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Abstract

With the increase of demand for computing resources and the struggle to provide the necessary energy,
power-aware resource management is becoming a major issue for the High-performance computing (HPC)
community. Including reliable energy management to a supercomputer’s resource and job management
system (RJMS) is not an easy task. The energy consumption of jobs is rarely known in advance and the
workload of every machine is unique and different from the others.

We argue that the first step toward properly managing energy is to deeply understand the energy
consumption of the workload, which involves predicting the workload’s power consumption and exploiting
it by using smart power-aware scheduling algorithms. Crucial questions are (i) how sophisticated a
prediction method needs to be to provide accurate workload power predictions, and (ii) to what point
an accurate workload’s power prediction translates into efficient energy management.

In this work, we propose a method to predict and exploit HPC workloads’ power consumption,
with the objective of reducing the supercomputer’s power consumption while maintaining the manage-
ment (scheduling) performance of the RJMS. Our method exploits workload submission logs with power
monitoring data, and relies on a mix of light-weight power prediction methods and a classical EASY
Backfillling inspired heuristic.

We base this study on logs of Marconi 100, a 980 servers supercomputer. We show using simulation
that a light-weight history-based prediction method can provide accurate enough power prediction to
improve the energy management of a large scale supercomputer compared to energy-unaware scheduling
algorithms. These improvements have no significant negative impact on performance.

Machine learning HPC Resource management Power capping Simulation.

1 Introduction

High-Performance Computing (HPC) technology is becoming more accessible and less expensive to build,
which opens the door to new fields to capitalize on the large computational capabilities afforded only by
such large systems. However, as opposed to the production cost, the power consumption of HPC platforms
only increases, reaching levels [16] in the order of the power consumption of a small city. Besides the carbon
footprint issue [2] raised by this increase in the power consumption, current climate events may heavily
strain the electricity grids [21] that power HPC platforms. To avoid outages, it has become crucial for HPC
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platform maintainers to deploy measures to ease the strain in the electricity grid, which is typically achieved
by enforcing a power capping over time in the platform. The platform’s resource manager must therefore
adapt to the available power during this power constrained period.

Most existing works propose methods to predict the power consumption of the workload, coupled with
a speed scaling (DVFS) method, to adapt to the available power. The drawback is the risk of unforeseeable
effects on Quality of Service (QoS). Only few works in the literature propose a full framework, including a
workload power prediction method feeding energy data at the submission time to a resource manager. These
few works often result in complex and/or heavyweight optimization schemes that are perceived to be either
too risky that might disrupt regular functioning, or too expensive in terms of computational resources, thus
reducing the (constrained) power available for the applications.

In contrast with related works, this work aims to adapt to the available power and deal with the power
constraints as lightweight and simple as possible. We exploit power consumption data to develop models to
predict the power consumption of an HPC application in advance. These models feed power consumption
predictions of arriving applications to a scheduler, and the scheduler uses these predictions to comply with
the power constraints while keeping the supercomputer operational. Our experimental results highlight that
a lightweight, history-based predictor of the mean power consumption – which is arguably one of the simplest
descriptors of an applications’ power consumption – coupled with an EASY Backfilling [12] inspired scheduler
can make a close to optimal use of the available power in constrained periods.

We organize the rest of this paper as follows: Section 2 presents related works in the literature, Section 3
presents preliminary concepts needed to understand our work’s context, and Sections 4 and 5 present our
methods to predict HPC applications power consumption and to schedule them in an HPC platform, respec-
tively. We present and discuss our experimental results in Section 6, and we present our concluding remarks
and future perspectives in Section 7.

2 Related Work

This section provides an overview of the related works regarding supercomputer’s power monitoring/predictions
and prediction-aided HPC resource management. The reader can consult Kocot et al. [15] work for a more
comprehensive survey on energy-aware resource management in HPC platforms.

Many works propose to exploit predictions to improve the performance of HPC resource management.
For instance, Zrigui et al. [22] used a coarse grain prediction of jobs into long and short to design a scheduling
algorithm taking this information into account for the minimization of the maximum completion time of a set
of jobs. In [13], the authors propose a new scheduling algorithm that outperforms the popular EASY back-
filling algorithm by 28% considering the average bounded slowdown objective taking into account predictions
on the job running times. In the context of predicting the power consumption, Storlie et al. [20] developed a
framework that predicts energy consumption of arriving jobs. They build a statistical model to approximate
the power used by HPC jobs using hierarchical Bayesian modeling with hidden Markov and Dirichlet process
models. The goal of their model is to enable the use of an individual node-capping power strategy shown
to be more effective for limiting energy consumption than a uniform one.It is the most wholesome model
in comparison to the others, though it comes with a high level of complexity. Bugbee et al. [5] proposed
another model by combining a priori (resource manager’s meta-data) and in situ data (collected during
jobs execution). They focus on the specific applications that exhibit a periodic behavior, which accounts for
only 45% of the total workload. Another limitation is that developing fine-tuned models for each possible
application may be impractical and too resource demanding. Borghesi et al. [3] and more recently Saillant
et al. [18] and Antici et al. [1] proposed Machine Learning (ML) and Rote-Learning approaches that rely on
resource manager meta-data in order to predict the power consumption of a HPC workload. They combine
this information measurements using the RAPL [14] interface. Borghesi et al. [3] introduced the idea that
the mean value is a good descriptor of the HPC applications’ power consumption. We distinguish from these
works in two aspects: (i) we explore and compare a prediction method that do not rely on ML to predict the
power consumption, and (ii) we further investigate on how the predicted mean power value can be useful to a
resource manager to adapt to the constrained power. In [19], the authors focused on large-scale parallel jobs
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for predicting the energy of a parallel application just by observing a few of its active nodes (as opposed to
monitor all the deployed nodes). Chapsis et al. [7] propose a power prediction and a resource management
framework that includes the power variability due to hardware manufacturing. Their work involves a fine-
grained monitoring of the applications and using hardware specific features (hardware counters) to predict
the power consumption. Such an approach can be computationally expensive, especially due to the overhead
introduced in the computing nodes by the fine-grained monitoring of numerous counters. The approach we
propose in this paper intents to reach a balance in the granularity of the used information: providing coarse
grained information on the power profile while using only resource manager related information and past,
coarse-grained, monitored executions on the platform.

3 Preliminary Concepts

Modern HPC platforms contain large number of nodes. They usually are homogeneous1. Many users submit
parallel applications (hereafter referred to as jobs) to be executed in the HPC platform, and these jobs can
arrive at any point in time (i.e., online job submission). The jobs’ submissions are managed by the Resources
and Jobs Management System (RJMS). It decides when and where to process each job. Typical meta-data
available to the RJMS for a given job j is its arrival time (rj), requested number of processors (qj) and an
estimation of its processing time (p̃j) which is provided by the user who submitted j. Resources allocation
and execution is usually represented in a Gantt chart (Figure 1).
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Figure 1: The two sources of data used in a single, 32-core processor example: (top) data coming from the
RJMS regarding the jobs’ execution and allocation (processing time versus cores allocated), and (bottom)
data coming from a power monitoring tool of the computing node (power versus time).

RJMS needs even more information when scheduling jobs under power capping. It needs at least a power
profile which will serve as a power constraint over a certain time window.

With the increasing concern of reducing the energy consumption of HPC platforms, recent HPC platforms
are deployed with energy consumption monitoring tools such as IPMI [8], wattmeters, or software modules
such as the RAPL [14] interface. Such an energy monitoring tool can provide power consumption data at
the computing node level, as a time series of the power consumption of the computing node in function of
time (bottom graph in Figure 1).

We can cross the RJMS’s jobs data with the computing nodes’ power monitoring data to get an idea
about the power consumption of the jobs. An inherent limitation of this strategy is that, in the case of jobs

1The term homogeneous in this paper means that all computing nodes have the same CPU/accelerators configuration.
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that share a same computing node (stacked rectangles in Figure 1), the resulting power consumption is in
function of each of the jobs’ energy consumption plus potential interference between the jobs, which makes it
hard to distinguish each of the jobs’ contribution to the power consumption of the node. When taking into
account jobs that had exclusive access to computing nodes, however, we can identify a power consumption
profile of the jobs. The exact jobs’ power profile can only be known after the jobs’ execution.

In this work we focus on exploiting the jobs’ power consumption profiles to perform better scheduling
under power constraints in the simplest way possible. We choose simplicity because (i) sophisticated methods
often leads to heavyweight computations whose power consumption can reduce or at some point nullify the
power savings from better scheduling, and (ii) sophisticated methods are often hard to explain/justify which
hinders their deployment in practice [11].

More specifically, we focus on the following research questions:

1. Which simple piece of information regarding the jobs’ power profile contribute to better scheduling
under power constraints?

2. How to predict this simple piece of information before the jobs’ execution? How much prediction
accuracy can we achieve?

We consider as simple piece of information (hereafter referred to as jobs’ power consumption for simplicity)
the mean and maximum metrics of the jobs’ power consumption profile. We decide to study the mean and
the maximum because these two metrics can have different impacts in the scheduling with power constraints.
We uncover these impacts in Section 6.5.

4 Predicting the power consumption of HPC jobs

For each job, the RJMS follows the same algorithm before the job’s execution: (i) read all the meta-data of
the job (including the user’s id); (ii) predict the mean and max power consumption of the job; (iii) provide
the job to the scheduler along with power information. The RJMS also has access to past measures, including
meta-data and power consumption of past jobs.

We propose two job power prediction methods with an increasing level of complexity to predict the jobs
power consumption: the first method uses the power consumption of previous users’ jobs (users’ job history).
The second method uses previous jobs’ power consumption data and jobs metadata (Table 1) with Machine
Learning (ML) regression methods.

4.1 The first method: predicting power consumption with users’ jobs history.

For a job j of a given user and a sliding window size s in seconds, we predict the power consumption of the
job P̂j as follows,

P̂j =

∑
j′∈W θj′Pj′∑
j′∈W θj′

(1)

W = {j′ | rj ≥ Cj′ ≥ (rj − s)} (2)

θj′ =

(
1 −

(
rj − Cj′

s

))α

(3)

where Cj′ is the completion time of a previously executed job j′ of same user who submitted j, and Pj′

is the measured mean power of j′. The power consumption of a previous job Pj′ can be known at the time

we predict P̂j since Cj′ ≤ rj .
Equation 1 is a weighted average of previous jobs j′ of the user that finished within a sliding time window

with size s (Equation 2). We assign the weight θj′ (Equation 3) in function of how long in the past j′ finished
compared to the arrival time of j. A value of θj′ = 0 means that j′ finished at the oldest allowed date, and
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θj′ = 1 means that the j′ finished exactly at the arrival time of j. The parameter α changes the way we
penalize older jobs by changing the θj′ behavior between 0 and 1, from a linear α = 1, to a super-linear
α = 2 or sub-linear α = 0.5 fashion.

In this paper, we considered the max and the mean power consumption as we assume that both metrics
have different effects when used for performing scheduling decisions. These effects are explored in more detail
in Section 6.5.

4.2 The second method: predicting using supervised regression.

The prediction method presented above can not make use of the jobs’ metadata (e.g., requested number of
processors, submission time, expected processing time, etc.) to potentially provide better predictions. We
can circumvent this problem by using supervised regression with the hypothesis of increasing the prediction
accuracy, using the jobs’ metadata and the power consumption history as input features.

We propose an online learning method to predict the jobs’ power consumption. The method retrains the
prediction models at periodic time intervals (e.g., at the end of each week) in order to adapt, as the jobs’
history increases and changes. In this context, online still refers to the behavior of the RJMS using all past
data, and only meta-data of the arriving jobs. For an already passed week with index w (i.e., week 0, 1, 2,
. . .), let t(w) be the timestamp of when the models will be retrained at the end of week w. Then, we define
our job dataset Jtrain as follows.

Jtrain = {j | Cj < t(w)} (4)

In other words, Jtrain contains the jobs’ history. Then, we train a predictor f̂(j) of the jobs’ power
consumption that minimizes the Mean Squared Error (MSE, Equation 5).

MSE =
1

|Jtrain|
∑

j∈Jtrain

(
Pj − f̂(j)

)2

(5)

After training a predictor f̂(j) we use it to predict the power consumption P̂j′ for all jobs j′ ∈ Jinference,
where Jinference is defined as follows.

Jinference = {j′ | t(w) ≤ rj′ ≤ t(w + 1)} (6)

In other words, we use the jobs history to train a model at week w that already passed, and use this
model to perform predictions of the power consumption of the jobs that will arrive online at week w + 1.
At the end of week w + 1 (i.e., at timestamp t(w + 1)) the training procedure repeats, generating a new

predictor f̂(j), which will be used for week w + 2. A particular situation is for week w = 0, where there is

no such dataset to train a regression model. In this case we can use f̂(j) = P̂j (Equation 1). We present

the choice of regression methods to train f̂(j), and how we exploit the jobs’ data (i.e, the features of j) in
Section 6.2.

5 Scheduling with jobs’ power profile prediction

As the focus of this article is on the impact of power prediction, we will use a simple and classical EASY
backfilling algorithm [12]. This algorithm is used in production in a large number of HPC centers. We assume
that the platform is static: no failure of nodes nor new nodes during the experiment. We also assume that
the servers will always be switched on. We finally assume there is no constraints on the applications related
to the host they can run on. All these assumptions enable us to focus on the impact of the prediction
framework, further studies on these hypotheses are kept as perspectives.

The implemented EASY uses a first-come first serve (FCFS) policy and works as follows. EASY is
executed when these events occur: a new task arrives, a task finishes. Tasks are stored in a queue in their
order of arrival — the order of this queue will never be changed. EASY starts the oldest jobs in the queue
until either finishing the queue or arriving on a job (called high-priority job) that cannot start due to lack
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Figure 2: Distributions of the actual mean and maximum power consumption of the filtered jobs in the
Marconi100 trace.

of resources. In the later case, EASY will try to backfill jobs, that is to say start remaining task right now
if they do not impact the high-priority job estimated starting time.

The only modification we have made to the classical EASY is how to check whether resources are available.
Classical EASY only checks whether there are enough available nodes/cores. Here, our implementation
named EASY+PC also checks whether there is enough power w.r.t. a given power cap. We assume that an
estimator (such as the ones we propose) can estimate the power needed for a job. Based on this estimator,
EASY+PC estimates the currently used power and the requested power for each job in the queue. All of
EASY+PC decisions are based solely on these estimations.

6 Results

6.1 Jobs’ power prediction: dataset description

This work uses the trace collected from the Marconi100 supercomputer [4]. Marconi100 consisted of 980
computing nodes, each of which consisted of a two-socket IBM POWER9 AC922 (32 cores in total), and four
NVIDIA Volta V100 GPUs. The trace contains jobs’ meta-data such as jobs submission times, processing
times, anonymized user ids, and node ids allocated to the jobs. It also contains data about the nodes’ total
power consumption, measured at each 20-second periods, using an IPMI module installed in the nodes.

From this trace we used the data regarding the operation of the Marconi100 from January 2022 to
September 2022. To circumvent the limitation mentioned in Section 3, we filtered out the jobs that shared
a node from the original trace. We also filtered out jobs that run in less than a minute because they have a
too small number of power measurements. After this filtering we end up having a job dataset submissions
from 576 users, accounting for 523,204 jobs.

Figure 2 shows the mean and max power consumption of the computing nodes for each of the jobs in the
dataset. We can observe a peak density of jobs with mean and max consumption of around 700 watts. This
insight in itself could serve as a prediction if the whole distribution was clear and concentrated at around
700 watts. However, the jobs distribution is not so clear for other power values. which justifies the need of
more sophisticated prediction methods.
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Table 1: Features used in the mean power consumption regression methods

Parameter

1 Submission time (hour of the day)
2 Number of processors (qj)
3 Number of nodes
4 Requested processing time p̃j
5 The sliding window history prediction P̂j (Equation 1)
6 Standard deviation σ({Pj′ | j′ ∈ W})
7 The power consumption Pj∗ where j∗ is the last finished user job

6.2 Jobs’ power prediction: experimental setting

For the history based power prediction method (Section 4), we set the parameter α (Equation 3) with a value
of 2. This choice is based on the hypothesis that recent jobs have more importance than older jobs when
predicting the power consumption. An α = 2 puts more weight into recent jobs, and the weight decreases fast
for older jobs. We set the sliding window size s to account for the whole user’s job history, which translates
to s being completion time of the first finished job of a user. We decided on this design to avoid eventual
empty sliding windows during the prediction process. For the regression based power prediction method, we
use the features presented in Table 1. Features 1 to 4 are standard job data that can be obtained at job
submission, and features 5 to 7 are lagged features (i.e., a standard feature engineering technique), which
can be obtained by using the user’s job submission history.

We trained predictors f̂(j) using a selection of regression methods in the scikit-learn [17] library: (i)
Linear Regression (LinearRegression), (ii) Random Forest (RandomForestRegressor), (iii) Support Vector
Regression with Linear Kernel (LinearSVR), and (iv) Stochastic Gradient Descent Regression (SGDRegressor).
For each training week and method, we applied scikit-learn’s recursive feature elimination technique to
choose the appropriate subset of features from Table 1 to use according to the training data. We perform
this feature elimination and we set each of the regression methods hyper-parameters with a 5-fold cross
validation scheme.

6.3 How to predict jobs’ power information before the jobs’ execution? How
much prediction accuracy can we achieve?

Figure 3 shows the mean absolute percentage error (MAPE) of the methods used to predict the mean and
the max jobs’ power consumption. The boxplots represent the distribution of the prediction performance for
each of the 576 users present in our job dataset. For the mean power consumption, we achieve a prediction
MAPE from 0.115 (using jobs’ history method, Section 4) to 0.128 (using linear regression, Section 4). This
translates into a prediction accuracy of 88.5% and 87.2%, respectively. For predicting the maximum power
consumption, we achieve a prediction MAPE from 0.195 (jobs’ history method) to 0.215 (linear regression),
which translates to a prediction accuracy of 80.5% and 78.5%, respectively. For both predicting the mean
and the maximum power consumption, we can not clearly distinguish which prediction method is better. We
can observe, however, that our jobs’ history prediction method achieves equivalent prediction performance
than the more sophisticated ML methods.

This is an important finding. Because we develop these prediction methods to reduce the energy consump-
tion of operating supercomputers, we must reduce the energy consumption overhead induced by introducing
these methods as much as possible. Achieving a high level of power prediction performance with the lowest
level of energy consumption is therefore a priority. Although all of the regression methods used can be seen
as lightweight when compared to neural network methods, a simple jobs’ history based method is clearly
much less energy demanding than a Machine Learning regression method, which requires much more pro-
cessing steps (i.e., normalizing data, selecting the best features and finding the best hyper-parameters with
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Figure 3: Mean Absolute Percentage Error of the mean and maximum power consumption prediction methods
for the jobs in the Marconi100 trace.

cross-validation, etc.).

6.4 Jobs scheduling with power prediction: experimental setup

We simulate 30 different workloads using EASY+PC (Section 5) with various powercap values and with var-
ious job power predictors. Each workload consists of jobs taken from the filtered Marconi100 supercomputer
dataset (Section 6.1). Jobs are selected following workload trace replay guidelines [10].

EASY+PC applies a power constraint solely during the first 3 hours of each simulation. The powercap
values we use range from 10% to 70% of the highest dynamic power consumption of the Marconi100 dataset
in 2022 (955080 W).

We study EASY+PC’s behavior depending on the information it uses to determine the power con-
sumption of a job: (i) predicted mean and (ii) predicted max use the users’ job history prediction method
(Section 4.1), (iii) real mean and (iv) real max are the mean and max power consumption obtained from the
workload dataset, and (v) naive uses the maximum reachable power consumption of a job (i.e., 2100W * qj ,
where 2100W is the maximum single-node power value present in the Marconi100 dataset in 2022). naive

is used as a baseline predictor to evaluate the accuracy of the other predictors proposed.
We use Batsim [9] and SimGrid [6] to perform the scheduling simulations, using a SimGrid representation

of the whole 980-node of Marconi100. We use the schedule produced by the simulators plus the time-
series data about the jobs’ power consumption from the Marconi100 dataset to calculate the total power
consumption. Taking into account the 30 workloads and the job power predictors, our experimental campaign
consists of 1950 simulation instances. Additionally, each workload is executed on EASY (without powercap)
to serve as baseline and evaluate both impacts on total power consumption and QoS.

6.5 Which jobs’ power information contribute to better scheduling under power
constraints?

Figures 4 and 5 summarizes results of our simulation campaign (Section 6.4) by aggregating data from
all workloads together. 1 workload has been excluded from Figure 5 as powercapping greatly increases
scheduling performance on it. Values given in the remaining of this section are computed by (workload,
powercap) group, and then averaged on all groups. They analyze (I) the extent to which each predictor is
able to use the power at its disposal while powercap is active, and (II) how they degrade QoS performance
(through turnaround time) compared to baseline EASY’s.

Since naive considers the maximum achievable node power for the whole jobs’ duration, EASY+PC is
incapable of harnessing the power consumption fluctuations that occur during job execution to better use the
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Figure 4: Distribution of the platform power consumption during the powercap-constrained 3-hour time
window. Powercap is the horizontal black line. All power values (y axis, facet powercap pcap) are expressed
as a proportion of the maximum dynamic power range. Standard boxplots (Q1−3, 1.5 IQR).
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Figure 5: Distribution of the performance degradation (compared to EASY) for 29/30 workloads. The
turnaround time of a job is the amount of time the job spends in the system (from submission to finish). The
workload mean turnaround time is the arithmetic mean all the jobs’ turnaround time. Standard boxplots.

available power. This incapability leads to a severe power under-utilization (74%), and a significant increase
in the turnaround time (15%).
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max provides better information about the maximum power consumption than naive, thus better har-
nessing the fluctuations. max still remains, however, as a “conservative” method which hypothesizes that
the maximum value occurs all the time during the jobs’ execution. Such hypothesis helps assuring that
EASY+PC does not trespass the power cap (it never did, even when using our max prediction method),
though this results in power under-utilization and increase in the turnaround time (respectively around 44%
and 11%).

More “aggressive”, mean hypothesizes that the mean power is the value that occurs most of the time
during the jobs’ execution. This hypothesis gives more flexibility to EASY+PC to harness the jobs’ power
fluctuations. The drawback is the increased risk of trespassing the powercap. In our experiments, the mean

method is the one that makes the best use of the available power (3% power over-utilization) and the one
that increases the turnaround time the least (6%). Using mean trespasses the powercap in certain instances
(38%) but the trespassing is small: the maximum instantaneous powercap break observed is in average and
median 14% above the powercap.

Lastly, the prediction accuracy of the mean method (Section 6.3) results in satisfactory performances
when compared to using real mean values. Please note that real values are baselines and cannot be obtained
before the jobs’ execution.

7 Conclusion

We presented in this paper two main contributions: a complete integrated environment from monitored
data to the jobs execution and an evaluation of several jobs’ power consumption prediction methods. In
particular, we showed that “lightweight” (frugal) predictions used in the scheduling module lead to similar
performance improvements, when compared to more costly and sophisticated predictions or compared to
the optimal value. Simple history prediction method (such as mean) is sufficiently good to express the jobs’
power profiles during scheduling, which fosters “lower-tech” scheduling algorithms.

The proposed approach focused on the capability to take into account these lightweight predictors for a
classical and widely used EASY scheduling policy. From this positive experience on EASY, the next step is
to investigate new scheduling policies harnessing the new information from the predictors, but also adding
actual monitoring values to improve the quality of its decision. It would also be interesting to refine the
jobs’ model, to take into account phases of long duration applications. Using such information would help
to improve the management of short duration jobs.
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