management system (RJMS) is not an easy
task. The energy consumption of jobs is rarely known in advance and
the workload of every machine is unique and different from the others.

We argue that the first step toward properly managing energy is to deeply
understand the energy consumption of the workload, which involves pre-
dicting the workload’s power consumption and exploiting it by using
smart power-aware scheduling algorithms. Crucial questions are (i) how
sophisticated a prediction method needs to be to provide accurate work-
load power predictions, and (ii) to what point an accurate workload’s
power prediction translates into efficient energy management.

In this work, we propose a method to predict and exploit HPC workloads’
power consumption, with the objective of reducing the supercomputer’s
power consumption while maintaining the management (scheduling) per-
formance of the RJMS. Our method exploits workload submission logs
with power monitoring data, and relies on a mix of light-weight power
prediction methods and a classical EASY Backfillling inspired heuristic.

We base this study on logs of Marconi 100, a 980 servers supercomputer.
We show using simulation that a light-weight history-based prediction
method can provide accurate enough power prediction to improve the
energy management of a large scale supercomputer compared to energy-
unaware scheduling algorithms. These improvements have no significant
negative impact on performance.

Keywords: Machine learning · HPC · Resource management · Power
capping · Simulation.

⋆⋆ Institute of engineering Univ. Grenoble Alpes
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1 Introduction

High-Performance Computing (HPC) technology is becoming more accessible
and less expensive to build, which opens the door to new fields to capitalize on the
large computational capabilities afforded only by such large systems. However, as
opposed to the production cost, the power consumption of HPC platforms only
increases, reaching levels [16] in the order of the power consumption of a small
city. Besides the carbon footprint issue [2] raised by this increase in the power
consumption, current climate events may heavily strain the electricity grids [22]
that power HPC platforms. To avoid outages, it has become crucial for HPC
platform maintainers to deploy measures to ease the strain in the electricity
grid, which is typically achieved by enforcing a power capping over time in the
platform. The platform’s resource manager must therefore adapt to the available
power during this power constrained period.

Most existing works propose methods to predict the power consumption of
the workload, coupled with a speed scaling (DVFS) method, to adapt to the
available power. The drawback is the risk of unforeseeable effects on Quality of
Service (QoS). Only few works in the literature propose a full framework, includ-
ing a workload power prediction method feeding energy data at the submission
time to a resource manager. These few works often result in complex and/or
heavyweight optimization schemes that are perceived to be either too risky that
might disrupt regular functioning, or too expensive in terms of computational
resources, thus reducing the (constrained) power available for the applications.

In contrast with related works, this work aims to adapt to the available
power and deal with the power constraints as lightweight and simple as possi-
ble. We exploit power consumption data to develop models to predict the power
consumption of an HPC application in advance. These models feed power con-
sumption predictions of arriving applications to a scheduler, and the scheduler
uses these predictions to comply with the power constraints while keeping the su-
percomputer operational. Our experimental results highlight that a lightweight,
history-based predictor of the mean power consumption – which is arguably one
of the simplest descriptors of an applications’ power consumption – coupled with
an EASY Backfilling [12] inspired scheduler can make a close to optimal use of
the available power in constrained periods.

We organize the rest of this paper as follows: Section 2 presents related works
in the literature, Section 3 presents preliminary concepts needed to understand
our work’s context, and Sections 4 and 5 present our methods to predict HPC
applications power consumption and to schedule them in an HPC platform,
respectively. We present and discuss our experimental results in Section 6, and
we present our concluding remarks and future perspectives in Section 7.

2 Related Work

This section provides an overview of the related works regarding supercomputer’s
power monitoring/predictions and prediction-aided HPC resource management.
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The reader can consult Kocot et al. [15] work for a more comprehensive survey
on energy-aware resource management in HPC platforms.

Many works propose to exploit predictions to improve the performance of
HPC resource management. For instance, Zrigui et al. [23] used a coarse grain
prediction of jobs into long and short to design a scheduling algorithm taking
this information into account for the minimization of the maximum completion
time of a set of jobs. In [13], the authors propose a new scheduling algorithm
that outperforms the popular EASY backfilling algorithm by 28% considering
the average bounded slowdown objective taking into account predictions on the
job running times. In the context of predicting the power consumption, Storlie
et al. [21] developed a framework that predicts energy consumption of arriving
jobs. They build a statistical model to approximate the power used by HPC
jobs using hierarchical Bayesian modeling with hidden Markov and Dirichlet
process models. The goal of their model is to enable the use of an individual
node-capping power strategy shown to be more effective for limiting energy con-
sumption than a uniform one.It is the most wholesome model in comparison to
the others, though it comes with a high level of complexity. Bugbee et al. [5]
proposed another model by combining a priori (resource manager’s meta-data)
and in situ data (collected during jobs execution). They focus on the specific
applications that exhibit a periodic behavior, which accounts for only 45% of the
total workload. Another limitation is that developing fine-tuned models for each
possible application may be impractical and too resource demanding. Borghesi
et al. [3] and more recently Saillant et al. [19] and Antici et al. [1] proposed Ma-
chine Learning (ML) and Rote-Learning approaches that rely on resource man-
ager meta-data in order to predict the power consumption of a HPC workload.
They combine this information measurements using the RAPL [14] interface.
Borghesi et al. [3] introduced the idea that the mean value is a good descriptor
of the HPC applications’ power consumption. We distinguish from these works
in two aspects: (i) we explore and compare a prediction method that do not
rely on ML to predict the power consumption, and (ii) we further investigate
on how the predicted mean power value can be useful to a resource manager
to adapt to the constrained power. In [20], the authors focused on large-scale
parallel jobs for predicting the energy of a parallel application just by observ-
ing a few of its active nodes (as opposed to monitor all the deployed nodes).
Chapsis et al. [7] propose a power prediction and a resource management frame-
work that includes the power variability due to hardware manufacturing. Their
work involves a fine-grained monitoring of the applications and using hardware
specific features (hardware counters) to predict the power consumption. Such
an approach can be computationally expensive, especially due to the overhead
introduced in the computing nodes by the fine-grained monitoring of numerous
counters. The approach we propose in this paper intents to reach a balance in
the granularity of the used information: providing coarse grained information
on the power profile while using only resource manager related information and
past, coarse-grained, monitored executions on the platform.
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3 Preliminary Concepts

Modern HPC platforms contain large number of nodes. They usually are homo-
geneous3. Many users submit parallel applications (hereafter referred to as jobs)
to be executed in the HPC platform, and these jobs can arrive at any point in
time (i.e., online job submission). The jobs’ submissions are managed by the
Resources and Jobs Management System (RJMS). It decides when and where to
process each job. Typical meta-data available to the RJMS for a given job j is
its arrival time (rj), requested number of processors (qj) and an estimation of its
processing time (p̃j) which is provided by the user who submitted j. Resources
allocation and execution is usually represented in a Gantt chart (Figure 1).
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Fig. 1: The two sources of data used in a single, 32-core processor example:
(top) data coming from the RJMS regarding the jobs’ execution and allocation
(processing time versus cores allocated), and (bottom) data coming from a power
monitoring tool of the computing node (power versus time).

RJMS needs even more information when scheduling jobs under power cap-
ping. It needs at least a power profile which will serve as a power constraint over a
certain time window. Recent HPC platforms are deployed with energy consump-
tion monitoring tools such as IPMI [8], wattmeters, or software modules (often
using RAPL [14]). Such an energy monitoring tool can provide power consump-
tion data at the computing node level, as a time series of the power consumption
of the computing node in function of time (bottom graph in Figure 1).

We can cross the RJMS’s jobs data with the computing nodes’ power mon-
itoring data to get an idea about the power consumption of the jobs. In the
case of jobs that share a same computing node (stacked rectangles in Figure 1),
the resulting power consumption is in function of each of the jobs’ energy con-
sumption plus potential interference between the jobs, which makes it hard to

3 The term homogeneous in this paper means that all computing nodes have the same
CPU/accelerators configuration.
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distinguish each of the jobs’ contribution to the power consumption of the node.
When taking into account jobs that had exclusive access to computing nodes,
however, we can identify a power consumption profile of the jobs. The exact
jobs’ power profile can only be known after the jobs’ execution.

In this work we focus on exploiting the jobs’ power consumption profiles to
perform better scheduling under power constraints in the simplest way possible.
We choose simplicity because (i) sophisticated methods often leads to heavy-
weight computations whose power consumption can reduce or at some point
nullify the power savings from better scheduling, and (ii) sophisticated methods
are often hard to explain/justify which hinders their deployment in practice [11].

More specifically, we focus on the following research questions:

1. Which simple piece of information regarding the jobs’ power profile con-
tribute to better scheduling under power constraints?

2. How to predict this simple piece of information before the jobs’ execu-
tion? How much prediction accuracy can we achieve?

We consider as simple piece of information (hereafter referred to as jobs’
power consumption for simplicity) themean andmaximummetrics of the jobs’
power consumption profile. We decide to study the mean and the maximum
because these two metrics can have different impacts in the scheduling with
power constraints. We uncover these impacts in Section 6.5.

4 Predicting the power consumption of HPC jobs

For each job, the RJMS follows the same algorithm before the job’s execution: (i)
read all the meta-data of the job (including the user’s id); (ii) predict the mean
and max power consumption of the job; (iii) provide the job to the scheduler
along with power information. The RJMS also has access to past measures,
including meta-data and power consumption of past jobs.

We propose two job power prediction methods with an increasing level of
complexity to predict the jobs power consumption: the first method uses the
power consumption of previous users’ jobs (users’ job history). The second
method uses previous jobs’ power consumption data and jobs metadata (Ta-
ble 1) with Machine Learning (ML) regression methods.

4.1 The first method: predicting power consumption with users’
jobs history.

For a job j of a given user and a sliding window size s in seconds, we predict
the power consumption of the job P̂j as follows,

P̂j =

∑
j′∈W θj′Pj′∑
j′∈W θj′

(1)

W = {j′ | rj ≥ Cj′ ≥ (rj − s)} (2)
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θj′ =

(
1−

(
rj − Cj′

s

))α

(3)

where Cj′ is the completion time of a previously executed job j′ of same
user who submitted j, and Pj′ is the measured mean power of j′. The power

consumption of a previous job Pj′ can be known at the time we predict P̂j since
Cj′ ≤ rj .

Equation 1 is a weighted average of previous jobs j′ of the user that finished
within a sliding time window with size s (Equation 2). We assign the weight
θj′ (Equation 3) in function of how long in the past j′ finished compared to
the arrival time of j. A value of θj′ = 0 means that j′ finished at the oldest
allowed date, and θj′ = 1 means that the j′ finished exactly at the arrival time
of j. The parameter α changes the way we penalize older jobs by changing the
θj′ behavior between 0 and 1, from a linear α = 1, to a super-linear α = 2 or
sub-linear α = 0.5 fashion.

In this paper, we considered the max and the mean power consumption as
we assume that both metrics have different effects when used for performing
scheduling decisions. These effects are explored in more detail in Section 6.5.

4.2 The second method: predicting using supervised regression.

The former prediction method can not harness the jobs’ metadata (e.g., re-
quested resources, submission time, expected processing time, etc.) to potentially
provide better predictions. We can circumvent this problem by using supervised
regression with the hypothesis of increasing the prediction accuracy, using the
jobs’ metadata and the power consumption history as input features.

We propose an online learning method to predict the jobs’ power consump-
tion. The method retrains the prediction models at periodic time intervals (e.g.,
at the end of each week) in order to adapt, as the jobs’ history increases and
changes. In this context, online still refers to the behavior of the RJMS using all
past data, and only meta-data of the arriving jobs. For an already passed week
with index w (i.e., week 0, 1, 2, . . .), let t(w) be the timestamp of when the
models will be retrained at the end of week w. Then, we define our job dataset
Jtrain as follows.

Jtrain = {j | Cj < t(w)} (4)

In other words, Jtrain contains the jobs’ history. Then, we train a predictor
f̂(j) of the jobs’ power consumption that minimizes the Mean Squared Error
(MSE, Equation 5).

MSE =
1

|Jtrain|
∑

j∈Jtrain

(
Pj − f̂(j)

)2

(5)

After training a predictor f̂(j) we use it to predict the power consumption
P̂j′ for all jobs j

′ ∈ Jinference, where Jinference is defined as follows.

Jinference = {j′ | t(w) ≤ rj′ ≤ t(w + 1)} (6)
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In other words, we use the jobs history to train a model at week w that already
passed, and use this model to perform predictions of the power consumption of
the jobs that will arrive online at week w+ 1. At the end of week w+ 1 (i.e., at
timestamp t(w+1)) the training procedure repeats, generating a new predictor

f̂(j), which will be used for week w+2. A particular situation is for week w = 0,
where there is no such dataset to train a regression model. In this case we can
use f̂(j) = P̂j (Equation 1). We present the choice of regression methods to train

f̂(j), and how we exploit the jobs’ data (i.e, the features of j) in Section 6.2.

5 Scheduling with jobs’ power profile prediction

As the focus of this article is on the impact of power prediction, we will use
a simple and classical EASY backfilling algorithm [12]. This algorithm is used
in production in a large number of HPC centers. We assume that the platform
is static: no failure of nodes nor new nodes during the experiment. We also
assume that the servers will always be switched on. We finally assume there
is no constraints on the applications related to the host they can run on. All
these assumptions enable us to focus on the impact of the prediction framework,
further studies on these hypotheses are kept as perspectives.

The implemented EASY uses a first-come first serve (FCFS) policy and works
as follows. EASY is executed when these events occur: a new task arrives, a task
finishes. Tasks are stored in a queue in their order of arrival — the order of
this queue will never be changed. EASY starts the oldest jobs in the queue until
either finishing the queue or arriving on a job (called high-priority job) that
cannot start due to lack of resources. In the later case, EASY will try to backfill
jobs, that is to say start remaining task right now if they do not impact the
high-priority job estimated starting time.

The only modification we have made to the classical EASY is how to check
whether resources are available. Classical EASY only checks whether there are
enough available nodes/cores. Here, our implementation named EASY+PC also
checks whether there is enough power w.r.t. a given power cap. We assume that
an estimator (such as the ones we propose) can estimate the power needed for
a job. Based on this estimator, EASY+PC estimates the currently used power
and the requested power for each job in the queue. All of EASY+PC decisions
are based solely on these estimations.

6 Results

6.1 Jobs’ power prediction: dataset description

This work uses the trace collected from the Marconi100 supercomputer [4]. Mar-
coni100 consisted of 980 computing nodes, each of which consisted of a two-socket
IBM POWER9 AC922 (32 cores in total), and four NVIDIA Volta V100 GPUs.
The trace contains jobs’ meta-data such as jobs submission times, processing
times, anonymized user ids, and node ids allocated to the jobs. It also contains



8 Carastan-Santos et al.

0

30 000

60 000

90 000

120 000

0 500 1000 1500
Total power (W)

N
um

be
r 

of
 jo

bs

(a) Mean total power consumption

0

50 000

100 000

0 500 1000 1500 2000
Total power (W)

N
um

be
r 

of
 jo

bs

(b) Max total power consumption

Fig. 2: Distributions of the actual mean and maximum power consumption of
the filtered jobs in the Marconi100 trace.

data about the nodes’ total power consumption, measured at each 20-second
periods, using an IPMI module installed in the nodes.

From this trace we used the data regarding the operation of the Marconi100
from January 2022 to September 2022. To circumvent the limitation mentioned
in Section 3, we filtered out the jobs that shared a node from the original trace.
We also filtered out jobs that run in less than a minute because they have a too
small number of power measurements. After this filtering we end up having a
job dataset submissions from 576 users, accounting for 523,204 jobs.

Figure 2 shows the mean and max power consumption of the computing
nodes for each of the jobs in the dataset. We can observe a peak density of
jobs with mean and max consumption of around 700 watts. This insight in itself
could serve as a prediction if the whole distribution was clear and concentrated
at around 700 watts. However, the jobs distribution is not so clear for other
power values. which justifies the need of more sophisticated prediction methods.

6.2 Jobs’ power prediction: experimental setting

For the history based power prediction method (Section 4), we set the parameter
α (Equation 3) with a value of 2. This choice is based on the hypothesis that
recent jobs have more importance than older jobs when predicting the power
consumption. An α = 2 puts more weight into recent jobs, and the weight
decreases fast for older jobs. We set the sliding window size s to account for
the whole user’s job history, which translates to s being completion time of the
first finished job of a user. We decided on this design to avoid eventual empty
sliding windows during the prediction process. For the regression based power
prediction method, we use the features presented in Table 1. Features 1 to 4 are
standard job data that can be obtained at job submission, and features 5 to 7
are lagged features (i.e., a standard feature engineering technique), which can
be obtained by using the user’s job submission history.

We trained predictors f̂(j) using a selection of regression methods in the
scikit-learn [17] library: (i) Linear Regression (LinearRegression), (ii) Ran-
dom Forest (RandomForestRegressor), (iii) Support Vector Regression with
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Table 1: Features used in the mean power consumption regression methods

Feature Description

1 Submission time (hour of the day)
2 Number of processors (qj)
3 Number of nodes
4 Requested processing time p̃j

5 The sliding window history prediction P̂j (Equation 1)
6 Standard deviation σ({Pj′ | j′ ∈ W})
7 The power consumption Pj∗ where j∗ is the last finished user job

Linear Kernel (LinearSVR), and (iv) Stochastic Gradient Descent Regression
(SGDRegressor). For each training week and method, we applied scikit-learn’s
recursive feature elimination technique to choose the appropriate subset of fea-
tures from Table 1 to use according to the training data. We perform this feature
elimination and we set each of the regression methods hyper-parameters with a
5-fold cross validation scheme.

6.3 How to predict jobs’ power information before the jobs’
execution? How much prediction accuracy can we achieve?

Figure 3 shows the mean absolute percentage error (MAPE) of the methods
used to predict the mean and the max jobs’ power consumption. The boxplots
represent the distribution of the prediction performance for each of the 576 users
present in our job dataset. For the mean power consumption, we achieve a pre-
diction MAPE from 0.115 (using jobs’ history method, Section 4) to 0.128 (using
linear regression, Section 4). This translates into a prediction accuracy of 88.5%
and 87.2%, respectively. For predicting the maximum power consumption, we
achieve a prediction MAPE from 0.195 (jobs’ history method) to 0.215 (linear
regression), which translates to a prediction accuracy of 80.5% and 78.5%, re-
spectively. For both predicting the mean and the maximum power consumption,
we can not clearly distinguish which prediction method is better. We can observe,
however, that our jobs’ history prediction method achieves equivalent prediction
performance than the more sophisticated ML methods.

This is an important finding. Because we develop these prediction methods
to reduce the energy consumption of operating supercomputers, we must reduce
the energy consumption overhead induced by introducing these methods as much
as possible. Achieving a high level of power prediction performance with the
lowest level of energy consumption is therefore a priority. Although all of the
regression methods used can be seen as lightweight when compared to neural
network methods, a simple jobs’ history based method is clearly much less energy
demanding than a Machine Learning regression method, which requires much
more processing steps (i.e., normalizing data, selecting the best features and
finding the best hyper-parameters with cross-validation, etc.).
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Fig. 3: Mean Absolute Percentage Error of the mean and maximum power con-
sumption prediction methods for the jobs in the Marconi100 trace.

6.4 Jobs scheduling with power prediction: experimental setup

We simulate 30 different workloads using EASY+PC (Section 5) with various
powercap values and with various job power predictors. Each workload consists
of jobs taken from the filtered Marconi100 supercomputer dataset (Section 6.1).
Jobs are selected following workload trace replay guidelines [10].

EASY+PC applies a power constraint solely during the first 3 hours of each
simulation. The powercap values we use range from 10% to 70% of the highest
dynamic power consumption of the Marconi100 dataset in 2022 (955080 W).

We study EASY+PC’s behavior depending on the information it uses to de-
termine the power consumption of a job: (i) predicted mean and (ii) predicted
max use the users’ job history prediction method (Section 4.1), (iii) real mean
and (iv) real max are the mean and max power consumption obtained from the
workload dataset, and (v) naive uses the maximum reachable power consump-
tion of a job (i.e., 2100W * qj , where 2100W is the maximum single-node power
value present in the Marconi100 dataset in 2022). naive is used as a baseline
predictor to evaluate the accuracy of the other predictors proposed.

We use Batsim [9] and SimGrid [6] to perform the scheduling simulations,
using a SimGrid representation of the whole 980-node of Marconi100. We use the
schedule produced by the simulators plus the time-series data about the jobs’
power consumption from the Marconi100 dataset to calculate the total power
consumption. Taking into account the 30 workloads and the job power predictors,
our experimental campaign consists of 1950 simulation instances. Additionally,
each workload is executed on EASY (without powercap) to serve as baseline and
evaluate both impacts on total power consumption and QoS.

6.5 Which jobs’ power information contribute to better scheduling
under power constraints?

Figures 4 and 5 summarizes results of our simulation campaign (Section 6.4) by
aggregating data from all workloads together. 1 workload has been excluded from
Figure 5 as powercapping greatly increases scheduling performance on it. Values
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Fig. 4: Distribution of the platform power consumption during the powercap-
constrained 3-hour time window. Powercap is the horizontal black line. All power
values (y axis, facet powercap pcap) are expressed as a proportion of the maxi-
mum dynamic power range. Standard boxplots (Q1−3, 1.5 IQR).

given in the remaining of this section are computed by (workload, powercap)
group, and then averaged on all groups. They analyze (I) the extent to which each
predictor is able to use the power at its disposal while powercap is active, and
(II) how they degrade QoS performance (through turnaround time) compared
to baseline EASY’s.

Since naive considers the maximum achievable node power for the whole
jobs’ duration, EASY+PC is incapable of harnessing the power consumption
fluctuations that occur during job execution to better use the available power.
This incapability leads to a severe power under-utilization (74%), and a signifi-
cant increase in the turnaround time (15%).

max provides better information about the maximum power consumption
than naive, thus better harnessing the fluctuations. max still remains, however,
as a “conservative” method which hypothesizes that the maximum value occurs
all the time during the jobs’ execution. Such hypothesis helps assuring that
EASY+PC does not trespass the power cap (it never did, even when using
our max prediction method), though this results in power under-utilization and
increase in the turnaround time (respectively around 44% and 11%).

More “aggressive”, mean hypothesizes that the mean power is the value that
occurs most of the time during the jobs’ execution. This hypothesis gives more
flexibility to EASY+PC to harness the jobs’ power fluctuations. The drawback
is the increased risk of trespassing the powercap. In our experiments, the mean

method is the one that makes the best use of the available power (3% power
over-utilization) and the one that increases the turnaround time the least (6%).
Using mean trespasses the powercap in most instances (95%) but the trespassing
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Fig. 5: Distribution of the performance degradation (compared to EASY) for
29/30 workloads. The turnaround time of a job is the amount of time the job
spends in the system (from submission to finish). The workload mean turnaround
time is the arithmetic mean all the jobs’ turnaround time. Standard boxplots.

is small: the maximum instantaneous powercap break observed is in average and
median 14% above the powercap.

Lastly, the prediction accuracy of the mean method (Section 6.3) results in
satisfactory performances when compared to using real mean values. Please note
that real values are baselines and cannot be obtained before the jobs’ execution.

7 Conclusion

We presented in this paper two main contributions: a complete integrated en-
vironment from monitored data to the jobs execution and an evaluation of sev-
eral jobs’ power consumption prediction methods. In particular, we showed that
“lightweight” (frugal) predictions used in the scheduling module lead to similar
performance improvements, when compared to more costly and sophisticated
predictions or compared to the optimal value. Simple history prediction method
(such as mean) is sufficiently good to express the jobs’ power profiles during
scheduling, which fosters “lower-tech” scheduling algorithms.

The proposed approach focused on the capability to take into account these
lightweight predictors for a classical and widely used EASY scheduling policy.
From this positive experience on EASY, the next step is to investigate new
scheduling policies harnessing the new information from the predictors, but also
adding actual monitoring values to improve the quality of its decision. It would
also be interesting to refine the jobs’ model, to take into account phases of
long duration applications. Using such information would help to improve the
management of short duration jobs.
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tems. Theses, Université de Grenoble (Oct 2013)

11. Feitelson, D.G., Rudolph, L., Schwiegelshohn, U., Sevcik, K.C., Wong, P.: Theory
and practice in parallel job scheduling. In: JSSPP: IPPS’97 Processing Workshop
Geneva, Switzerland, April 5, 1997 Proceedings 3. pp. 1–34. Springer (1997)

12. Feitelson, D.G., Weil, A.M.: Utilization and predictability in scheduling the ibm
sp2 with backfilling. In: Proceedings of the First Merged International Parallel
Processing Symposium and Symposium on Parallel and Distributed Processing.
pp. 542–546. IEEE (1998)

13. Gaussier, E., Glesser, D., Reis, V., Trystram, D.: Improving backfilling by using
machine learning to predict running times. In: Proceedings of the International
Conference for High Performance Computing, Networking, Storage and Analysis.
SC ’15, Association for Computing Machinery, New York, NY, USA (2015)

14. Khan, K.N., Hirki, M., Niemi, T., Nurminen, J.K., Ou, Z.: Rapl in action: Expe-
riences in using rapl for power measurements. ACM Trans. Model. Perform. Eval.
Comput. Syst. 3(2) (mar 2018). https://doi.org/10.1145/3177754

15. Kocot, B., Czarnul, P., Proficz, J.: Energy-aware scheduling for high-performance
computing systems: A survey. Energies 16(2), 890 (2023)

16. Laboratory, O.R.N.: Frontier’s architecture. https://olcf.ornl.gov/wp-
content/uploads/Frontiers-Architecture-Frontier-Training-Series-final.pdf (2023),
online; last access 29 november 2023

17. Pedregosa, F., Varoquaux, G., Gramfort, A., Michel, V., Thirion, B., Grisel, O.,
Blondel, M., Prettenhofer, P., Weiss, R., Dubourg, V., Vanderplas, J., Passos, A.,
Cournapeau, D., Brucher, M., Perrot, M., Duchesnay, E.: Scikit-learn: Machine
learning in Python. Journal of Machine Learning Research 12, 2825–2830 (2011)

18. Poquet, M., Carastan-Santos, D., Da Costa, G., Stolf, P., Trystram, D.: Artifact
data of article ”Light-weight prediction for improving energy consumption in HPC
platforms”, Euro-Par 2024 (May 2024). https://doi.org/10.5281/zenodo.11173631

19. Saillant, T., Weill, J.C., Mougeot, M.: Predicting job power consumption based
on rjms submission data in hpc systems. In: Sadayappan, P., Chamberlain, B.L.,
Juckeland, G., Ltaief, H. (eds.) High Performance Computing. pp. 63–82. Springer
International Publishing, Cham (2020)

20. Shoukourian, H., Wilde, T., Auweter, A., Bode, A.: Predicting the energy and
power consumption of strong and weak scaling hpc applications. Supercomputing
Frontiers and Innovations 1(2) (2014)

21. Storlie, C., Sexton, J., Pakin, S., Lang, M., Reich, B., Rust, W.: Modeling and
predicting power consumption of high performance computing jobs (2015)

22. Wikipedia: 2021 Texas power crisis, Online; last access 29 november 2023.
https://en.wikipedia.org/wiki/2021 Texas power crisis (2023)

23. Zrigui, S., de Camargo, R.Y., Legrand, A., Trystram, D.: Improving the perfor-
mance of batch schedulers using online job runtime classification. Journal of Par-
allel and Distributed Computing 164, 83–95 (2022)


