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Simple Summary: The human genome produces various types of RNA molecules. A significant
portion of these are long non-coding RNAs (lncRNAs) exceeding 200 nts without an obvious open
reading frame. There are more than 200,000 lncRNAs, but we have limited understanding of their
functions. LncRNAs can influence gene activity by interacting with proteins or nucleic acids. Some
lncRNAs regulate genes involved in cancer, either promoting or suppressing tumor growth. One
lncRNA of interest is ANRIL (Antisense Noncoding RNA in the INK4 Locus), which can affect gene
expression through different ways. However, ANRIL’s exact role in cancer is complex and varies in
different situations, making it a challenging area to study. This review strives to offer a thorough
comprehension of ANRIL’s role in regulating genes and its impact on the development of cancer.

Abstract: ANRIL (Antisense Noncoding RNA in the INK4 Locus), a long non-coding RNA encoded
in the human chromosome 9p21 region, is a critical factor for regulating gene expression by interacting
with multiple proteins and miRNAs. It has been found to play important roles in various cellular
processes, including cell cycle control and proliferation. Dysregulation of ANRIL has been associated
with several diseases like cancers and cardiovascular diseases, for instance. Understanding the
oncogenic role of ANRIL and its potential as a diagnostic and prognostic biomarker in cancer is
crucial. This review provides insights into the regulatory mechanisms and oncogenic significance of
the 9p21 locus and ANRIL in cancer.

Keywords: LncRNA; ANRIL; 9p21 locus; cancer; gene regulation; epigenetics; competitive
endogenous RNA

1. LncRNAs and Cancers

The human genome is extensively transcribed into thousands of RNAs. A significant
part of the resulting transcriptome corresponds to the long non-coding RNAs (lncRNAs)
defined as RNAs longer than 200 nts and lacking obvious open reading frames. The number
of lncRNAs exceeds 200,000 and the field lacks evidence supporting the functionality of
most of them [1–4]. Compared to mRNAs, lncRNAs exhibit stronger tissue-specific expres-
sion and often function in a tissue-specific manner [5]. The broad definition of lncRNAs
encompasses a large and highly heterogeneous collection of transcripts that differ at least
in their subcellular localizations and functions. Cytoplasmic lncRNAs mainly modulate
gene expression by affecting the different stages of mRNA life, including stability and
translation, while nuclear lncRNAs mainly associate with the genome or with premature
RNAs in synthesis to regulate gene expression and alternative splicing at the chromatin
level, respectively [1]. For instance, by recruiting epigenetic writers, chromatin remodelers,
transcription and splicing factors, several lncRNAs control the expression of genes nearby
or/and distant from their hosting locus (-cis and -trans activity, respectively) [6,7]. The
diversity of activities of the lncRNAs places them at a crossroad between the genomic and
the epigenetic regulations qualified as supragenomic regulations. This refers to the genomic
information beyond the level of individual genes, such as the non-coding regions of the
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genome, involved in the modulation of the organization and regulation of the genomic
elements [8].

Cellular experiments have shown that lncRNAs are involved in a wide spectrum of
biological processes ranging from cell proliferation, apoptosis and nutrient sensing to cell
differentiation [9,10]. Consequently, the deregulation of their expression can affect cell
homeostasis and may favor the occurrence and/or development of pathologies. This is
consistent with the fact that lncRNAs have been associated with key aspects of the cancer
biology such as uncontrollable proliferation, evasion of cell death, metastasis and drug
resistance [11]. According to “the lncRNADisease 2.0 database”, lncRNAs are associated
with 529 pathologies divided into several categories, including three major ones corre-
sponding to cancers (44.2%), cardiovascular pathologies (11.6%) and neurodegenerative
diseases (7.3%) [4]. For these reasons, several lncRNAs are already used as biomarkers as
their expression rate correlates with the diagnostic nature of certain pathologies and more
importantly they definitively may prove to be valuable therapeutic cancer targets [12,13].

Cancer is one of the leading causes of death worldwide and refers to a group of
diseases characterized by the uncontrolled growth and spread of abnormal cells capable or
not of invading nearby tissues and organs. Aberrant expressions and splicing profiles of
lncRNAs have been found in various types of cancer in agreement with the fact that some
lncRNAs act as oncogenes, promoting cancer development and progression, while others
act as tumor suppressors, inhibiting cancer growth and metastasis [14,15]. For example,
the lncRNA HOTAIR (HOX Transcript Antisense Intergenic RNA) has been found to be
overexpressed in several types of cancer and promotes metastasis by interacting with
chromatin-modifying enzymes and promoting epigenetic changes [16]. In contrast, the
lncRNA GAS5 (Growth Arrest-Specific 5) has been shown to be downregulated in cancer
and acts as a tumor suppressor by inhibiting cell proliferation and promoting apoptosis [17].

In this review, we focused on the implication of the lncRNA ANRIL (Antisense Non-
coding RNA in the INK4 Locus, CDKN2B-AS1) in cancers. ANRIL is transcribed from the
9p21 locus in several linear and circular spliced variants mainly made of repetitive elements
derived from LINE, SINE and LTR sequences [18–20]. The overexpression of some of them
is correlated with pathologies such as cardiovascular disease (CVD), type 2 diabetes (T2D)
and cancers [21,22].

ANRIL can modulate gene expression at the post-transcriptional level by acting as a
competing element RNA (ceRNA) of miRNAs and proteins [23,24]. Additionally, ANRIL
affects gene expression at the chromatin level negatively and positively by guiding the
recruitment of chromatin modifiers or transcriptional activators at specific loci [25,26]. Re-
cently, converging data showed that ANRIL is also able to affect the patterns of alternative
splicing in HEK293 and HUVEC cells [20,27]. These regulatory activities are often prone
to enhancing cell proliferation, migration, invasion, and metastasis, and to suppressing
apoptosis and senescence mainly attributed to the modulation of the expression of key
cancer-related genes involved, for instance, in the p53 axis. To our knowledge, ANRIL is
the lncRNA with the highest frequency of alterations in the context of cancer development
and progression.

The proposed roles of ANRIL in cancer biology are still unclear. This is mainly due
to differences in the types of cancer studied and/or the methods used to evaluate ANRIL
expression likely to exclude the functional contribution of the individual ANRIL isoforms
for instance. It is also possible that ANRIL has different activities in different stages of
cancer progression or in different cell types. This drastically complicates the understanding
of the mechanisms through which ANRIL promotes cancer development. In this review,
we addressed these points and made efforts to formalize a clearer vision of the intertwined
domain related to ANRIL and cancers.
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2. ANRIL and the 9p21 Locus
2.1. Discovery of the 9p21 Locus as a Region of High Interest

The 9p21 locus is located on the short arm (p) of chromosome 9 at region 21 and
spans over 170 kilobases (kb). This locus has drawn particular attention due to the fre-
quent observation of homozygous deletions or epigenetic modifications, such as DNA
methylation-induced transcriptional silencing resulting in the inactivation of this genomic
region in multiple cancer types. Additionally, single-nucleotide polymorphisms (SNPs)
within this region are linked to several age-related disorders, CVD and cancers. These SNPs
are predominantly found within the genes themselves and the adjacent gene desert region
spanning approximately 0.3 megabases [28]. Note that the precise mechanisms through
which these SNPs exert their effects remain largely unknown.

The 9p21 locus was initially described as containing the CDKN2A/ARF and CDKN2B
genes which encode three proteins involved in cell cycle regulation: the p14/ARF, p16INK4a/
CDKN2A and p15INK4b/CDKN2B proteins, respectively [29]. Initially, the CDKN2A/ARF
gene was found to be frequently inactivated or mutated in melanoma and other cancers,
at least in part due to its ability to modulate the p53 axis [30]. Further investigations
allowed researchers to link the 9p21 locus to various other abnormal situations, including
atherosclerosis, T2D, Alzheimer’s disease, lupus erythematosus, epilepsy, glaucoma, obses-
sive compulsive disorder and sepsis [31–38]. The specific genetic variants and mechanisms
underlying these associations are complex and continue to be the subject of ongoing research.

Pasmant and colleagues made a significant finding in 2007 by identifying the long
non-coding RNA ANRIL encoded within the 9p21 locus. It was promptly recognized as
a critical factor in controlling the expression of this locus [31]. As previously stated, this
review is directed towards the association between ANRIL and cancers. For comprehensive
insights into ANRIL and its involvement in other pathologies, we suggest referring to the
reviews authored by Hannou et al., 2015 and Kong et al., 2018 for instance [22,39].

2.2. The lncRNA ANRIL and the Genes of the 9p21 Locus

As mentioned above, the 9p21 locus includes the gene that encodes the long non-
coding RNA ANRIL. This gene is orientated in the opposite direction (antisense) to the
genes within the locus and extends over a region of 126 kb, covering the CDKN2B gene
located within its first intron. The intergenic region separating the ANRIL gene from the
CDKN2A/ARF gene is a bidirectional promoter long to approximately 300 bp [31,40,41].

The CDKN2A and CDKN2B proteins are cyclin inhibitors that regulate cell cycle
progression in the G1/S phase by inhibiting the association between CDK4/6 and cyclin D
(Figure 1). In the G1 phase, the Rb protein (Retinoblastoma Protein) sequesters the E2F1
transcription factor. During the transition to the S phase, the Rb protein is phosphorylated
by the CDK4/6 and cyclin D complex, leading to the dissociation of E2F1. As a result, E2F1
becomes capable of activating the transcription of genes associated with the transition to the
S phase [29,42]. ARF also contributes to cell cycle modulation by promoting the dissociation
of the MDM2 ubiquitin ligase from p53, leading to its stabilization and consequently to
the activation of the cell cycle arrest at the G1/S (Figure 1) [43]. These proteins play a
crucial role in regulating the cell cycle, and any dysfunctions in their expression may
have significant implications for cancer. Given that ANRIL can modulate the expression of
multiple genes, including CDKN2B, it is compelling to consider ANRIL a critical contributor
to many of the pathological processes dependent on the 9p21 locus.



Cancers 2023, 15, 4160 4 of 32Cancers 2023, 15, x FOR PEER REVIEW 4 of 33 
 

 

 
Figure 1. The regulatory mechanisms involving CDKN2A, CDKN2B and ARF on the cell cycle pro-
gression. In the G1 phase, the Rb protein (Retinoblastoma Protein) binds to the E2F1 transcription 
factor, sequestering it. Upon transitioning to the S phase, the CDK4/6 and cyclin D complex phos-
phorylates the Rb protein, resulting in the release of E2F1. Consequently, E2F1 becomes active and 
promotes the transcription of genes involved in the transition to the S phase. CDKN2A/2B inhibits 
the association between CDK4/6 and cyclin D, therefore acting as cyclin inhibitors to control cell 
cycle progression during the G1/S phase. Additionally, ARF plays a role in cell cycle modulation by 
promoting the dissociation of the MDM2 ubiquitin ligase from p53, leading to p53 stabilization. This 
stabilization activates cell cycle arrest at the G1/S barrier. 

3. ANRIL Expression and Abundance 
As the vast majority of the lncRNAs, ANRIL expression is modest (less than 1000 

copies per HEK293 cells) and tissue-specific [44,45]. ANRIL is also transcribed by the RNA 
polymerase II and processed through the canonical splicing, capping and polyadenylation 
pathways. The transcriptomic analysis of publicly available data by the GTEx consortium 
revealed that among 53 normal human tissues, ANRIL is more expressed in transverse 
colon, pituitary glands, small intestine and testis compared to the other analyzed tissues 
[46]. Beside tissue-specific expression, the ANRIL rate also appears to be dependent on 
the development stage. For instance, ANRIL is expressed from the toddler stage in testis 
(2–10 years) [47]. 

Since ANRIL is crucial for maintaining cellular homeostasis, the regulation of its ex-
pression is a very sensitive issue [48,49]. First, it has been shown that the 9p21 locus is 
contained within a single topologically associated domain (TAD) [50,51]. This specific ar-
rangement depending at least on the CDKN2A promoter and 3 CTCF binding sequences 
within CDKN2B exon-1, ARF exon-1b, and CDKN2A exon-3 is likely to play a critical role 
in regulating the expression of the CDKN2A/ARF, CDKN2B, ANRIL genes in HUVEC cells 
and in the colon-cancer-related cell lines GES1, BGC823 and H1299 [50,52,53]. A recent 
study has demonstrated that the formation of this TAD relies on RNAs and CTCF, with 
both actors being essential for strengthening TAD insulation, facilitating interactions be-
tween enhancers and promoters, and promoting gene expression within the 9p21 locus 
[54]. 

ANRIL expression is regulated by multiple factors and stimuli-dependent mecha-
nisms such as genotoxic stress and inflammatory response [26,41,52,55]. For instance, 
DNA damage activates the E2F1 transcription factor, leading to increased ANRIL expres-
sion and subsequently cell proliferation upon DNA repair [41]. HUVEC cells treated with 
TNF-α or IFNγ (interferon γ) show induction of ANRIL expression by NF-kB and STAT1 
activation, respectively, both capable of associating response elements located within its 
promoter [26,52]. In retinoblastoma, hypoxia induces the direct HIF-1α binding to the AN-
RIL promoter region to transcriptionally activate its expression [56]. 

Figure 1. The regulatory mechanisms involving CDKN2A, CDKN2B and ARF on the cell cycle
progression. In the G1 phase, the Rb protein (Retinoblastoma Protein) binds to the E2F1 transcription
factor, sequestering it. Upon transitioning to the S phase, the CDK4/6 and cyclin D complex phos-
phorylates the Rb protein, resulting in the release of E2F1. Consequently, E2F1 becomes active and
promotes the transcription of genes involved in the transition to the S phase. CDKN2A/2B inhibits
the association between CDK4/6 and cyclin D, therefore acting as cyclin inhibitors to control cell
cycle progression during the G1/S phase. Additionally, ARF plays a role in cell cycle modulation by
promoting the dissociation of the MDM2 ubiquitin ligase from p53, leading to p53 stabilization. This
stabilization activates cell cycle arrest at the G1/S barrier.

3. ANRIL Expression and Abundance

As the vast majority of the lncRNAs, ANRIL expression is modest (less than 1000 copies
per HEK293 cells) and tissue-specific [44,45]. ANRIL is also transcribed by the RNA
polymerase II and processed through the canonical splicing, capping and polyadenylation
pathways. The transcriptomic analysis of publicly available data by the GTEx consortium
revealed that among 53 normal human tissues, ANRIL is more expressed in transverse
colon, pituitary glands, small intestine and testis compared to the other analyzed tissues [46].
Beside tissue-specific expression, the ANRIL rate also appears to be dependent on the
development stage. For instance, ANRIL is expressed from the toddler stage in testis
(2–10 years) [47].

Since ANRIL is crucial for maintaining cellular homeostasis, the regulation of its
expression is a very sensitive issue [48,49]. First, it has been shown that the 9p21 locus
is contained within a single topologically associated domain (TAD) [50,51]. This specific
arrangement depending at least on the CDKN2A promoter and 3 CTCF binding sequences
within CDKN2B exon-1, ARF exon-1b, and CDKN2A exon-3 is likely to play a critical role
in regulating the expression of the CDKN2A/ARF, CDKN2B, ANRIL genes in HUVEC cells
and in the colon-cancer-related cell lines GES1, BGC823 and H1299 [50,52,53]. A recent
study has demonstrated that the formation of this TAD relies on RNAs and CTCF, with both
actors being essential for strengthening TAD insulation, facilitating interactions between
enhancers and promoters, and promoting gene expression within the 9p21 locus [54].

ANRIL expression is regulated by multiple factors and stimuli-dependent mechanisms
such as genotoxic stress and inflammatory response [26,41,52,55]. For instance, DNA
damage activates the E2F1 transcription factor, leading to increased ANRIL expression
and subsequently cell proliferation upon DNA repair [41]. HUVEC cells treated with
TNF-α or IFNγ (interferon γ) show induction of ANRIL expression by NF-kB and STAT1
activation, respectively, both capable of associating response elements located within its
promoter [26,52]. In retinoblastoma, hypoxia induces the direct HIF-1α binding to the
ANRIL promoter region to transcriptionally activate its expression [56].
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As mentioned before, the bidirectional promoter of the CDKN2A/ARF-ANRIL genes
contains DNase I hypersensitivity regions and CpG islands. Interestingly, the methylation
of these elements has been shown to inhibit the association of CTCF, resulting in a decrease
in ANRIL expression associated with H3K4me3 reduction [57]. Note that validating a causal
link between DNA methylation of the CDKN2A/ARF promoter and ANRIL transcription
requires further clarification and could benefit from methods including CpG mutagenesis,
reporter assays, and/or epigenetic editing techniques [58].

Conversely, the interaction between ERα (Estrogen Receptor Alpha) and its putative
binding site located in this promoter region is facilitated by CpG methylation, resulting in
increased ANRIL expression upon β-estradiol treatment of SW872 cells [59]. The methyla-
tion status of the ANRIL promoter region also influences the association of the transcription
factors SMAD3/4, thereby affecting ANRIL expression levels in SaOS-2 osteosarcoma
cells [60]. Additionally, TET2 (Tet Methylcytosine Dioxygenase 2), a tumor suppressor
factor responsible for CpG demethylation, decreases ANRIL expression, leading to the
inhibition of gastric cancer cell growth [61].

ANRIL expression is further modulated by the oncogenic transcription factors c-MYC,
SOX2, and SP1 in lung, pharynx, and liver cancers, respectively [62–64]. Moreover, ANRIL
expression is likely to be repressed by different factors, including Androgen Receptor (AR)
and Phospholipase D (PLD) in prostate and lung cancer, respectively [65,66]. Finally, in the
context of colon cancer, when HCT-8 and HCT116 cells were treated with Qingjie Fuzheng
Granule (QFG), it was found that ANRIL expression decreased together with TGF-β1,
phosphorylated (p)-SMAD2/3, SMAD4, and N-cadherin reduction [67].

Additionally, post-transcriptional mechanisms govern ANRIL abundance. In the
context of colon cancer, it has been proposed that the association between AUF1 and
ANRIL may lead to a detrimental effect on ANRIL stability and that the presence of P14AS
lncRNA reduces the interaction between AUF1 and ANRIL. This competitive binding of
P14AS lncRNA to AUF1 leads to an increase in ANRIL expression level [68]. In the same
line, ANRIL is stabilized by IGF2BP3, favoring proliferation and metastasis in renal cancer
tissues and related cell lines [69].

4. ANRIL Phylogeny, Evolution and Transposable Elements

LncRNAs exhibit lower levels of conservation compared to protein coding genes, and
ANRIL is no exception to this trend. Through a phylogenetic analysis involving 27 species
(from zebrafish to human), it was determined that ANRIL originated in placental mammals
with a limited number of exons. As a result of specific evolutionary processes, an increased
number of exons became evident within the haplorhines cladus, while exons’ erosion
was observed during rodent evolution, limiting the use of murine models to study the
association between ANRIL and cancers. The primate-specific expansion was attributed to
the insertion of transposable elements (TE) within existing exons or introns, resulting in
the modification of its functional capabilities [70]. Indeed, the evolution of the lncRNAs is
a complex process that is influenced by a variety of factors, including TEs, which are DNA
sequences that have the ability to move through a genome [71]. They make up a significant
portion of many genomes, including those of humans in the range of more than 60% [72].
Interestingly, the proportion of TEs positively correlates with the number of lncRNA genes,
suggesting that the generation and the evolution of the lncRNA genes highly depend on
the presence of the TEs [72]. The latter have the ability to insert themselves into the genome,
which, via exaptation, may lead to the creation of new transcription units by providing
transcription factor binding sites or transcriptional start sites [73]. The resulting “junk RNA”
produced via pervasive transcription may serve as a source for the evolution of lncRNA
through non-adaptive or neutral processes. Over time, the lncRNA gene repertoire may
undergo genome modifications that promote the acquisition of protein/DNA/RNA binding
sites, thus conferring relevant functional capabilities to the resulting lncRNAs. These newly
evolved lncRNAs can be recruited as new components of existing biological systems or
may gain genetic elements controlling its expression in a tissue-specific manner [74]. This
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is consistent with the Repeat Insertion Domains of LncRNAs (RIDLs) hypothesis, which
suggests that these repeat insertion domains act as functional RNA domains through two
distinct mechanisms: a specific secondary structure that mediates (1) interaction with
proteins, and (2) hybridization to nucleic acids [75]. Interestingly, TEs cover 35% of the
ANRIL sequence, and the Exon8, which is 70% covered by the subcategory of LTR named
ERVL-MaLR, has been described to be involved in ANRIL genomic occupancy [19,20].
Consequently, it appears that ANRIL adheres to the RIDL hypothesis.

5. ANRIL Exons and Isoforms

The ANRIL gene consists of 21 exons, with lengths ranging from 74 to 696 nucleotides
(mean length of 202 nucleotides) (Figure 2). These exons undergo alternative splicing (AS),
resulting in the generation of at least 28 different linear isoforms with varying lengths [76]
(from 602 to 7713 nts). To date, the specific mechanism that regulates the alternative
splicing of ANRIL is largely unknown. Only one recently published study proposes that
m6A post-transcriptional modifications, which involve the addition of a methyl group
to RNA molecules, may play a role in the regulation of ANRIL AS. These modifications
could facilitate the recruitment of splicing regulators such as SRSF3, which contribute to
the splicing process in pancreatic cancer [77].
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Figure 2. Representation of the different linear isoforms of ANRIL. Grey rectangles represent exons,
numbered from 1 to 21. The left side displays isoform accession numbers from the Ensembl database
along with alternative nomenclature ranging from 1 to 28.

Figure 2 shows each linear isoform that we numbered from 1 to 28 in addition to the
Ensembl accession numbers. Out of the 21 exons, exons 1, 5, and 6 are present in the majority
of linear isoforms. These isoforms can be categorized into two groups based on their 3′

extremities and exon composition: the isoforms that include both exons 1 and 21 (isoforms
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9–11, 18–23 and 25) or exons 1 and 13 (isoforms 13–16 and 24). When studying a melanoma
cell line, it was found that the inclusion of exons in the isoforms varied, indicating a
heterogeneous expression pattern. This suggests that multiple isoforms, possibly specific to
different tissues, coexist within the cell with potential variable activities [44,45,77,78]. This
is consistent with the fact that lncRNAs often consist of multiple exons arranged for creating
distinct modules. As an example, the well-known lncRNA HOTAIR implicated in gene
regulation and chromatin remodeling acts as a scaffold to recruit two distinct chromatin-
modifying complexes and modulate proliferation in cell glioblastoma [79]. In this line,
the ANRIL isoforms 9 (ENTS0000428597.6 or NR_003529) and 13 (ENTS00000584351.5 or
DQ485454) have been recognized as regulators of gene expression with antagonistic roles.
This duality in their functions has been observed in human endothelial cell lines in the
context of CVD. When the isoform 9 is overexpressed, it leads to the down-regulation
of the EZR and CXCL11 genes, as well as the up-regulation of TMEM106B. Conversely,
overexpression of the isoform 13 has the opposite effect on these genes. These antagonistic
activities are also evident at the cellular level of physiological processes. The expression of
the isoform 9 appears to promote transmigration and cellular adhesion, while the isoform
13 elicits contrasting effects [80].

In addition, at least 30 circular isoforms have been identified, which include exons 4 to
16. Circular RNAs (circRNAs) are a type of lncRNA that are abundant, evolutionarily con-
served, and often exhibit tissue-specific expression patterns. They are generated through a
process called back splicing, and possess unique properties such as resistance to exonucle-
ase degradation due to their lack of 5′ and 3′ ends [81]. CircRNAs can act as competitive
endogenous RNA (ceRNA) by sequestering one or multiple RNA-binding proteins (RBP)
or miRNAs [82]. Analysis of the ratio between circular and linear ANRIL isoforms within
a cohort of patients with CVD and melanoma revealed a significant difference compared
to the control groups [78,83]. In addition, Holdt and colleagues discovered a circANRIL,
which exhibits anti-atherosclerotic properties by sequestrating PES1, a factor involved in
the assembly of the 60S ribosomal subunit. The retention of PES1 promotes apoptosis
and halts cell proliferation, both of which are functions associated with the development
of atherosclerosis [24]. These findings suggest that the linear/circular ratio is inversely
correlated with the progression of the disease, indicating an antagonistic relationship be-
tween these two isoform categories. Hence, maintaining an accurate equilibrium in the
expression of ANRIL isoforms is believed to be deemed vital for appropriately modulating
gene regulation, whereas an imbalance in their expression may profoundly impact cell
physiology. Future investigations focusing on the comprehensive characterization of AN-
RIL isoforms in different cancer subtypes hold the promise of providing crucial insights
into the contribution of ANRIL in cancer development.

6. ANRIL and Cancer
6.1. ANRIL Expression in Cancer

ANRIL has undergone extensive analysis, with researchers employing various method-
ologies such as RTqPCR, RNA sequencing, or microarrays across numerous cancer cell
lines and tissues. In an effort to gain clarity, a review of the literature has been performed
and 76 articles have been sorted based on several criteria, such as the accessibility of primer
sequences employed in RTqPCR, to compile a comprehensive inventory of the ANRIL
isoforms identified in each investigation. The results are indicated in Table 1 and demon-
strate that the vast majority of the linear ANRIL isoforms (1, 2, 4, 6, 7, 9–11, 13–28) are
upregulated in a wide range of cancer types, including lung (LC), gastric (GC), breast (BC),
ovarian (OC), cervical (CC), colorectal (CRC), bladder (BladC), thyroid (TC), brain (BrC),
osteosarcoma (OS), myeloma (MM), prostate (PC), leukemia (ATL/AML), melanoma, en-
dometrial (EC), renal (RC), retinoblastoma (RB), head/neck (HNSCC/LSCC), intrahepatic
cholangiocarcinoma (iCCA) and hepatocellular (HCC) cancers. The overexpression of
ANRIL is associated with poor prognosis and a lower overall survival in GC, LC, HCC,
HNSCC/LSCC, RC, iCCA, EC, AML, OS, CC and OC (Table 1). One meta-analysis pub-



Cancers 2023, 15, 4160 8 of 32

lished in 2022, based on a sample of 1708 cancer patients extracted from 23 studies across
three databases, could also established a clear correlation between high ANRIL expression,
adverse overall survival rates, larger tumor size, advanced TNM stage, and lymph node
metastasis [84].

As mentioned before, it is possible that ANRIL has different activities in different stages
of cancer progression. This is consistent with the fact that ANRIL expression is significantly
correlated with a higher TNM stage of cancers, including LC, GC, HCC, LSCC, OS, CRC, CC,
OC, HCC, BladC and OS (Table 1). In addition, while five articles demonstrate upregulation
of ANRIL in non-small cell lung cancer and adenocarcinoma (NSCLC/LUAD) [48,66,85–87],
one study reports the opposite effect in idiopathic pulmonary fibrosis (IPF), an independent
risk factor of lung cancer with NSCLC being the main pathological type [88–90]. These
differences may arise from variations in the analyzed tissues (NSCLC/LUAD vs. IPF) but
possibly from the detection of distinct subsets of ANRIL isoforms too. Indeed, in NSCLC
and LUAD, isoforms 1, 2, 4, 5, 7–13, 17, 19–23, and 25–27 were identified, whereas in IPF,
only the detection of isoforms 3, 9, 11, 13, 15, 16, 19, 21, 22, 24, and 28 was performed. In
consequence, an abundance of the isoforms 3, 15, 16, 24, and 28 was exclusively evaluated
in IPF, suggesting that these isoforms may be downregulated in this condition. This
observation is in favor of the existence of separate functional units within ANRIL isoforms,
which may contribute to different activities involved in the physiological and pathological
outcomes of lung-related conditions.

Altogether, these data strongly suggest that the majority of the linear ANRIL isoforms
likely possess tumor-promoting capabilities. Since linear isoforms are mainly nuclear, one
reasonably hypothesizes that ANRIL over-expression generates excess ANRIL molecules
capable of reinforcing the regulatory activity it exerts on its direct targets or even on
additional genomic regions. The molecular aberrations thus generated, including, for
instance, inappropriate gene modulation, could be responsible for the appearance and/or
reinforcement of pathological processes. In agreement, cell line experiments have shown
that a reduction in ANRIL leads to increased apoptosis and senescence while decreasing
cell proliferation, invasion, and migration.

To conclude, note that the relative levels of circular isoforms of ANRIL have not been
systematically explored in most studies. Only two articles have reported an upregulation of
circular ANRIL isoforms in cancer, specifically in CC and melanoma [78,91]. Although their
association with cancer remains somewhat poorly assessed, it is conceivable to hypothesize
that these circular forms may exert a tumor-promoting influence akin to linear isoforms.
This may contrast with findings in CVD and T2D, where linear and circular forms of ANRIL
have been described to exhibit opposing activities [24,92].

Table 1. Summary of the ANRIL expression associated with cancers. It includes information on
cancer types, samples used in the studies, the methodologies used for ANRIL detection, the ANRIL
isoforms detected, and the corresponding references.

Cancers ANRIL
Expression Tissues Cell Lines

ANRIL Detection
RTqPCR (Fw_Rv),

RNAseq,
Microarrays

Detected
Isoforms References

LC Up 1/87 NSCLC tissues,
2/TNM I stage LUAD

A549, H460, H1299,
H1975, SPC-A1,

H1650

Ex17_Ex18, Ex1_Ex2,
Ex20_Ex20, Ex12_Ex16

1, 2, 4, 5, 7, 8, 9,
10, 11, 12, 13, 17,
19, 20, 21, 22, 23,

25, 26, 27

[48,66,85–
87]

Down 24 IPF Ex6_Ex7 3, 9, 11, 13, 15, 16,
19, 21, 22, 24, 28 [88]

GC Up

1/20 paired GC,
2/19,317 GC patients

and Lymph nodes,
3/83GC, 4/120GC

AGS, BGC823,
MGC80–3, MKN-45,
SGC-7901, HGC-27,

HSC-39, FU97

Ex1/2_Ex2, Ex1_Ex2,
Ex11/12_Ex13, Ex1_Ex1,

Ex14_Ex15, RNAseq

4, 6, 7, 9, 10, 11,
13, 14, 15, 16, 17,
18, 19, 20, 21, 22,
23, 24, 25, 26, 27,

28

[93–98]
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Table 1. Cont.

Cancers ANRIL
Expression Tissues Cell Lines

ANRIL Detection
RTqPCR (Fw_Rv),

RNAseq,
Microarrays

Detected
Isoforms References

BC Up 1/787 early BC
patients, 2/37 TNBC

MCF10A, MCF7,
T47D, MDA-MB-231,

BT549, HS578T,
SKBR3, BT474, BT20

Ex12-Ex15, Ex12_16,
Ex5_Ex6/7, Ex3_Ex4,

Ex1_Ex1, Ex17/18_Ex18,
Hs01390879_m1

(Ex1_Ex2), RNAseq

1, 3, 4, 6, 7, 9, 10,
11, 13, 14, 15, 16,
17, 18, 19, 20, 21,
22, 23, 24, 25, 26,

27, 28

[31,99–104]

OC Up

1/18 OC, 2/86 OC,
3/102 EOC

tissues, including
68 SOC tissues

SKOV3, OVCAR3,
HO-8910, SKOV3,

A2780, Hey,
OVCA429, OVCA433

Ex21_Ex21, Ex1_Ex2,
Ex4_Ex5

1, 2, 3, 4, 5, 7, 8, 9,
10, 11, 12, 13, 17,
18, 19, 20, 21, 22,

23, 25, 26, 27

[105–108]

CC Up

41 high-grade
squamous

intraepithelial lesions
(HSILs), and 75

cervical cancer tissues

CaSki, SiHa Divergent Ex2_Ex4 CircRNA [91]

Up 53CC HeLa, CaSki, SiHa,
ME-180, H1299 Ex1_Ex2 4, 7, 9, 11, 13, 17,

25, 26, 27 [86,109]

CRC Up
20 from CRC, 20 from
adenomatous polyp

patient, 172CC
Ex1_Ex1, Ex3_Ex4

4, 6, 7, 9, 10, 11,
13, 14, 15, 16, 17,
18, 19, 20, 21, 22,

23, 24, 25, 26,
27, 28

[67,110]

Down

Meta-Analysis from
10 sets of RNAseq,

40 patients with CC
(with 10 patients each

in stages I, II, III
and IV)

Caco2 Ex1_Ex1, RNASeq

4, 6, 7, 9, 10, 11,
13, 14, 15, 16, 17,
18, 19, 20, 21, 22,

23, 24, 25, 26,
27, 28

[111,112]

BladC Up 1/30 BC, 2/51 BC EJ Ex1_Ex1, Ex1_Ex2

4, 6, 7, 9, 10, 11,
13, 14, 15, 16, 17,
18, 19, 20, 21, 22,

23, 24, 25, 26,
27, 28

[113,114]

No
misregulation 85 NMIBC

97-1, 97-7, MGH-U3,
MGH-U4, RT112, RT

4, UMU-UC5,
UMU-UC7,

VM-CUB1, 5637

Ex17/18_Ex18 1, 9, 10, 11, 21, 25 [115]

TC Up 510TC, 502TC TPC-1, HTH83,
FTC-133 Ex2_Ex3, RNAseq 4, 7, 9, 13

(+RNAseq) [116,117]

BrC Up 1/15G, 2/142G, 3/10
all stages each, 4/19G

A172, LN18, T98G,
U251, LN229, U87

Ex9_Ex12, Ex1_Ex2,
Ex13_Ex13,

RNAseq/uArray

4, 7, 9, 11, 13, 14,
15, 16, 17, 24, 25,
26, 27 (+uArray
and RNAseq)

[118–122]

OS Up
1/56OS, 2/19OS
(IIB, III), 3/30OS,
4/57OS, 5/53OS

SW1353, MG-63,
SAOS2, HOS, U2OS

Ex2_Ex3, Ex1_Ex1/5,
Ex12_Ex13, Ex5_Ex6,

Ex1_Ex2

3, 4, 7, 9, 10, 11,
13, 14, 15, 16, 17,
18, 19, 20, 21, 22,

23, 24, 25, 26,
27, 28

[123–129]

MM Up 1/80MM, 2/70MM U266, MM.1S,
NCI-H929 Ex3/4_Ex4, Ex12_Ex15 9, 13 [130,131]

PC Up 10PC LNCap, PC3, DU145 Ex12_Ex15,
Ex17/18_Ex18, Ex6_Ex6/7

1, 3, 9, 10, 11, 13,
15, 16, 19, 21, 22,

24, 25, 28
[132]

ATL/AML Up

1/178AML,
2/100AML,

3/109AML, 4/6ATL,
5/27T-ALL

MOLM-13, HL-60,
MT-2, MT-4, C8166,
MT-1, HPB-ATL-2,
HPB-ATL-T, ED,

TL-Om1, MOLT4s,
CCRF-CEM,

KOPT-K1

Ex1_Ex2, Ex1_Ex1,
Ex17/18_Ex18

1, 4, 6, 7, 9, 10, 11,
13, 14, 15, 16, 17,
18, 19, 20, 21, 22,

23, 24, 25, 26,
27, 28

[133–137]
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Table 1. Cont.

Cancers ANRIL
Expression Tissues Cell Lines

ANRIL Detection
RTqPCR (Fw_Rv),

RNAseq,
Microarrays

Detected
Isoforms References

Melanoma Up NZM, OM431, A375 Ex1_Ex1, Ex5_Ex6

1, 3, 4, 6, 7, 9, 10,
11, 13, 14, 15, 16,
17, 18, 19, 20, 21,
22, 23, 24, 25, 26,

27, 28

[138]

Up NZM
Outward facing primers
targeted against exons 2,

4, 6, 8, 14 and 16

CirRNA: More
than 30 isoforms

differentially
expressed in

melanoma cells

[78]

Fusion MTAP

174 cell lines included
in this study were

derived from
metastasized tumors

of 134
melanoma patients

[139,140]

EC Up
1/87EC, 2/20EC,

3/Transcriptome data
from 552UC, 575UC

HEC-1A, RL95-2 Ex1_Ex2, Ex1_Ex1,
Ex6_Ex6

3, 4, 6, 7, 9, 10, 11,
13, 14, 15, 16, 17,
18, 19, 20, 21, 22,

23, 24, 25, 26,
27, 28

[141–144]

iCCA Up 39iCCA Ex19_Ex20 1, 5, 8, 9, 10, 11,
21, 22, 23, 25 [145]

RC Up 1/42KIRC,
2/108ccRCC

769-P, ACHN,
786-O, Caki-1,
Caki-2, ACHN

Ex1_Ex1, Ex5_Ex6,
Hs03300540_m1, HCR

and RNaseq

3, 4, 6, 7, 9, 10, 11,
13, 14, 15, 16, 17,
18, 19, 20, 21, 22,

23, 24, 25, 26,
27, 28

[69,146]

RB Up 28RB HXO-RB44, Y79 Ex1_Ex2, Ex11_Ex15 4, 7, 9, 11, 13, 17,
25, 26, 27 [56,147]

HNSCC/
LSCC Up

1/60LSCC,
2/54LSCC,

3/28LSCC, 4/35NPC,
5/522HNSCC

Tu177, HN4,
AMC-HN-8, NP69,

FaDu, CAL27, CNE1,
CNE2, S18, HONE1,

5–8F, AMC-HN-8,
SNU-899, HNEC

Ex2_Ex3, Ex21_Ex21,
Ex1_Ex1, Ex1_Ex2,
Ex1/5_Ex6, uArray,

RNAseq

1, 2, 3, 4, 5, 6, 7, 8,
9, 10, 11, 12, 13,

14, 15, 16, 17, 18,
19, 20, 21, 22, 23,
24, 25, 26, 27, 28

[148–154]

HCC Up

1/30HCC, 2/34LC,
3/100HCC, 4/85HCC,

5/50Cirrhosis,
6/130HCC, 7/77HCC,

8/317HCC

Huh7, Hep3B,
Sk-Hep1, MHCC97H,
SMMC-7721, HepG2

Ex21_Ex21, Ex1_Ex1,
Ex14_Ex15, Ex15_Ex16,
Ex1_Ex2, Ex12_Ex15,

RNAseq

1, 2, 4, 5, 6, 7, 8, 9,
10, 11, 12, 13, 14,
15, 16, 17, 18, 19,
20, 21, 22, 23, 24,

25, 26, 27, 28

[64,155–162]

(LC: lung cancer, GC: gastric cancer, BC: breast cancer, OC: ovarian cancer, CC: cervical cancer, CRC: colorectal
cancer, BladC: bladder cancer, TC: thyroid cancer, BrC: brain cancer, OS: osteosarcoma, MM: myeloma, PC: prostate
cancer, ATL/AML: leukemia, EC: endometrial cancer, RC: renal cancer, RB: retinoblastoma, HNSCC/LSCC:
head/neck cancer, iCCA: intrahepatic cholangiocarcinoma and HCC: hepatocellular cancer).

6.2. MTAP-ANRIL Fusion in Cancer

The contribution of the MTAP-ANRIL fusion is also critical when assessing the involve-
ment of ANRIL in cancer biology. This fusion gene, documented to exhibit a frequency
exceeding 7% in melanoma, results from a chromosomal rearrangement between ANRIL
and MTAP, a tumor suppressor gene involved in purine metabolism (methylthioadeno-
sine phosphorylase) [139]. In this context, recent research has demonstrated that the
MTAP-ANRIL gene fusion leads to the suppression of the wild-type MTAP expression and
facilitates an epithelial–mesenchymal transition-like process through the activation of JNK
and p38 MAPK pathways, both in vitro and in vivo [140].
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6.3. Polymorphisms of ANRIL in Cancer

Since its first association with pathologies in 2007 [31], the 9p21 locus have been the
topic of several genome-wide association studies (GWAS), unveiling ANRIL sequences
as a hotspot for single nucleotides polymorphisms (SNPs) that are susceptibility factors
for several pathologies such as CVD, T2D and cancers [163,164]. Focusing on the cancer-
related pathologies, 34 SNPs were identified to be associated with higher risk of developing
different types of cancer including LC, GC, BC, CC, TC, BrC, MM, PC, ATL/AML/B-ALL,
melanoma/BCC, EC, ADC, HNSCC/LSCC/ESCC, PancC, OS and overall cancer risk
(Table 2). In addition to this trait, SNPs are also correlated, for instance, with reduced
overall survival (rs1333049) in ESCC [165], with larger tumor size (rs11333048) in TC [166],
with higher TMN stage (rs3217992) in OS [167], and linked to the presence of metastases
(rs1063192) in TC [168] (Table 2). Note that despite this clear association, most of the studies
do not allow researchers to discern whether the observed associations reflect causality or if
they indicate other underlying complexities within the biological system. This observation
underscores the importance of conducting comprehensive investigations, including func-
tional studies and mechanistic analyses similar to the exhaustive investigations conducted
for instances such as rs10811656/rs10757278 in the context of CVD [52].

Table 2. Summary of the SNPs found within the ANRIL gene and their connection to various types
of cancers. The summary provides details about the specific cancer types involved and includes the
relevant references.

Cancers
SNPs LC GC BC TC BrC MM PC ATL/AML/

B-ALL
Melanoma/

BCC EC
HNSCC/

LSCC/
ESCC

PancC OS Overall
Cancer

rs2151280 [169] [170,171] [172] [173] [174]

rs17694493 [175]

rs4977574 [166] [176] [177]

rs78545330 [178,179]

rs1333040 [180]

rs10757278 [176,181] [177]

rs62560775 [182] [182]

rs1011970 [183–187] [182] [163]

rs2157719 [188–190] [191]

rs4977756 [192] [190,193–
200] [201]

rs634537 [188,202]

rs2811712 [163] [203]

rs1333048 [166] [176,181] [177]

rs564398 [204] [205] [206] [206]

rs10965215 [178] [205]

rs1412832 [207]

rs2518723 [178]

rs77792598 [178]

rs4977753 [178]

rs75917766 [178]

rs1333049 [208] [209] [165]

rs8181047 [210]

rs1412829 [190,193,
197,200,211]

[201,212,
213]

rs145929329 [188]

rs3218005 [163,214]

rs3217992 [203] [215] [167]

rs2811709 [203]
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Table 2. Cont.

Cancers
SNPs LC GC BC TC BrC MM PC ATL/AML/

B-ALL
Melanoma/

BCC EC
HNSCC/

LSCC/
ESCC

PancC OS Overall
Cancer

rs518394 [205]

rs7857345 [216]

rs1063192 [168] [163,190] [191,201]

rs615552 [206] [206]

rs573687 [206] [206]

rs10811661 [165]

rs10120688 [208]

(LC: lung cancer, GC: gastric cancer, BC: breast cancer, TC: thyroid cancer, BrC: brain cancer, MM: myeloma, PC:
prostate cancer, ATL/AML/B-ALL: leukemia, Melanoma/BCC: melanoma/basal cell carcinoma, EC: endometrial
cancer, ADC: OC: ovarian cancer, CC: cervical cancer, CRC: colorectal cancer, BladC: bladder cancer, BrC: brain
cancer, OS: osteosarcoma, MM: myeloma, PC: prostate cancer, ATL/AML: leukemia, EC: endometrial cancer,
HNSCC/LSCC/ESCC: head/neck cancer, PancC: pancreas cancer, OS: osteosarcoma).

A total of 76% of the SNPs are localized in introns, 17% in downstream, and 6% in
upstream sequences. Note that among all these SNPs, the expression of ANRIL has not
been systematically evaluated, which makes the correlation between risky genotype and
ANRIL expression difficult. However, it is possible to consider two levels that are likely
to be affected by these variations. Firstly, at the DNA level, these variations may have
an impact on the expression of the 9p21 locus through the disruption of binding sites for
transcriptional regulators and/or enhancer sequences (rs10757278, rs10811656, rs4977757,
rs1333045, rs1537373) as it is described for CVD [18,52,217,218]. In cancer, studies have pre-
dicted that the intronic risk allele rs17694493 disrupts both the transcription factors (STAT1
and RUNX1) and androgen receptor-binding motifs in PC. This may actively participate
in the cell cycle regulation by modulating the expression of the CDKN2B-CDKN2A gene
cluster, thereby playing a causal role in predisposing cancer risk [65,219]. As mentioned
previously, the expression of the 9p21 locus also depends on the methylation state of the
CpG island which modulates the association of CTCF to the ANRIL promoter [57]. One
reasonably hypothesizes that the presence of SNPs may interfere with CTCF binding. In
this case, this would be reminiscent of the SNP rs12936231 that has been found to disrupt
the CTCF binding site within the ZPBP2 gene in the context of asthma [220].

At the RNA level, sequence variations have the potential to impact protein binding
sites and structural elements. This concept has been investigated in the context of a risky
genotype associated with myocardial infarction, specifically with regard to rs10965215
and rs10738605. It is hypothesized that these variations reduce the free energy of ANRIL
secondary structures which may interfere with the binding of proteins and consequently
with the ANRIL activities [221]. SNPs may also disrupt the interaction between splicing
factors (such as SR or hnRNPs) and regulatory elements (Exonic Splicing Enhancer ESE,
Exonic Splicing Silencer ESS, Intronic Splicing Silencer ISS and Intronic Splicing Enhancer
ISE) within ANRIL. This may lead to a similar effect observed for PSMD13, where the
presence of the SNP rs7128029 affects its splicing pattern, leading to the exclusion of an
exon in EC [222]. If so, the heterogeneity of ANRIL isoforms observed in pathological
situations may be attributed to the presence of peculiar SNPs.

7. ANRIL Activities
7.1. Cytoplasmic Activities of ANRIL

The association between cancer biology and the cytoplasmic isoforms of ANRIL pri-
marily stems from their capacities to function as competing endogenous RNAs (ceRNA).
This functionality arises from ANRIL’s ability to form hybrid complexes with miRNAs
when it is overexpressed in cancer cells. Consequently, this interaction results in the de-
creased activity of tumor-suppressor microRNAs, ultimately leading to the upregulation of
genes that are normally repressed by these miRNAs (Table 3). To date, the proposed ceRNA
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role of ANRIL involves a single interaction with a total of 28 miRNAs which hybridize
with 10 ANRIL exons predominantly occurring on exons 1, 11, and 20 (let-7b-5p, let-7a,
miR-7-5p, miR-28-5p, miR-98, miR-99a, miR-122-5p, miR-125a, miR-125a-3p, miR-125a-
5p, miR-141-3p, miR-143-3p, miR-144, miR-145-5p, miR-181a, miR-181a-5p, miR-199a-5p,
miR-200a, miR-203a, miR-320a, miR-324-5p, miR-328, miR-378b, miR-411–3p, miR-424-5p,
miR-497, miR-4440, miR-4458) (Figure 3). The potential ANRIL/miRNA associations have
been correlated with multiple cancers including GC, BC, OC, CC, CRC, TC, BrC, OS, PC,
MM, PC, ATL/AML, EC, RC, RB, HNSCC/LSCC, HCC, LC and some are even associated
with higher TMN stage (Table 3). These observations strongly support the role of ANRIL
as an oncogene by virtue of its ceRNA activity. For instance, this activity has been impli-
cated in modulating the miR-320a/HMGB1 axis, a pathway associated with inflammation
in TC [223]. Moreover, the interactions between ANRIL and let-7 miRNA (7a, 7b-5p),
miR-122-5p and miR-181a have been shown to increase cancer stem cell proliferation and
epithelial–mesenchymal transition (EMT) by affecting multiple pathways including Wnt,
NOTCH, STAT3/NF, MAPK/ERK, PI3K/AKT, and glycolysis in BrC, OC, TC, CR and
HNSCC [106,116,120,151,152,224]. In the context of the let-7 miRNAs, ANRIL competi-
tively interacts with pivotal components within the aforementioned pathways, such as the
TCF-4, CCND1, HMGA2, NUMB, and c-Myc mRNAs. This counteracts their role as tumor
suppressors, thus hampering their inherent tumor-suppressive functionality [151,224]. Ad-
ditionally, ANRIL positively influences cell proliferation through the miR-181a-5p/CCNG1,
miR-203a/CDK2, miR-141-3p/CCND1/2, and miR-497/CDK6 axes in GC, HCC, RC, and
HNSCC, respectively [96,146,225,226].

Table 3. Summary detailing the connection between miRNAs and ANRIL. It covers various aspects
such as the types of cancer involved, the influence of ANRIL/miRNA interactions on different
cancer-related processes, the target genes, the specific location of hybridization on ANRIL, and the
relevant references.

miRNAs Cancers Effect of ANRIL/miRNA Axis miRNA Target
Hybridization
Location on

ANRIL
References

let-7b-5p BrC

Promotes proliferation, migration
and suppresses apoptosis.

Enhances tumor growth in mice
xenograft.

- exon 11 [120]

let-7a OC, CRC, PC
HNSCC

Promotes proliferation, migration
and suppresses apoptosis.

Enhances 5-FU, Oxaliplatin, and
Cisplatin chemoresistance and

tumor growth in mice xenograft.
High expression associated with

higher clinical stage patient.

HMGA2, ABCC1 exon 11 [106,151,227]

miR-7-5p LC, ATL/AML

Promotes cell viability, migration
and invasion. Suppresses

radiosensitivity through enhancing
HDR system. Enhances tumor

growth in mice xenograft.

TCF4 PARP1
(down-regulated genes

BRCA1/RAD51)
exon 1 [137,228]

miR-28-5p CRC Promotes proliferation. URGCP exon 2 [229]

miR-98 LC Enhances proliferation and
cisplatin chemoresistance. - exon 11 [230]

miR-99a HNSCC, GC Promotes proliferation, migration,
invasion and suppresses apoptosis. BMI1 - [94,231]
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Table 3. Cont.

miRNAs Cancers Effect of ANRIL/miRNA Axis miRNA Target
Hybridization
Location on

ANRIL
References

miR-122-5p TC, HCC, BC

Promotes proliferation, migration,
invasion and tumor growth in vivo.
Suppresses apoptosis and enhances

tumor in mice xenograft.

P4HA1 STK39 exon 11 [116,232,233]

miR-125a BC, HNSCC,
MM

Promotes proliferation, migration,
and invasion.

Suppresses apoptosis and
radiosensitivity. Enhances

doxorubicin chemoresistance and
tumor growth in mice xenograft.
High expression associated with

advanced ISS stage, and decreased
complete response.

ENO1 ESRRA β2-MG exon 1 [99,234–236]

miR-125a-
3p OC Promotes proliferation, migration

and suppresses apoptosis. p38 - [237]

miR-125a-
5p LC, OS, EC

Promotes proliferation and
suppresses apoptosis.

Enhances ubenimex, cisplatin and
paclitaxel chemoresistance.

APN STAT3 Bcl2,
MRP4 exon 4 [125,141,238]

miR-141-3p RC

Promotes proliferation, migration
and invasion and

suppresses apoptosis.
Enhances tumor growth in

mice xenograft.

CCND1 and CCND2 exon 3 [146]

miR-143-3p OC

Promotes proliferation, migration
and invasion, and suppresses

apoptosis. Enhances tumor growth
in mice xenograft.

SMAD3 exon 1 [105]

miR-144 HCC Promotes proliferation, migration
invasion, and suppresses apoptosis. PBX3 - [239]

miR-145-5p BC Involved in the development of
early breast cancer. MMP1 - [100]

miR-181a HCC, PancC Promotes proliferation, migration
and invasion. HMGB1, Snai2 exon 1 [152,240]

miR-181a-
5p CRC, CC

Promotes proliferation, migration
and invasion. Suppresses apoptosis,

cell cycle arrest and senescence.
High expression suppresses

chitooligosaccharide (COS)-related
radiosensitivity.

CCNG1, TGF-β1 exon 1 [96,241,242]

miR-199a-
5p HCC, BrC

Promotes proliferation, migration
and invasion. Suppresses apoptosis

and cell autophagy. Enhances
mitochondrial function and tumor

growth in mice xenograft.

DDR1 ARL2 exon 17, 20 [118,156,158]

miR-200a BrC Promotes proliferation and
suppresses apoptosis. - - [243]

miR-203a HCC, BrC Promotes proliferation and
inhibits anoikis. Bcl-2, p-AKT - [121,225]
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Table 3. Cont.

miRNAs Cancers Effect of ANRIL/miRNA Axis miRNA Target
Hybridization
Location on

ANRIL
References

miR-320a TC

Promotes proliferation, migration
and invasion, and suppresses

apoptosis. Enhances tumor growth
in mice xenograft.

HMGB1 exon 18 [223]

miR-324-5p HNSCC

Promotes proliferation and
suppresses apoptosis.

High expression associated with
advanced clinical stage, metastasis.

ROCK1 exon 20 [148]

miR-328 RB Enhances proliferation and
cisplatin chemoresistance. ABCG2, MDR1 exon 20 [56]

miR-378b LC
Promotes proliferation, migration

and invasion, and
suppresses apoptosis.

NR2C2 exon 19 [244]

miR-384 HCC

Promotes proliferation, migration,
invasion and

suppresses apoptosis and cell
cycle arrest.

STAT3 - [245]

miR-411-3p MM, OC

Promotes proliferation, migration
invasion, and suppresses apoptosis.

Enhances tumor stem cell-like
property and tumor growth in vivo

mice xenograft.

HIF-1α exon 21 [108,131]

miR-424-5p HCC Enhances cell viability, migration
and invasion. - exon 17 [155]

miR-497 HNSCC Promotes proliferation, migration,
invasion, and suppresses apoptosis. CDK6 exon 17 [226]

miR-4440 BC Promotes proliferation, migration
and invasion. - exon 2 [178]

miR-4458 OS

Promotes proliferation, migration,
and invasion.

Enhances tumor growth in
mice xenografts.

MAP3K3 exon 11 [246]

(LC: lung cancer, GC: gastric cancer, BC: breast cancer, TC: thyroid cancer, BrC: brain cancer, MM: myeloma, PC:
prostate cancer, ATL/AML/B-ALL: leukemia, Melanoma/BCC: melanoma/basal cell carcinoma, EC: endometrial
cancer, ADC: OC: ovarian cancer, CC: cervical cancer, CRC: colorectal cancer, BladC: bladder cancer, BrC: brain
cancer, OS: osteosarcoma, MM: myeloma, PC: prostate cancer, ATL/AML: leukemia, EC: endometrial cancer,
HNSCC/LSCC/ESCC: head/neck cancer, PancC: pancreas cancer, OS: osteosarcoma).

Interestingly, the ceRNA activity of ANRIL is associated with chemoresistance. It has
been shown that ANRIL acts as ceRNA for the miR-125a in the development of TNBC and
its chemoresistance of doxorubicin by enhancing glycolytic activity, specifically targeting
enolase 1 (ENO1) [99]. ANRIL is also likely to act on the multidrug transporters miR-
125a-5p/MRP4 axis, which are important players in EC paclitaxel resistance [141]. In
the context of CRC, ceRNA activity of ANRIL has been proposed to promote resistance
to 5-Fluorouracil by inhibiting the ABCC1/let-7a pathway [247]. Finally, ANRIL may
favor cisplatin resistance in LC and OS by modulating the miR-328/ABCG2/MDR1 and
miR-125a-5p/STAT3 signaling pathways, respectively [125,228].

Radiotherapy is an important treatment for cancer, mainly by triggering DNA double-
strand breaks to induce cell death. Promoting DNA damage repair can decrease the
radiosensitivity of tumor cells. Since ANRIL has been described to be a key regulator in
DNA damage repair (HDR), it is well suited to play a role in this process. In agreement,
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ANRIL positively acts on HDR by modulating the miR-7-5p/PARP1/RAD51 and miR-145-
5p/MMP1 pathways in LC and TNBC respectively [100,228].
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Figure 3. Functions of ANRIL. ANRIL exerts various regulatory roles both in the cytoplasm
and nucleus. In the cytoplasm, ANRIL (circANRIL: circular ANRIL and linANRIL: linear AN-
RIL) acts as a competing endogenous RNA (ceRNA) for miRNAs and proteins, thereby modulat-
ing gene expression at the post-transcriptional level. Within the nucleus, ANRIL functions as a
cis-regulator, facilitating the recruitment of Polycomb group proteins (PcG) to the 9p21 locus. This
leads to transcriptional repression of genes including CDKN2B, achieved through the deposition of
H2AK119ub (PRC1) and H3K27me3 (PRC2) histone marks at the 9p21 locus. Furthermore, ANRIL
modulates gene expression at the chromatin level in -trans by guiding the recruitment of chromatin
modifiers or transcriptional activators (such as PcG, YY1. . .) to specific loci (e.g., NOX1, KLF2. . .).
Emerging evidence indicates also that ANRIL impacts alternative splicing patterns. Overall, these reg-
ulatory activities predominantly enhance cell proliferation, migration, invasion, and metastasis while
suppressing apoptosis and senescence, primarily attributed to the modulation of key cancer-related
gene expression.

Although the majority of studies do not distinguish between circular and linear
isoforms of ANRIL, and only a limited number of them assess the functional interactions
between ANRIL and miRNAs through techniques such as dual-luciferase assays, these
findings emphasize the complex regulatory interplay between ANRIL, miRNAs and cancer.

7.2. Nuclear Activities of ANRIL
7.2.1. -cis Activity

ANRIL functions as a cis-regulator by facilitating the recruitment of the Polycomb
group proteins (PcG) to the 9p21 locus. This results in the transcriptional repression of, at
least, the CDKN2B gene through the deposition of H2AK119ub (PRC1) and H3K27me3
(PRC2) histone marks at the promoter region of the CDKN2A/ARF-ANRIL genes in PC
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and normal lung fibroblast (Figure 3) [25,248]. While the exact molecular mechanism
and sequential elements involved in this association remain incompletely understood, the
recruitment of CBX7 (PRC1) by ANRIL appears to depend on a stem-loop structure [25].
Note that this activity has been attributed to the linear isoforms of ANRIL. Conversely,
a particular circular isoform has been identified to interact with EZH2 (a component of
PRC2), leading to the displacement of EZH2 from the CDKN2A/ARF-ANRIL promoter.
This alteration in EZH2 localization influences the deposition of H3K27me3 on the latter,
resulting in the increased expression of ANRIL in human primary fibroblasts undergoing
oncogene-induced senescence [249].

An intriguing aspect that remains to be fully understood is the mechanism through
which ANRIL interacts with protein binders to carry out its functions. Notably, it has
been demonstrated that the association between ANRIL and PRC1 relies on chaperone
proteins such as MOV10, whose helicase activity is essential for recruiting the ANRIL/PRC1
complex to the CDKN2A/ARF promoter [250]. One hypothesis suggests that MOV10 might
influence the structural conformation of ANRIL, promoting its interaction with the PRC1.
If so, it would be reminiscent of the lncRNA roXes (RNA on the X) involved in dosage
compensation in Drosophila melanogaster. In this context, the RNA helicase MLE known to
be crucial for unwinding conserved stem-loop structures facilitates the association between
the roXes and MSL2, a critical protein involved in the assembly and regulation of the MSL
complex [251].

Another point which also remains to be elucidated is how ANRIL associates the
genome to exert its functions at specific loci. It has been proposed that the -cis activity
depends on the formation of a triple helix via a triplex-forming oligonucleotide (TFO)
located in ANRIL Exon1 and the CDKN2B promoter [252]. Triplexes are formed when a
single-stranded RNA fragment accommodates the major groove of the double stranded
DNA. Since this association relies on base-pairing interactions, such as Hoogsteen or reverse
Hoogsteen hydrogen bonds occurring between ANRIL and the CDKN2B promoter, such
an anchoring mechanism may explain, at least in part, how ANRIL recognizes specifically
the 9p21 locus [253].

7.2.2. -trans Activity of ANRIL
ANRIL Regulation of Genes Located Outside the 9p21 Locus

Several studies have provided evidence suggesting that ANRIL exerts direct regula-
tion on gene expression beyond the 9p21 locus (Figure 3). Indeed, RNA-FISH experiments
performed in PC and EC have demonstrated that ANRIL localization is not restricted
to the 9p21 locus [25,254]. The overexpression of ANRIL fragments in HEK293 cells has
shown to upregulate 219 genes and downregulate 708 genes involved in processes such as
development, adhesion, proliferation, and apoptosis [19]. In a more recent transcriptomic
analysis of vascular smooth muscle cells (VSMCs), Lo Sardo et al. identified altered expres-
sion profiles in approximately 3000 genes located outside the 9p21 locus upon depletion
of the 3′ end of the ANRIL gene compared to wild-type cells again involved in prolifera-
tion and apoptosis [255]. To distinguish between direct and indirect genomic targets of
ANRIL, Alfeghaly and colleagues combined ChIRP-seq genomic occupancy data with
transcriptomic analysis in ANRIL-knockdown HEK293 cells. This analysis could identify
123 downregulated and 65 upregulated genes as direct targets of ANRIL [20]. Similar to its
-cis activity, ANRIL is thought to exert its repressive -trans activity by interacting with Poly-
comb group proteins (PcG). Consistent with this notion, ANRIL is capable of epigenetically
suppressing the transcription of the p21 and KLF2 (Kruppel-like factor 2) genes in HCC and
LC. This repression occurs through ANRIL binding to the PRC2 complex and subsequently
to its recruitment to the promoters of these genes [64,256]. It is important to note that among
the direct target genes found to be silenced in the study conducted by Alfeghaly (2021),
only 17% of them are likely to be regulated through a PcG-dependent mechanism [20]. This
finding suggests that ANRIL may employ PcG-independent mechanisms to silence gene
expression. Further in-depth investigation is needed to fully understand these mechanisms.
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As previously mentioned, ANRIL has the potential to activate gene expression. Ac-
cording to Zhou et al., they elucidated the mechanism through which the ANRIL/YY1
complex contributes to the activation of IL6 and 8 (interleukins 6 and 8) genes in HUVEC
cells in response to a TNF-α pro-inflammatory signal [26]. Furthermore, ANRIL likely
enhances the growth, migration, and invasion abilities of HNSCC and TC cancer cells by
positively regulating the TGF-β1/Smad signaling pathway [257,258]. Regarding its role
in RC, ANRIL recruits the CBP (CREB-binding protein) and SMYD3 (SET and MYND
domain-containing 3) epigenetic-modifying complex to activate the transcription of NUF2
at the chromatin level. This activation occurs through the deposition of local modifications
of H3K27ac and H3K4me3 histone marks [69]. Moreover, ANRIL was found to associate
with WDR5 and HDAC3 proteins in human aortic smooth muscle cells (HASMC) [259].
This complex is necessary for the deposition of H3K9Ac and H3K4me3 histone marks on
the promoter region of the NOX1 gene, resulting in its transcriptional activation.

Note that approximately 24% of the miRNAs identified as ANRIL targets in the context of
its ceRNA activity do not exhibit apparent hybridization sites on ANRIL (miR-99a, miR-125a-
3p, miR-144, miR-145-5p, miR-200a, miR-203a, miR-384) [94,100,121,225,231,237,239,243,245].
This observation suggests the possibility of indirect effects of ANRIL on the miRNA
abundance or may highlight the involvement of ANRIL -trans activity in epigenetically
down-regulating the expression of these miRNAs. Such mechanisms have been already
reported in various contexts, including HCC, where ANRIL enhances cancer migration and
proliferation by modulating the expression of the miR-191 and by subsequently affecting
the vimentin expression [260]. Additionally, ANRIL has been found to epigenetically
silence miR-99a and miR-449a via PcG complexes, promoting the CDK6/E2F1 pathway
and establishing a positive feedback loop for its own expression, continuing, therefore,
to promote gastric cancer cell proliferation [98]. The mechanism engaged by ANRIL for
specifically associating the genomic loci in the context of its -trans activity is not fully
understood yet. However, the ChIRP-seq data generated by Alfeghaly and colleagues
allowed for the identification of 3227 binding sites across the genome in HEK293 cells.
Interestingly, among the sequences of these binding sites, 98% are enriched with G/A
repeats. Moreover, ANRIL exon 8, which is 70% covered by the subcategory of LTR named
ERVL-MaLR, is involved in its genomic occupancy in HEK293 cells by forming triple
helices for instance [20]. However, this genome recognition mode cannot solely explain
ANRIL binding to the chromatin, and alternative modes engaged by ANRIL to associate
with the genome have to be considered. LncRNA–chromatin recognition can take place
through the interaction with specific protein partners that serve as bridge between the DNA
and the lncRNA as the heterogeneous nuclear RiboNucleoProtein U (hnRNP U) matrix
protein [261,262]. Another mechanism relies on the direct interaction of the lncRNA with the
DNA molecule via RNA–DNA hybrid duplexes formed via canonical Watson–Crick base-
pairing. The resulting hybrid is named R-loop [263,264]. Further investigations are needed
to identify potential R-loops or ANRIL protein-binders involved in its genomic association.

Role of ANRIL in Modulating the Alternative Splicing

Genomic occupancy assays performed in HEK293 cells revealed that the majority of the
binding sites for ANRIL are located in non-coding regions, including introns and intergenic
regions. Remarkably, 40.3% of the ANRIL sites are intronic, and, more importantly, 24% of
the genes contacted by ANRIL in HEK293 are affected in terms of alternative splicing (AS)
upon ANRIL knockdown [20]. In addition, the overexpression of ANRIL in HUVEC cells,
coupled with RNA-seq and AS analysis, revealed significant impacts on the AS patterns of
numerous genes. These affected genes play essential roles in translation, DNA repair, RNA
processing, and participate in the NFκB signaling pathway [27]. These findings highlight
the significant influence of ANRIL on the AS landscape (Figure 3). It is noteworthy that
this activity is reminiscent of the lncRNA asFGFR2 described to act on the AS of the FGFR2
transcript [265]. In this case, asFGFR2 modulates the chromatin structure at the FGFR2 locus,
resulting in the limitation of the binding of the MRG15-PTB chromatin adapter complex
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to exon IIIb. As a consequence, this modulation promotes the inclusion of exon IIIb in
the FGFR2 mRNA. Interestingly, this isoform plays an antitumoral role in HCC, which
definitively links lncRNA, AS modulation and cancer fields in a concrete manner [266].

Cancer-specific splicing events have been detected in diverse cancer types such as
BC, LC, PC, and AML/ALL [15,267,268]. The combinatorial nature of the AS relies on
the selective utilization of splicing sites within the pre-mRNA, which is mediated by
factors including RNA Binding Proteins (RBPs) such as the SR and hnRNP proteins, which
function as -trans acting regulatory factors [269]. In addition, a close association between
chromatin characteristics and AS has been identified. Nucleosomes, through their specific
patterns of histone modifications, have the ability to influence AS [270]. For instance, exons
exhibit a higher occurrence of certain histone modifications such as H3K27me2, H3K36me3,
and H4K20me3. The presence of these modifications can impact AS by interacting with
protein factors that facilitate the recruitment of trans-acting regulatory factors, or even
directly recruiting components of the spliceosome [271–277]. Even though the specific
molecular mechanism employed by ANRIL to regulate AS remains unknown, its ability to
associate with proteins and modulate chromatin landscape highly suggests that ANRIL
plays a role in the AS process in a direct manner. If so, one reasonably hypothesizes that
this capacity might also contribute to ANRIL involvement as a susceptibility factor in
cancer development.

8. Conclusions

In conclusion, ANRIL is a critical factor in maintaining the balance of cellular functions
despite its relatively simple nature. It plays a crucial role in regulating the progression of
the cell cycle by interacting with PcG and guiding them to specific genomic loci, resulting
in the silencing of genes like CDKN2B. Additionally, ANRIL acts as a ceRNA, impacting the
activity of over 20 miRNAs involved in various cellular processes such as cell proliferation,
invasion, inflammation, and EMT. Consequently, the dysregulation of ANRIL disrupts
normal cell cycle control, leading to uncontrolled cell growth and the development of
cancer. This explains why ANRIL is found to be upregulated in more than 20 types of
cancer, as well as in conditions like CVD and T2D. To the best of our knowledge, ANRIL is
the lncRNA most strongly associated with these pathological conditions.

While substantial progress has been made in unraveling the functional roles of ANRIL
in cancer, there is still much to discover. The precise molecular mechanisms underlying
ANRIL activities, particularly its PcG-independent functions and its role on the splicing
modulation, remain incompletely understood. In addition, the complexity of ANRIL
isoforms allows for versatility in its interactions with different proteins, RNA molecules,
and genomic regions, thereby influencing various biological processes. The investigation
of the contribution at the molecular level of each isoform individually represents a major
challenge in the field. Thus, ANRIL stands as a fascinating and multifaceted molecule
with diverse implications in cancer biology. Its dysregulation makes it a promising area for
continued investigation and the development of innovative therapeutic approaches.

Since ANRIL is predominantly overexpressed, a potential therapeutic approach could
involve reducing its intracellular abundance within cancerous lesions. This could be
achieved through methods such as RNA interference (RNAi), antisense oligonucleotides
(ASOs), the RNA-targeting CRISPR-Cas system, or epigenetic modulators employed to alter
the epigenetic profile of the ANRIL gene [278]. Another strategy could involve utilizing
small molecules designed to hinder ANRIL functions, achieved through modifications of
lncRNA–protein interactions or the induction of structural changes [279]. It is worth noting
that the primary challenge lies in crafting a molecule that guarantees effectiveness while
minimizing unintended effects. The creation of such a molecule relies on a comprehensive
understanding of the lncRNA activities at the molecular level, which still need to be
thoroughly elucidated for ANRIL. Also, given the complexity of ANRIL interactions and
effects, combination therapies that target multiple aspects of its activity could be more
effective than single-target approaches. In the end, this could lead to the development of
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personalized treatments, enabling the adaptation of strategies for reducing or inhibiting
the expression patterns or activities, respectively, of specific ANRIL isoforms in cancers.

The key role of lncRNAs in cancer development and progression has made these
classes of RNA a major point of interest for researchers. As ANRIL, many are found
overexpressed in cancer tissues or cancer lines in culture. Hence, the advancements in
ANRIL biology should provide knowledge about its multiple activities but may also lead
to the discovery of more generic activities attributed to lncRNAs.
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YY1: Yin Yang 1, ZPBP2: Zona Pellucida-Binding Protein.
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