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Using a high-accuracy variational Monte Carlo approach based on group-convolutional neural networks,
we obtain the symmetry-resolved low-energy spectrum of the spin-1/2 Heisenberg model on several highly
symmetric fullerene geometries, including the famous C60 buckminsterfullerene. We argue that as the degree
of frustration is lowered in large fullerenes, they display characteristic features of incipient magnetic ordering:
Correlation functions show high-intensity Bragg peaks consistent with Néel-like ordering, while the low-energy
spectrum is organized into a tower of states. Competition with frustration, however, turns the simple Néel order
into a noncoplanar one. Remarkably, we find and predict chiral incipient ordering in a large number of fullerene
structures.

DOI: 10.1103/PhysRevB.109.054410

I. INTRODUCTION

Antiferromagnets on infinite bipartite lattices generally
show Néel ordering in dimensions greater than one. This can
be detected through the staggered magnetization of the ground
state, which spontaneously breaks SU(2) spin-rotation sym-
metry. In the spectrum, the Goldstone mode corresponding to
this symmetry breaking gives rise to a proliferation of gapless
states with a range of spin quantum numbers, known as the
Anderson tower of states [1], as well as a branch of gapless
spin-wave excitations. Such Néel ordering of the ground state
can be proven rigorously for the Heisenberg model on the
three-dimensional cubic lattice for spin S � 1/2 [2,3] as well
as on the two-dimensional square lattice for S � 1 [4].

For two-dimensional spin-1/2 systems, however, and es-
pecially to study ordering in frustrated magnets, one has to
rely on numerical studies that are almost always performed on
finite patches of the lattice. Spontaneous symmetry breaking
never occurs in these finite systems. Nevertheless, ordering
tendencies in the thermodynamic limit are already indicated
by sharp Bragg peaks (with intensity proportional to system
size) in the static correlation functions, as well as incipient
Anderson towers of states in the spectrum, at energies well
below those of quasiparticle excitations. Even beyond conven-
tional ordering, the symmetry-resolved low-energy spectrum
is an invaluable diagnostic of phases of matter, both computa-
tionally [5–9] and experimentally [10].

An interesting alternative to the paradigm above is con-
sidering strongly correlated systems on highly symmetric
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molecular geometries, which also exhibit a wide range of
unusual quantum magnetic properties, such as magnetization
jumps and plateaus, or the proliferation of lowest singlet
(rather than magnetic) excitations [11–13]. A case in point are
fullerene structures [14], made up of pentagonal and hexago-
nal faces: While there is no limit on the number of hexagons,
Euler’s formula implies that they all have 12 pentagonal faces.
This allows interpolating from the limit of extreme frustration
(C20, a dodecahedron with pentagonal faces only) to large
molecules that resemble the bipartite honeycomb lattice with
a vanishing fraction of frustrated defects.

As a starting point to understanding strong-correlation ef-
fects in carbon fullerenes, exact-diagonalization (ED) and
quantum Monte Carlo (QMC) studies were performed on
the C20 Hubbard model [15]. These found that the spin-
triplet ground state of the weakly interacting Hückel limit
switches to a nondegenerate singlet as interactions are made
stronger, consistent with the Heisenberg model on the same
geometry [16]. This shows that the Heisenberg limit provides
useful information about the physically more relevant [17–19]
intermediate-U Hubbard model, which would pose a con-
siderably greater computational challenge. The lowest-lying
excitations of the C20 Heisenberg model are also singlets,
including one belonging to a five-dimensional irreducible
representation (irrep) of the icosahedral point group: The
absence of low-energy triplets is incompatible with incipient
magnetic ordering, as one would expect for such a highly frus-
trated molecule. While ED results have been obtained for the
Heisenberg model on fullerene allotropes up to C36 [20–22],
their high degree of frustration and varying degrees of sym-
metry obstruct the emergence of any systematic trend.

Much attention has also been devoted to the famous
C60 buckminsterfullerene geometry [Fig. 1(b)], motivated
by interest in chemical, nanotechnology, and quantum-
computing [25] applications, as well as superconductivity
observed in alkali-metal-doped fullerene lattices [26]. Early
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FIG. 1. Connectivity of the three fullerene graphs considered in this paper. (a) C32 (D3h isomer), (b) C60 (Ih isomer), and (c) C80 (Ih

isomer). These illustrations were made using Visualization for Electronic Structural Analysis (VESTA) [23]; coordinates of C32 were taken from
Ref. [24].

studies of the Hubbard model [18,19] argued in favor of a
nondegenerate singlet ground state at strong and interme-
diate interaction on this geometry as well. More recently,
this has been corroborated by density matrix renormaliza-
tion group (DMRG) studies of the Heisenberg model by
Rausch et al. [27], which found the lowest few eigenstates
of the S = 0, 1, 2 spin sectors. In particular, these authors
uncovered that the lowest-lying triplet excitation is threefold
degenerate and breaks cubic rotation symmetry. However, a
detailed analysis of the spatial symmetries of the low-lying
spectrum, desirable for understanding the low-energy physics
and any symmetry-breaking tendencies of large fullerenes, re-
quires complementary numerical approaches since, in general,
tensor-network methods struggle to resolve spatial symme-
tries.

Here, we address this demand using a variational Monte
Carlo (VMC) approach based on group-convolutional neural-
network (GCNN) wave functions [28,29]. These allow us to
resolve the lowest-lying states in every spatial symmetry sec-
tor with modest computational resources and thus reconstruct
much of the low-energy spectrum. In particular, we study the
spin-1/2 nearest-neighbor Heisenberg model

H = J
∑
〈i j〉

�Si · �S j (1)

on the highest-symmetry allotropes of C32, C60, and C80,
shown in Fig. 1. In what follows, we use J = 1 as the unit of
energy and consider the zero-temperature limit. The smallest
molecule allows us to benchmark the method against ED:
Despite the high degree of frustration, we obtain variational
energies very close to the lowest exact ones in every symme-
try sector considered. Likewise, our variational energies for
C60 match those obtained from DMRG; however, we obtain
dozens of additional energies and wave functions across all
icosahedral symmetry sectors.

Most importantly, we are able to account for much of
this low-lying spectrum by adapting arguments on towers of
states and the ground states of classical (S → ∞) Heisenberg
models developed for lattice models. In particular, we find that
the lowest-lying S = 0, 1, 2 states are captured by a triplet of
low-energy S = 1 modes, which play the role of Goldstone

modes (at gapless points of the magnon dispersion relation)
of an incipient noncoplanar order. This order can be under-
stood as the result of the competition between incipient Néel
ordering on the hexagons and frustration introduced by the
pentagons: This is highlighted by the wave functions of the
Goldstone modes, which show Néel-like alternating signs on
maximal bipartite segments of the C60 geometry. We provide
a recipe, analogous to the Luttinger-Tisza method for lattice
magnets, to predict the symmetry properties of these modes,
which matches the numerical calculations perfectly.

We also perform the same analysis for the next-smallest
icosahedrally symmetric fullerene, C80. Remarkably, its low-
lying spectrum comes in nearly degenerate pairs of states,
which only differ in their parity under spatial inversion. We
again account for this behavior in terms of an incipient
symmetry-breaking order. The large-S Heisenberg model on
this geometry has a chiral ground state (that is, it breaks spatial
inversion and time reversal, but not their product), for which
tower-of-states analysis predicts such a degeneracy. We also
construct an explicit chiral operator in terms of the Goldstone-
mode operators of the incipient order to relate the pairs of
states to one another. Detecting such a chiral ordering in C80

would be an interesting target of future computational (e.g.,
DMRG) and experimental studies.

The rest of the paper is organized as follows. In Sec. II, we
generalize methods to detect incipient ordering in finite sys-
tems to molecules without translation symmetry. In Sec. III,
we describe our GCNN ansatz and its optimization protocol
in detail and benchmark it against ED on the C32 molecule in
Sec. III D. We detail our numerical studies of C60 and C80 in
Secs. IV and V, respectively. Conjectures on the low-energy
spectra of larger fullerenes, based on semiclassical arguments,
are presented in Sec. VI. Perspectives and conclusions are
given in Sec. VII. Appendices on subspace projection of
high-dimensional irreps (Appendix A) and tables of exact and
variational energies (Appendix B) complete the paper.

II. INCIPIENT ORDERING IN MOLECULAR MAGNETS

On an infinite two-dimensional lattice, the ground state
of a magnetic Hamiltonian may break spin-rotation sym-
metry. This is indicated by the emergence of Bragg peaks,
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divergences of the reciprocal-space correlation function
〈�S(−�k0) · �S(�k0)〉 at some wave vector �k0, as well as a gapless
branch of Goldstone modes (magnons) corresponding to ro-
tating the order parameter direction. The magnons become
gapless at the Bragg peak position; in a primitive lattice,
repeated application of the magnon creation operator

�S(�k0) =
∑

r

ei�k0·�r �Sr (2)

to the ground state creates a sequence of zero-gap states with
different spin quantum numbers, known as the (Anderson)
tower of states [1,5]. Symmetry quantum numbers of the states
in this tower can be derived from the above construction or
by decomposing symmetry-broken classical ground states into
irreps of the full symmetry group Gspatial × SU(2) [5,12,30].
While no true phase transition is possible on a finite sys-
tem, symmetry-breaking tendencies can readily be established
from numerical simulations of finite lattices, either from the
finite-size scaling of reciprocal-space correlators or from the
energy spectrum, which contains a distinct set of low-lying
excitations with symmetry quantum numbers consistent with
the Anderson tower of states [5].

It is reasonable to expect similar precursors to ordering
on large fullerene geometries: Even though these are always
frustrated due to having 12 pentagonal faces, in the large-
molecule limit, almost every face is hexagonal, and so we
can regard the structure as a large honeycomb lattice with a
finite number of defects. Therefore, physical properties away
from these defects ought to approach those of the honeycomb
lattice, which sustains Néel order [31,32].

Since the fullerene geometry has no translational sym-
metry, we cannot directly probe such incipient ordering in
reciprocal space. Bragg peaks, however, can be extracted in
real space as well, as the dominant eigenvector of the cor-
relation matrix Ci j = 〈�Si · �S j〉, with a diverging eigenvalue
corresponding to the order parameter [33]. Likewise, the
leading eigenvector of Ci j on the fullerene geometry can be
thought of as a real-space Bragg-peak “wave function” ψi.
This wave function can be used to construct the Goldstone-
mode operator

Ŝ±
ψ =

∑
i

ψiŜ
±
i , Ŝz

ψ =
∑

i

ψiŜ
z
i , (3)

repeated application of which creates an ansatz “tower of
states” that can be compared to the low-lying eigenstates of
the full Hamiltonian. Just as in the case of lattice systems,
the (point-group) symmetry quantum numbers of this tower
of states can be deduced either from the repeated application
of the bosonic [34] operators Ŝψ or from decomposing a
symmetry-broken classical ground state into irreps of Gpoint ×
SU(2), the latter of which can be made controlled in the
large-S limit, where such symmetry-breaking ground states
may form even for finite systems [12].

A further analogy with lattice magnets allows us to predict
these symmetry quantum numbers directly from the Hamil-
tonian, without computing the correlation matrix Ci j of the
quantum many-body ground state, similar to the Luttinger-
Tisza method for lattice magnets [35–37]. In the large-S limit
underlying the above arguments, the Hamiltonian (1) on a

lattice can be Fourier transformed,

H =
∑

k

J (k)�S(−k) · �S(k), (4)

without having to worry about complicated commutation re-
lations between the �S(k). The minimum of J (k) predicts the
position of Bragg peaks, subject to compatibility with the
unit-length constraint on spins in real space, which may also
determine whether the order is collinear, coplanar, or non-
coplanar [37]. Likewise, the lowest-energy eigenvector of the
Hamiltonian matrix (in our case, the adjacency matrix of the
fullerene graph) is expected to recover the Bragg-peak wave
function ψi.

III. GROUP-CONVOLUTIONAL NEURAL-NETWORK
STATES

In the following section, we describe our numerical method
to obtain the low-energy spectrum. Group-convolutional neu-
ral networks (GCNNs) [28,29,38], which play a central role
in our approach, are discussed in Sec. III A; for a general
discussion of the neural-network-based variational Monte
Carlo approach, we refer the reader to Refs. [39,40]. In
Sec. III B and Appendix A, we explain how the symmetry
of a GCNN wave function can be constrained beyond the
(multidimensional) irreps of the point group, which we found
to substantially improve our results. Specific details of the
GCNN architecture and other hyperparameters are given in
Sec. III C. Finally, benchmarks against ED on a C32 allotrope
are presented in Sec. III D.

A. Ansatz

Space-group symmetries (that is, ones that map computa-
tional basis states onto one another) can be imposed on any
variational ansatz ψ0 using the projection formula [41]

|ψ〉 = dχ

|G|
∑
g∈G

χ∗
g ĝ|ψ0〉, (5a)

ψ (σ ) ≡ 〈σ |ψ〉 = dχ

|G|
∑
g∈G

χ∗
g ψ0[ĝ−1(σ )], (5b)

where the ĝ are the elements of the space group G and the
χg are their characters in a given dχ -dimensional irrep of G.
Here, σ stands for a spin configuration in the computational
Sz basis: σ = (Sz

1, Sz
2, . . . , Sz

N ) for N spins-1/2 with Sz
i ∈ {↑

,↓} ≡ {±1}. Applying (5b) directly, however, requires evalu-
ating the ansatz ψ0 many times, which may be prohibitively
computationally expensive.

Instead, we use group-convolutional neural networks
(GCNNs) [28,29,38], a generalization of the well-known
convolutional neural networks (CNNs) to nontranslational
symmetries, which are able to efficiently generate all
symmetry-related evaluations of a neural-network ansatz as
hidden layers indexed by the symmetry elements. Our feed-
forward GCNNs start with an embedding layer

h(1)
g =

∑
�r

K (ĝ−1�r)σ (�r), (6a)
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which converts the input spin configuration σ into such a hid-
den layer, h(1). Then, further group-valued hidden layers are
generated by alternating nonlinearities and equivariant linear
layers of the form

h(i+1)
g =

∑
k∈G

W (i)(k−1g)h(i)
k . (6b)

The trainable variables of the ansatz are the kernel entries
K (�r) and W (g).

One can show [42] that acting with a symmetry element k̂
on the input spin configuration σ permutes the labels of all
subsequent layers as

hg[k̂−1(σ )] = hkg(σ ). (7)

Therefore, we can regard the entries of the last layer as the
amplitudes of a neural-quantum-state (NQS) ansatz h(L)

0 (σ )
evaluated for all spin configurations related to σ by space-
group symmetry:

h(L)
g (σ ) = h(L)

0 [ĝ−1(σ )]. (8)

Thus, a symmetric ansatz is obtained by combining all entries
of the last layer according to the projection formula (5).

In addition to using spatial symmetries of the molecules
and the conservation of the magnetization Sz = ∑N

i=1 Sz
i , the

parity symmetry P̂ = ∏N
i=1 Sx

i , an element of the SU(2) spin-
rotation group, can be implemented in the Sz computational
basis by flipping the sign of all Sz

i . We therefore imposed
eigenvalues of P = ±1 on our ansätze in addition to the
space-group irreps. Sampling in the Sz = 0 magnetization
sector, this allows us to distinguish between states with even
(P = +1) and odd (P = −1) total-spin quantum number. We
also performed simulations in the Sz = 2 sector, which isolate
total-spin quantum numbers S � 2.

B. Irrep subspace projection

In our numerical experiments, we found that training an-
sätze projected on higher-dimensional (dχ > 1) irreps directly
using (5) is slower, less reliable, and more liable to instabil-
ities than one-dimensional irreps, as shown in Fig. 2. This
may be caused either by the training “wandering” between
different wave functions in symmetry-protected multiplets or
by the zero characters χg = 0 typical in these irreps reducing
the number of wave-function terms in the sum (5), which
is known to limit the expressivity of NQS ansätze [43]. We
remedied this problem by imposing further symmetry con-
straints that select a unique representative of each symmetry
multiplet. Effectively, we project our wave functions first on
the trivial irrep of a subgroup of G, followed by projecting
on the desired irrep of G itself. As explained in Appendix A,
the combined effect of these projections can still be written
in the form (5) with an effective character χ̃ , which is no
longer an irrep character of G but has overlap with precisely
one of them. The benefits of this approach are illustrated
for the five-dimensional Hg (P = +1) irrep of C60 in Fig. 2,
which shows that subspace projection allows the variational
optimizer to reach lower energies in fewer iterations.

FIG. 2. Evolution of the variational energy during the training
protocol for three- and eight-layer GCNN ansätze, both with and
without the irrep subspace projection described in Sec. III B, for
the Hg (P = +1) irrep of the C60 fullerene structure. The energies
are compared with the second-lowest spin-singlet energy found in
Ref. [27] using DMRG (cf. Fig. 6).

C. Details of the numerical experiments

To obtain the results reported below, we used the same
GCNN architecture as Ref. [29], illustrated in Fig. 3. We
use real-valued kernels K,W , interspersed with SELU ac-
tivation functions, which allow us to reliably train deep
GCNNs [29,44]. In the output layer, we combine pairs of fea-
ture maps into complex-valued features, exponentiate them,
and project the result on the desired irrep:

h̃n,g = h(L)
n,g + ih(L)

n+F/2,g, (9a)

ψ (σ ) =
∑
g∈G

χ∗
g

F/2∑
n=1

exp(h̃n,g), (9b)

where L is the number of hidden layers and F is the number
of (real-valued) feature maps. Including exponentiation in (9)
is important to represent the wide dynamical range of wave-
function amplitudes.

We used GCNNs with eight hidden layers, each composed
of 32 (for the C32 geometry) or 12 (for the C60 and C80 geome-
tries) feature maps, containing 174 336, 243 456, and 243 936
real variational parameters for the C32, C60, and C80 geome-
tries, respectively. We also compare the performance of these
networks with shallower (three-layer) ones in Fig. 2 for the
second-lowest-energy spin-singlet state of the C60 Heisenberg
model, which transforms under the Hg irrep of the Ih point
group (cf. Sec. IV). Without the irrep subspace projection
described in Sec. III B, increasing network depth leads to a
significant improvement in variational energy; however, after

FIG. 3. Structure of a five-layer GCNN of the type used in this
paper. Red and blue boxes stand for the embedding layer (6a) and the
group convolutions (6b), respectively. Green boxes indicate scaled
exponential linear unit (SELU) activation functions. Yellow boxes
represent the output layer (9). This figure is based on Ref. [29].
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FIG. 4. Best GCNN variational energies for the C32 geometry
(symbols), compared with the low-energy spectrum obtained from
exact diagonalization (red, blue, and green dots for S = 0, 1, 2,
respectively). The exact and variational energies are also given in
Tables IV and V in Appendix B. Lower panel: difference between
the variational and lowest exact energies in each sector.

applying the projection, both GCNNs equally outperform the
unprojected eight-layer one.

The ansätze were trained on a single A100 GPU us-
ing the stochastic reconfiguration algorithm implemented in
NETKET [42] with learning rate η = 0.02. To maximally ex-
ploit GPU parallelism, we used 1024 parallel Markov chains
to generate 3072 Monte Carlo samples per training step. In
most simulations, we performed 2000 training steps, which
took between 7 (for C32) and 28 (for C80) GPU hours.

The variational energies and spin correlation functions
reported below were obtained from averaging VMC local es-
timators of the Hamiltonian and the operators �Si · �S j for every
pair of sites i, j, obtained for the same set of 218 = 262 144
samples for all operators. For wave functions projected on
one-dimensional irreps, we expect that spin correlators across
symmetry-related pairs of spins are equal: Therefore, we
explicitly averaged these correlators for the plots below. In
addition, we summed the local estimators of �Si · �S j for all
pairs of sites to obtain an estimate of the total-spin expectation
value 〈S2〉.

D. C32: Comparison to exact diagonalization

We first benchmark our method on the highest-symmetry
(D3h) isomer of C32, labeled isomer II in Ref. [20], where
exact diagonalization is still possible. We extended the exact
spectrum in Ref. [20] to all eigenstates below energy −15:
The energies and point-group and spin quantum numbers
of these states are listed in Table IV in Appendix B. The
best variational energies achieved using the GCNN ansatz are
listed in Table V in Appendix B and plotted against the exact

TABLE I. Total 〈S2〉 for the optimized GCNN wave functions
on the C32 geometry. All are close to S(S + 1) for an integer spin
quantum number S, indicating an accurately spin-rotation-symmetric
wave function.

Irrep P = +1 P = −1 Sz = 2

A′
1 0.0075(6) 2.0054(5) 6.0065(5)

A′
2 5.9338(15)a 2.0072(7) 6.0095(7)

A′′
1 0.0036(4) 2.0131(9) 6.0032(4)

A′′
2 5.9975(7)a 2.0187(10) 6.0060(5)

E′ 0.0116(7) 2.0066(5) 6.0125(8)
E′′ 0.0085(6) 2.0054(6) 6.0184(9)

aP = +1 simulation that returned an S = 2 state.

spectrum in Fig. 4. In every point-group and parity symmetry
sector, we achieve excellent agreement with the exact results
(see bottom panel of Fig. 4 with the difference between exact
and variational energies), with variational energies approach-
ing the exact ground states much more closely than the first
excited state in the given symmetry sector.

Estimates of the total spin 〈S2〉 for our optimized wave
functions are listed in Table I. In every symmetry sector,
we obtain a value extremely close to S(S + 1) for an integer
spin quantum number S, as expected for a fully spin-rotation-
symmetric state. Every odd-parity and Sz = 2 simulation
returned states consistent with S = 1 and S = 2, respectively;
in the even-parity sector, we find S = 2 ground states in two
point-group symmetry sectors. In these sectors, we also find
that the optimal variational energies in the P = +1 and Sz = 2
sectors coincide to very good accuracy, indicating that the two
wave functions are the Sz = 0 and Sz = 2 states of the same
quintet.

Finally, spin correlation functions 〈�Si · �S j〉 for the GCNN
estimate of the ground state are shown in Fig. 5 compared to
the correlators of the exact ground state (cf. Ref. [20]); the two
again match excellently. Due to the relatively low symmetry of
the C32 geometry, there are many inequivalent lattice sites and

FIG. 5. Ground-state spin-spin correlation functions 〈�Si · �Sj〉 as
a function of graph distance on the C32 geometry from the GCNN
simulation (symbols) and ED (dots). The size of the symbols is
proportional to the number of symmetry-related paths with equal
correlators.
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FIG. 6. Best GCNN variational energies for the C60 geometry
(symbols have the same meaning as in Fig. 4) compared to optimal
energies in SU(2)-symmetric DMRG [27] (horizontal lines). The
error bars on the S = 2 DMRG result are represented by the green
background shading.

paths at all graph distances, so we limit ourselves to plotting
the correlators as a function of graph distance only. We find no
clear pattern in the correlators: Their signs deviate from Néel
order already for next-nearest neighbors, and their magnitudes
are spread over a wide range of values at any given graph dis-
tance. This is consistent with the strong frustration expected in
this molecule with 12 pentagonal and only 6 hexagonal faces.

IV. INCIPIENT NONCOPLANAR ORDER IN C60

Next, we consider the highest-symmetry (Ih) isomer of C60,
the famous buckminsterfullerene geometry. The optimized
VMC energies for both parities, as well as in the Sz = 2 sector,
are shown in Fig. 6 (see also Table VI in Appendix B), while
the expectation values of S2 are listed in Table II. Similar to
the C32 geometry, they are consistent with fully spin-rotation-
symmetric states. In four symmetry sectors, the lowest-lying
even-parity state is not a singlet, but a quintet: This is also

TABLE II. Total 〈S2〉 for the optimized GCNN wave functions on
the C60 geometry. All but one (in italics) are very close to S(S + 1)
for an integer spin quantum number S, indicating an accurate spin-
rotation-symmetric wave function.

Irrep P = +1 P = −1 Sz = 2

Ag 0.0022(3) 2.0121(8) 6.0038(4)
Au 5.530(3)a 2.0541(15) 6.0279(10)
T1g 6.0013(9)a 2.0078(6) 6.0542(14)
T1u 0.0119(7) 2.0067(6) 6.0283(11)
T2g 5.9898(16)a 2.0065(7) 6.0129(8)
T2u 0.0105(7) 2.0347(12) 6.0295(12)
Gg 0.0241(10) 2.0356(14) 6.0105(7)
Gu 0.0230(10) 2.0104(7) 6.0088(6)
Hg 0.0524(14) 2.0480(15) 6.0101(7)
Hu 5.9873(13)a 2.0095(7) 6.0166(8)

aP = +1 simulation that returned an S = 2 state.

FIG. 7. (a) Ground-state spin-spin correlation functions 〈�Si · �Sj〉
in the C60 geometry. The reference point i is marked with a black
triangle. Two values below 0.005 in magnitude (highlighted with
colored symbols) were truncated for visibility. (b) Spin-spin correla-
tors as a function of graph distance. Red and blue symbols stand for
positive and negative correlators, respectively. Colored dots show the
spin correlation functions of a 512-site honeycomb lattice, measured
using QMC approach; the dashed line is a spline connecting these
dots and is included as a guide to the eye.

evidenced by the near coincidence of the optimized energies
for P = +1 and Sz = 2.

Our variational energies match those of the lowest-energy
S = 0, 1, 2 states, as well as the first excited S = 0 state, found
in a recent SU(2)-symmetric DMRG study [27]. The ground
state is found to transform under the trivial irrep of the Ih

point group. In agreement with DMRG, the first excited state
is a spin triplet; the T2g irrep we identify is also qualitatively
consistent with the cubic-symmetry-breaking pattern seen in
the DMRG wave function. The lowest-energy S = 2 state is
in the Hg irrep, with Ag and Hu states at only slightly higher
energies [45].

The ground-state spin correlation function 〈�Si · �S j〉 is
shown in Fig. 7. Unlike C32, every site of the buckminster-
fullerene geometry is equivalent, allowing us to also display
the spatial distribution of the correlators. Our results are very
close to the correlation functions measured in DMRG [27].
For short graph distances, they follow an alternating sign
pattern consistent with Néel ordering, and their amplitudes
are close to those on the unfrustrated honeycomb lattice at the
same graph distances, which we computed using stochastic
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FIG. 8. Top: eigenvalues of the classical Hamiltonian matrix
(i.e., the adjacency matrix) in the C60 geometry. Note that the axis
is reversed, so the lowest eigenvalue (the Luttinger-Tisza ground
state) is to the right. Bottom: log-scale plot of the weight (eigenvalue
times degeneracy) of the eigenspaces of the spin correlator matrix
〈�Si · �Sj〉. The eigenvalue of one Ag eigenvector, corresponding to
the net magnetization, is zero within Monte Carlo error and is not
plotted.

series expansion [46] with the Applications and Libraries
for Physics Simulations (ALPS) library [47,48]. Further away,
frustration reduces correlators and introduces a nontrivial sign
structure, which, somewhat surprisingly, matches that of the
classical ground state discussed in Ref. [18] (cf. their Fig. 1).
[For eight sites, marked with symbols in Fig. 7(a), the classical
correlator is zero, while the S = 1/2 correlator is anomalously
low.] Remarkably, at the largest graph distances, we again
recover a Néel-like pattern with amplitudes around ±0.02;
however, their signs are inverted compared with the honey-
comb lattice.

To extract signatures of ordering from our data, we com-
puted the eigenvalues of the correlation matrix Ci j = 〈�Si · �S j〉,
as well as the the adjacency matrix of the C60 graph, which
plays the role of the Hamiltonian matrix in the Luttinger-Tisza
method. These spectra are plotted in Fig. 8. The ground state
of the Luttinger-Tisza Hamiltonian is threefold degenerate,
forming a T2g irrep of Ih. This is compatible with the unit-
length constraint of classical spins: the Sx, Sy, Sz components
of the ground state form an orthonormal basis of the irrep,
leading to a noncoplanar ground state, which can indeed
be found by numerically minimizing the classical Hamilto-
nian [18]. Due to quantum fluctuations, the spectrum of the
spin-1/2 correlation matrix Ci j does not only contain this ir-
rep; however, the weight (that is, the eigenvalue times the irrep
dimension) of other irreps is suppressed roughly exponentially
in the classical energy cost (note the logarithmic scale in the
bottom panel of Fig. 8). In particular, Ci j is dominated by
the two lowest-energy irreps of the classical Hamiltonian, T2g

and Gu. The two lowest-lying spin-triplet states also belong to
these irreps, as expected from the tower-of-states construction
of Sec. II. In particular, we find that the overlap between the
state Ŝz|GS〉, generated by the Goldstone-mode operator (3)
applied to the ground state |GS〉 and the lowest-energy T2g

triplet (Sz = 0, odd parity) state is ≈0.917, very high for two
60-spin many-body states.

FIG. 9. Eigenvectors of the ground-state correlator matrix 〈�Si ·
�Sj〉 in the C60 geometry corresponding to its largest [(a) T2g irrep;
20.7% of all correlations] and second largest [(b) Gu irrep; 20.4%]
eigenvalues. The ten hexagons on the “equator” of the C60 structure
are highlighted in green. The yellow line in (a) indicates the shortest
path (nine steps) connecting two antipodal points; the green line
is the shortest path (ten steps) passing through sites with nonzero
amplitude in the eigenvector.

Applying the tower-of-states analysis introduced in
Refs. [5,12] to the noncoplanar classical ground state cor-
rectly predicts that the lowest-lying S = 2 state transforms
under the Hg irrep. We can also reach this conclusion by
applying the bosonic [34] Goldstone-mode operators (3) twice
to the ground state. There are a total of nine such operators
(threefold spatial and spin degeneracy), so the two-Goldstone
Hilbert space consists of 9 × 10/2 = 45 states, transforming
under the symmetric square of the T2g ⊗ (S = 1) irrep of
Ih × SU(2):

Sym2[T2g ⊗ (S = 1)] = (Ag ⊕ Hg) ⊗ [(S = 0) ⊕ (S = 2)]

⊕ T2g ⊗ (S = 1). (10)

The Ag singlet and the T2g triplet cannot be distinguished
from the ground state and the one-Goldstone state based on
symmetry quantum numbers; in fact, we expect them to have
a high overlap. The Hg singlet and the Ag quintet, however,
appear in the spectrum nearly degenerate with the Hg quintet,
even though they are not predicted by the tower-of-states
analysis. The similarly low-energy Hu quintet cannot be ex-
plained based on T2g operators alone, but it may come from a
combination of low-lying T2g and Gu triplet excitations.

A representative (maximally symmetric around the center
of the Schlegel plot) eigenvector of the dominant T2g irrep
of Ci j is plotted in Fig. 9(a). This eigenvector follows a
perfect Néel pattern on ten hexagons around the “equator”
of the C60 structure, which is in fact its largest unfrustrated
portion: This indicates a clear tendency towards the Néel
ordering expected in the limit of large molecules. Away from
these hexagons, frustration causes the eigenvector compo-
nents to vanish. The concentration of the Goldstone wave
function around the equator of the molecule matches the
distribution of “local spin” in the lowest-energy triplet state
obtained in DMRG [27]. Eigenvectors in the next-highest-
weight Gu irrep [Fig. 9(b)] live mostly on the same set
of hexagons and display a Néel pattern modulated with a
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FIG. 10. Best GCNN variational energies for the C80 geometry.
Symbols have the same meaning as in Figs. 4 and 6. The two lowest-
energy states in each spin-quantum-number sector are circled with
dashed lines.

standing wave, analogous to a long-wave magnon excitation
on a lattice model.

The structure of the leading correlation eigenvector ex-
plains some surprising features of the spin correlators in
Fig. 7, in particular the sign inversion of the “Néel order”
seen at the largest graph distances. These correspond to pairs
of sites belonging to opposite hexagons: Correlations between
them are mostly mediated through the “equatorial belt” where
the leading correlation eigenvectors are located. Along this
belt, antipodal sites are ten steps apart [see, e.g., the green
path in Fig. 9(a)]; therefore, they have the same sign in the
Néel pattern of the eigenvector, consistent with their positive
correlation shown in Fig. 7. However, the shortest path [e.g.,
the yellow path in Fig. 9(a)] between the same points only
takes nine steps, so we observe positive correlations at odd
graph distance, in an apparent inversion of the Néel pattern.
However, since all of these odd-length paths pass through
the fully frustrated central, low-weight, region of the Schlegel
plot, they do not contribute to the correlation function. Like-
wise, neighbors of the antipodal point are nine (eight) steps
apart along the equatorial belt (frustrated region), which ex-
tends the inverted Néel pattern to this graph distance too.

V. CHIRAL INVERSION-SYMMETRY BREAKING IN C80

After buckminsterfullerene, the smallest fullerene structure
with full icosahedral symmetry is the 80-site molecule shown
in Fig. 1(c). The converged variational energies in all symme-
try sectors are shown in Fig. 10 and in Appendix B, Table VII;
interestingly, the ground state is found in a nontrivial point-
group irrep (namely Au), similarly to smaller fullerenes [20]
and other frustrated magnetic molecules [12,49]. The expec-
tation values of S2 for the GCNN wave functions (listed in
Table III) deviate from the expected values S(S + 1) substan-
tially more than in the C60 case. This is to be expected, given
the much smaller spacing between energy levels (e.g., we find
a quintet state in every space-group irrep within an energy

TABLE III. Total 〈S2〉 for the optimized GCNN wave functions
on the C80 geometry.

Irrep P = +1 P = −1 Sz = 2

Ag 0.0185(9) 2.242(3) 6.0209(10)
Au 0.0119(7) 2.0248(11) 6.0264(11)
T1g 6.019(2)a 2.233(3) 11.766(3)b

T1u 5.958(2)a 2.153(3) 6.064(2)
T2g 1.998(6)c 2.0301(13) 6.093(2)
T2u 6.010(2)a 2.075(2) 6.164(2)
Gg 0.466(3) 2.118(2) 6.085(2)
Gu 0.704(4) 2.179(3) 6.122(2)
Hg 0.343(3) 2.0398(14) 6.147(2)
Hu 0.350(3) 2.093(2) 6.091(2)

aP = +1 simulation that returned an S = 2 state.
bSz = 2 simulation that returned an S = 3 state.
cState that is not clearly dominated by one spin-quantum-number
sector.

window of 0.2J). Nevertheless, all odd-parity states can be
identified as predominantly triplet, and most even-parity states
can be identified as S = 0 or S = 2. An exception is T2g,
P = +1, whose 〈S2〉 is consistent with a 2 : 1 mixture of a
singlet and a quintet. Likewise, the T1g, Sz = 2 calculation
reproducibly converges to 〈S2〉 ≈ 12, consistent with S = 3
rather than S = 2, even though the P = +1 calculation in the
same sector converges to a quintet at a lower energy. In both
cases, however, the energy difference between the states in
question is extremely small and may not be enough to guide
the optimization algorithm to a perfect S2 eigenstate, allowing
expressivity limitations of the GCNN ansatz to dominate the
optimization trajectory. To the best of our knowledge, there
are no variational-energy benchmarks for C80 to which our
results could be compared.

The most striking features of the spectrum in Fig. 10 are
the near-degenerate singlet “ground states” in the two one-
dimensional irreps Au, Ag, as well as the presence of triplet
and quintet excitations in almost all symmetry sectors within
a very narrow energy range. We will not attempt to account
for every state in this dense spectrum, but only highlight the
lowest-energy pair of states in each spin sector (circled in
Fig. 10), all of which follow the pattern of incipient inversion-
symmetry breaking seen for the ground state: Au, Ag for S =
0; T2g, T2u for S = 1; and Hu, Hg for S = 2.

Unlike the C60 geometry, there are two symmetry-
inequivalent kinds of lattice site: 60 sites (labeled “P”) belong
to one of the 12 pentagonal faces; the remaining 20 (labeled
“H”) are surrounded by three hexagonal faces each. Fig-
ure 11 shows the spatial structure of spin correlation functions
around both kinds of site in the (Au) ground state. (The corre-
lation structure of the Ag singlet is visually indistinguishable.)
The sign of correlations again alternates with graph distance,
reminiscent of Néel ordering; unlike C60, however, this alter-
nating pattern persists without any anomalies all the way to the
antipodal points. Similar to C60, the magnitude of correlators
dips at intermediate graph distances before increasing and
leveling off for the largest distances at a typical value of
about ±0.05, well above the equivalent figure for C60. This is
consistent with the diminishing effect of frustration expected

054410-8



NONCOPLANAR AND CHIRAL SPIN STATES ON THE WAY … PHYSICAL REVIEW B 109, 054410 (2024)

FIG. 11. (a) and (b) Ground-state spin-spin correlation functions 〈�Si · �Sj〉 in the C80 geometry for P-type (a) and H-type (b) reference points
i (marked with a black triangle). (c) Spin-spin correlations as a function of graph distance. Red and blue symbols stand for positive and negative
correlators, respectively. Colored dots show the spin correlation functions of a 512-site honeycomb lattice, measured using the QMC approach;
the dashed line is a spline connecting these dots and is included as a guide to the eye. One value below 0.01 in magnitude [1.90(8) × 10−3, at
graph distance 6, highlighted with colored symbols in (a)] was truncated for visibility.

for large fullerenes: In the limit of an infinitely large fullerene
“molecule” (which, however, still has only 12 pentagonal
faces), we expect to recover the ground-state behavior of the
honeycomb Heisenberg antiferromagnet, which forms a Néel
order with spin correlator 〈�S0 · �Sr〉 = ±0.0717(3) [32] in the
long-distance limit [cf. solid dots in Fig. 11(c)].

These features of the ground state and the low-lying
spectrum can again be accounted for in terms of incipient
Néel ordering. The ground state of the large-S Heisenberg
Hamiltonian, obtained either by direct simulation or by the
Luttinger-Tisza method, is again noncoplanar, transforming
under the T2u irrep of Ih. The same irrep is also dominant in the
spectrum of the spin-1/2 correlator matrix (Fig. 12); the gap
to subleading eigenvalues is increased compared with C60, as
expected for an incipient Bragg peak.

FIG. 12. Top: eigenvalues of the classical Hamiltonian matrix
(i.e., the adjacency matrix) in the C80 geometry. Note that the axis
is reversed and so the lowest eigenvalue (the Luttinger-Tisza ground
state) is to the right. Bottom: log-scale plot of the weight (eigenvalue
times degeneracy) of the eigenspaces of the spin correlator matrix
〈�Si · �Sj〉. The eigenvalue of one Ag eigenvector, corresponding to
the net magnetization, is zero within Monte Carlo error and is not
plotted.

A representative eigenvector from this leading T2u irrep is
plotted in Fig. 13. Similar to C60, it forms a Néel pattern on the
largest unfrustrated subgraph of the fullerene structure: The
ten hexagons (green) on the “equator” of the molecule are,
however, laid out differently in the two molecules; therefore,
antipodal points in C80 acquire opposite signs in the Néel
pattern, which explains the inversion-odd irrep. Furthermore,
the unfrustrated support of the Néel pattern includes ten fur-
ther hexagons (yellow); however, these are separated from one
another by pentagons, which frustrate and reduce the ordering
amplitude.

Similar to C60, the low-lying spectrum can be predicted ei-
ther by applying the tower-of-states formalism to the classical
ground state or by constructing T2u Goldstone operators (3)
from the leading eigenvectors of the correlator matrix. The
first generates the inversion-broken low-energy spectrum seen

FIG. 13. Eigenvector of the ground-state correlator matrix
〈�Si · �Sj〉 in the C80 geometry corresponding to its largest eigenvalue.
Green and yellow hexagons indicate a maximal unfrustrated portion
of the C80 structure.
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numerically: Ag, Au for S = 0; T2g, T2u for S = 1; and Hg, Hu

for S = 2. On the other hand, acting with the Goldstone
operators on the Au, Ag ground states once yields T2g, T2u

triplets, while the two-Goldstone manifold includes Hu, Hg

quintets [50]. The latter construction also accounts for the
energy ordering of the nearly degenerate pairs: Those derived
from the Au ground state (T2g triplet, Hu quintet) are all lower
in energy than the tower of the Ag singlet (T2u triplet, Hg

quintet).
The Goldstone-mode operators also give a microscopic

account of the apparent inversion-symmetry breaking in the
spectrum. Since the T2u irrep is threefold degenerate, we
can construct three independent triplet operators using (3),
which we label as �S1, �S2, �S3. Using all three of these, we can
uniquely construct the singlet operator X̂ = �S1 · ( �S2 × �S3).
One can verify that this operator transforms under the Au

irrep [51], so it might map the Ag and Au singlet “ground
states” on one another. Indeed, the overlap of X |Au(g)〉 and
|Ag(u)〉 is 0.743 (0.693), high values for 80-site many-body
states.

The operator X is odd under both inversion and time-
reversal symmetry, which strongly suggests that the incipient
breaking of inversion symmetry is chiral in nature. The
situation is somewhat similar to that of the tetrahedral or-
der found in the triangular-lattice J1-J2-Jχ model [5,6]: Its
tower of states can be captured in terms of three gap-
less triplet operators, the triple product of which breaks
both mirror and time-reversal symmetry. This order, how-
ever, is only stabilized on the triangular lattice by a
substantial Jχ coupling, which breaks these symmetries ex-
plicitly, while in C80, the incipient chiral order emerges
spontaneously.

VI. LARGER FULLERENES

It is very natural to ask what determines whether a given
fullerene geometry supports such incipient chiral-symmetry
breaking. The mechanism proposed above severely restricts
the number of suitable symmetry groups and allotropes, as it
requires at least a noncoplanar classical ground state (usually
associated with a threefold-degenerate ground state in the
Luttinger-Tisza spectrum or a threefold-degenerate leading
“Bragg-peak” eigenvalue in the quantum correlation matrix),
as well as inversion symmetry (so it can be broken). In the
following, we explore families of fullerene structures that
satisfy these requirements; for a numerical exploration of
classical ground-state degeneracy in other geometries, see
Ref. [52].

Let us first focus on fullerenes with full icosahedral (Ih)
symmetry. These can all be constructed by covering the 20
faces of an icosahedron with patches of the honeycomb lat-
tice [53]. For Ih symmetry, this covering has to be symmetric
under every symmetry of a single triangle, which leads to
two distinct series of solutions (Fig. 14): (a) There are n2

lattice points on every face, none of which is shared between
more than one face, for a total of 20n2 sites; (b) some hon-
eycomb edges are aligned with the edges of the icosahedron,
yielding a total of 60n2 sites. We conjecture that the incipient
Bragg peaks of both kinds of structure are threefold degener-
ate: More specifically, we expect that the leading correlation

FIG. 14. Structure of the ansatz for the dominant eigenvector
of Ci j on fullerenes of the Ih-symmetric (a) C20n2 and (b) C60n2

series, shown on the flattened net of an icosahedron. They form
a Néel pattern of positive (red) and negative (blue) amplitudes on
an unfrustrated belt covering 10 of the 20 icosahedron faces and
have only small support further away (gray). Under proper rotations,
both transform as the T2 irrep of I . Under inversion, the two green
triangles map onto each other; the arrangement of spins transforms
as if the triangle was horizontally flipped on the diagram. This flips
the sign of the C20n2 structure and preserves that of C60n2 .

eigenvectors show a pronounced Néel pattern on 10 of 20
faces of the icosahedron, which fades away once frustration
occurs, as sketched in Fig. 14. We can associate a Néel order
parameter with each face, which remains well defined (i.e.,
does not change sign) under proper rotations; therefore, the
pattern transforms under the same irrep of the chiral icosahe-
dral group I as the classical ground state of the C20 Heisenberg
model, namely T2. Under inversion, however, the two series
behave differently: In the C20n2 case, inversion-related sites
have opposite spins (in fact, each triangle has a net magneti-
zation, which is odd under inversion), while the C60n2 ansatz is
inversion-even. That is, the lowest triplet excitation of all C20n2

fullerenes is expected to transform as T2u (leading to incipi-
ent chiral order), while C60n2 molecules have low-lying T2g

triplet excitations. We verified this prediction by numerically
obtaining the classical ground states of the two sequences up
to n = 6 (C720) and n = 4 (C960), respectively.

Beyond icosahedral symmetry, the ingredients proposed
above are also available in the largest achiral subgroup of Ih,
the pyritohedral group Th, which too has three-dimensional
irreps Tg and Tu (corresponding to both T1 and T2 of Ih).
This is particularly important for crystalline compounds of
fullerenes, which cannot maintain full icosahedral symmetry.
However, in systems such as the superconductor K3C60 [26],
the fullerenes retain full pyritohedral symmetry [54], so our
results remain relevant for their behavior. More generally,

054410-10



NONCOPLANAR AND CHIRAL SPIN STATES ON THE WAY … PHYSICAL REVIEW B 109, 054410 (2024)

noncoplanar ground states may arise even if they are com-
posed of more than one irrep of the point group, especially
if the classical ground state predicted by the Luttinger-Tisza
method has support only on parts of the molecule [55].
Such classical ground states would still support towers of
states with three low-lying spin-triplet excitations, which may
combine to generate an operator that breaks inversion and
time-reversal symmetry.

VII. CONCLUSION

In summary, we demonstrated that competition between
the Néel ordering tendency of the honeycomb lattice and
frustrated pentagonal faces leads to a feature-rich incipient
noncoplanar order in the quantum Heisenberg model on large
fullerene lattices. We generalized a number of techniques
commonly used to diagnose ordering tendencies on finite lat-
tices to the molecular case, which lacks translation symmetry:

(1) Bragg peaks can be defined in real space as diverging
eigenvalues of the spin correlator matrix; in a molecule, they
are labeled by point-group irreps rather than wave vectors.

(2) Even in the deep quantum limit S = 1/2, these irreps
can be predicted from the ground state of the large-S version
of the Hamiltonian, which can be constructed analogously to
the Luttinger-Tisza method.

(3) The low-energy spectrum is characterized by a tower
of states, the quantum numbers of which can be predicted
using ansatz Goldstone-mode operators constructed from the
incipient Bragg peaks.

We used these approaches to analyze the low-energy
spectrum and ground-state wave function of the nearest-
neighbor spin-1/2 Heisenberg model on the icosahedrally
symmetric C60 and C80 fullerene geometries. Our nu-
merical results were obtained from the variational Monte
Carlo approach using group-convolutional neural-network
wave-function ansätze, which allowed us to construct the
symmetry-resolved low-energy spectrum in detail. We bench-
marked the method against ED on a C32 allotrope and DMRG
on C60, achieving excellent variational energies in both
cases.

For buckminsterfullerene, we found an incipient Bragg
peak transforming under the T2g irrep of the icosahedral
point group, which allows for the formation of a Néel pat-
tern on the largest unfrustrated subset of the fullerene graph.
This matches the noncoplanar ground state of the clas-
sical Heisenberg model [18]; furthermore, the low-energy
spectrum of S = 0, 1, 2 excitations follows a tower-of-states
structure derived from a triplet Goldstone-mode excita-
tion transforming under the same irrep, pointing towards
an incipient noncoplanar order with pronounced Néel-
like features on this relatively small and highly frustrated
system.

We find similar ordering tendencies on the C80 geometry.
The structure of the incipient Bragg peak is again deter-
mined by maximally covering the graph with a Néel pattern,
which leads to a triplet of leading correlation eigenvectors
transforming under the T2u irrep. The tower of states cor-
responding to this inversion-odd incipient order consists of
pairs of nearly degenerate (multiplets of) states, distinguished

by their inversion eigenvalue. We can relate the wave func-
tions of these states using an explicit operator constructed
from Goldstone modes, which is odd under both inversion
and time reversal, indicating that the incipient ordering in
C80 is chiral. Such inversion-symmetry breaking may have
interesting ramifications for optical probes: For instance, by
breaking down the rule of mutual exclusion [56], it may make
Raman-active modes of C80 visible in infrared spectroscopy or
vice versa. Furthermore, the noncoplanar magnetic textures of
both molecules may induce an anomalous Hall response [57]
that may in turn affect the superconductivity of such materials
as K3C60. Here too, the chiral magnetic ground state of C80

may open the door to more exotic superconducting behavior,
which will be interesting to explore in future theoretical and
experimental work.

Finally, we argue that our findings are not limited to the
C60 and C80 geometries, but are relevant for a much wider
class of fullerene geometries. A case in point consists of
the two sequences of fullerenes with full icosahedral sym-
metry, shown in Fig. 14, whose differing geometries lead
to chiral incipient ordering in one sequence but not in the
other, a surprisingly persistent frustration effect even in the
limit of very large molecules. Numerical explorations of
these large molecules, fullerenes with lower symmetry, other
magnetic molecules (e.g., with icosidodecahedral symmetry
and larger spins [58,59]), and the intermediate-U Hubbard
model more relevant for real fullerenes are all exciting di-
rections for future work, calling for improvements to our
current neural-quantum-state techniques, which will in turn
also benefit studies of lattice models. From a technical point of
view, tensor-network studies of C80 would also be interesting,
as they may show time-reversal symmetry breaking explic-
itly [60].

ACKNOWLEDGMENTS

We thank Alexander Wietek for helpful discussions. We
are especially grateful to Roman Rausch for providing us
with additional DMRG data for C60 and to Christopher
Roth and Maxime Thumin for their participation in the
early stages of this work. NQS simulations were performed
using the NETKET [42] library. Reference stochastic series
expansion data for the honeycomb lattice were obtained us-
ing the ALPS [48] library. All heat maps use perceptually
uniform color maps developed in Ref. [61]. Computing re-
sources were provided by the STFC Scientific Computing
Department’s STFC Cloud service. This work was granted
access to the high-performance computing resources of
the CALMIP center under Allocation No. 2022-P0677 as
well as GENCI (Grant No. A0130500225). This study has
been (partially) supported through EUR NanoX, Grant No.
ANR-17-EURE-0009, in the framework “Programme des In-
vestissements d’Avenir.” This work benefited from the support
of the project QMAHT, Grant No. ANR-22-CE30-0032-03,
of the French National Research Agency (ANR). A.S. grate-
fully acknowledges the ISIS Neutron and Muon Source and
the Oxford-ShanghaiTech collaboration for support of the
Keeley-Rutherford fellowship at Wadham College, Oxford.

054410-11



SZABÓ, CAPPONI, AND ALET PHYSICAL REVIEW B 109, 054410 (2024)

APPENDIX A: PROJECTING ON SUBSPACES
OF HIGHER-DIMENSIONAL IRREPS

As outlined in Sec. III B, we restricted ansätze transform-
ing under higher-dimensional irreps of the space group G onto
a one-dimensional subspace of the symmetry-protected multi-
plets by imposing additional symmetry constraints, as follows.
Consider an Abelian subgroup H of the space group G. Re-
stricting any irrep χ of G onto H gives a valid representation
thereof; for multidimensional irreps, however, this is no longer
an irrep of H but can be decomposed into them. If an irrep χH

of H appears with multiplicity 1 in this decomposition, we can
select a unique representative of χ by first projecting onto χH

TABLE IV. Energies, spin quantum numbers, and point-group
irreps of every eigenstate of the C32 Heisenberg model below energy
−15J from exact diagonalization.

Energy S Energy S

Irrep A′
1 Irrep E′

−15.7336814 0 −15.8119171 0
−15.4531726 1 −15.6373036 1
−15.3587584 2 −15.6016680 1
−15.3407979 0 −15.2579452 1
−15.2635666 0 −15.2381470 0
−15.1351979 1 −15.2372144 2
−15.1042729 1 −15.1730374 0
−15.0863465 0 −15.1526199 0
−15.0376961 2 −15.1257156 1

−15.1211041 0
Irrep A′

2 −15.0484146 1
−15.7736580 1 −15.0369711 1
−15.4543681 1 −15.0329827 2
−15.1821700 1 −15.0088721 1
−15.1214539 1
−15.0740699 0 Irrep E′′

−15.0340154 2 −15.5748511 0
−15.0087825 1 −15.5658877 1

−15.5407046 1
Irrep A′′

1 −15.4218516 0
−15.9372271 0 −15.3801966 1
−15.4928797 0 −15.2871791 1
−15.4621861 0 −15.1992247 2
−15.3572440 2 −15.1629586 1
−15.3195996 1 −15.1445861 0
−15.2629763 1 −15.0995806 1
−15.0493065 1 −15.0982993 0
−15.0184389 2 −15.0617120 0
−15.0035477 1 −15.0514162 1

−15.0397817 2
Irrep A′′

2 −15.0141799 2
−15.5004530 1
−15.3936259 1
−15.3823066 1
−15.1635423 1
−15.0894038 1
−15.0325816 2
−15.0287921 0
−15.0202782 2

using (5) and then onto χ itself:

|ψ〉 = dχ

|G|
∑
g∈G

χ∗
g ĝ

1

|H |
∑
h∈H

χ∗
H,hĥ |ψ0〉

= dχ

|G||H |
∑
g∈G

(∑
h∈H

χgh−1χH,h

)∗
ĝ |ψ0〉. (A1)

This has the same form as the original projection (5), with the
“effective character”

χ̃g = 1

|H |
∑
h∈H

χgh−1χH,h. (A2)

For simplicity, we choose H for each irrep such that their
trivial irrep appears with multiplicity 1, so Eq. (A2) reduces
to averaging characters in (right) cosets of H .

The D3h point group of C32 has two two-dimensional ir-
reps, E′ and E′′. A suitable choice of H for both is the C2

subgroup generated by one of the three 180◦ rotations.
The Ih point group of C60 and C80 has three-, four-, and

five-dimensional irreps. We decomposed each of these using
the following H :

(i) For T irreps, any C3 rotation subgroup.
(ii) For G irreps, the C2v subgroup that fixes an edge of

a dodecahedron with the same symmetry group. In C60, the
same group fixes an edge lying between two hexagons. In C80,
it fixes the hexagon diagonal connecting two nearest-neighbor
pentagons.

(iii) For H irreps, any C5 rotation subgroup.
Each of these groups decompose the given irrep into every

one of their own irreps, each with multiplicity 1.
Figures 9 and 13 are exceptions: There, we decomposed

irreps of both the correlation eigenvectors and the low-lying
wave functions into irreps of the C5 rotation group around
the center of the Schlegel plot. Such a decomposition of T
irreps contains the trivial irrep, yielding rotationally symmet-
ric plots. The Gu irrep in Fig. 9(b), by contrast, decomposes
into the four nontrivial irreps of C5: For the plot, we used the
real part of the e2π i/5 rotation-eigenvalue component (that is,
a linear combination of the e±2π i/5 components).

TABLE V. Best GCNN variational energies for the C32 geometry.
Bold numbers correspond to the lowest energy in each spin sector.
We note that the lowest S = 2 state found by exact diagonalization
belongs to the A′

1 irrep; however, the variational energy difference
between the A′

1 and A′′
1 sectors is smaller than the difference between

either and the exact value.

Irrep P = +1 P = −1 Sz = 2

A′
1 −15.7279(3) −15.4481(3) −15.3491(3)

A′
2 −15.0200(5)a −15.7648(4) −15.0226(4)

A′′
1 −15.9342(3) −15.3053(5) −15.3537(3)

A′′
2 −15.0250(4)a −15.4834(5) −15.0264(3)

E′ −15.8020(4) −15.6198(4) −15.2220(5)
E′′ −15.5691(3) −15.5591(3) −15.1786(6)

aP = +1 simulation that returned an S = 2 state.
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TABLE VI. Best GCNN variational energies for the C60 geome-
try, compared with the DMRG variational energies of Ref. [27]. Bold
numbers correspond to the lowest energy in each spin sector.

Irrep P = +1 P = −1 Sz = 2

Ag −31.1302(2) −29.7548(4) −30.2517(2)
Au −29.6807(6)a −29.8208(7) −29.6962(4)
T1g −29.9447(5)a −30.3186(3) −29.9378(6)
T1u −30.1802(3) −30.2944(3) −30.0219(5)
T2g −29.9906(9)a −30.7685(4) −30.0210(4)
T2u −30.2487(3) −30.1286(5) −30.0230(6)
Gg −30.3033(5) −30.0876(7) −30.0850(4)
Gu −30.3551(6) −30.6118(5) −30.1110(3)
Hg −30.4189(7) −30.0871(8) −30.3251(4)
Hu −30.2494(6)a −30.4232(4) −30.2619(5)

S = 0 S = 1 S = 2

DMRG [27] −31.131(7) −30.775(6) −30.3(2)
−30.440(9)

aP = +1 simulation that returned an S = 2 state.

APPENDIX B: TABLES OF OPTIMAL
VARIATIONAL ENERGIES

We performed exact diagonalization on the C32 Heisenberg
model to extend the results in Ref. [20] to every eigenstate

TABLE VII. Best GCNN variational energies for the C80 geom-
etry. Bold numbers correspond to the lowest energy in each spin
sector.

Irrep P = +1 P = −1 Sz = 2

Ag −41.0041(4) −40.3017(9) −40.7204(5)
Au −41.0387(3) −40.6590(5) −40.6273(5)
T1g −40.6007(8)a −40.7405(11) −40.5850(7)b

T1u −40.7063(8)a −40.8184(9) −40.7155(7)
T2g −40.6382(7)c −40.9314(7) −40.5858(8)
T2u −40.5837(9)a −40.8920(9) −40.6155(9)
Gg −40.8578(8) −40.7622(9) −40.7197(8)
Gu −40.7444(8) −40.8820(8) −40.7117(8)
Hg −40.8904(12) −40.8434(6) −40.7264(10)
Hu −40.8350(8) −40.8011(9) −40.7634(8)

aP = +1 simulation that returned an S = 2 state.
bSz = 2 simulation that returned an S = 3 state.
cState that is not clearly dominated by one spin-quantum-number
sector.

below energy −15J; these energies are listed in Table IV.
GCNN variational energies in every symmetry sector we con-
sidered are listed for C32, C60, and C80 in Tables V, VI,
and VII, respectively.
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