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Abstract
In this article, we propose the modelling o a tunable bistable piezoelectric energy harvester (or
BPEH) architecture. The latter is a type o ambient energy converter that continues to gain
attention due to their wideband requency response. As the non-linear dynamics o BPEHs
imply signicant modeling complexity, dynamic lumped models are necessary to predict
BPEHs’ dynamic response and should t the type o architecture studied. The BPEH
architecture o interest uses post-buckled beams to create bistability and an amplied
piezoelectric actuator (or APA) to convert the ambient vibrations. To date, no dynamic lumped
models have been ound in existing literature that account or both the electromechanical
conversion and the dynamic behavior o buckled beams, with a specic ocus on their axial and
bending stiness, or this BPEH architecture. Additionally, the proposed BPEH architecture
oers buckling level tunability, which is achieved using an additional APA. Hence, the aim o
this paper is to propose a new lumped model or a BPEH architecture that considers the eect o
the post-buckled beams’ stiness and o the additional APA through an elasticity actor κ. This
lumped model is established using Euler Lagrange equations and is experimentally validated on
a tunable BPEH prototype. This validation shows an average relative error below 6% between
the model predictions and experimental dynamic response o the prototype to an ascending
requency sweep, compared to an average relative error that is around 14% or the model
proposed in literature. Moreover, numerical simulations using the proposed model lead to the
conclusion that there is an optimal elasticity actor κ that ensures the maximum power output
while maintaining the requency bandwidth.

Keywords: piezoelectric energy harvester, bistability, dynamic lumped model,
post-buckled beams

1. Introduction

The interest in wireless sensor networks (or WSNs) has sig-
nicantly risen in the past decade. This is due to the act that
those networks can enable real time monitoring o the physical

∗
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condition o a wide range o structures, such as aircrats, med-
ical apparatus or even industrial machinery [1, 2]. The energy
consumption o sensor nodes is one o the challenges or this
promising technology.

The conventional way to power these nodes is chemical bat-
teries. Since these batteries have a limited amount o energy,
and thereore a short lie cycle, it is relevant to use the exist-
ing energy in the environment o the monitored structures as
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an alternative [3, 4]. One commonly studied example is vibra-
tion energy harvesting, which consists o converting ambient
mechanical energy into electric energy [5], using electromag-
netic induction [6], electrostatic mechanisms [7, 8], or piezo-
electric components coupled with mechanical resonators [9].
Piezoelectric energy harvesters (or PEHs) will be the ocus o
this work.

The use o linear mechanical resonators or PEHs was
rst investigated in the early 2000s by Roundy and Wright
[10], due to the simplicity o modeling and design they oer.
Nevertheless, it has been shown that linear resonators are not
suitable or all ambient vibrations [11], and that a wider re-
quency bandwidth is preerred or ambient vibrations [12].

One o the most promising methods investigated or the
purpose o enlarging the PEHs’ bandwidth is the introduction
o a non-linearity in the oscillating structure [13–15], such
as bistability [16]. Bistability is a type o non-linearity that
implies the existence o two stable equilibrium positions in a
given system.

This type o non-linearity is achieved by two methods. The
rst method is reerred to as magnetic interaction or magnetic
coupling and consists o installing magnets on and around the
mechanical resonator to create two equilibrium positions [17].
Magnet based bistability in BPEH can either be achieved using
attractive mechanisms [18], but is most commonly achieved
using repulsive mechanisms [19]. More recent architectures
o this type use both to optimize the elastic potential [20], or
use beams with complex shapes instead o simple cantilever
beams to increase the strain and thus the electromechanical
coupling o the BPEH [21].

Despite the advances in this type o BPEH, the use o mag-
nets implies higher volumes in the BPEH, which leads us to
ocus on the second widely used method to achieve bistability.
This method consists o introducing a pre-compression in thin
beams or plates, which causes the structure to buckle. Apart
rom simple buckled structures [22, 23], there are architectures
that use optimized beam shapes to enhance perormance at low
accelerations [24], and more complex bistable mechanisms
that exploit dierent stress modes [25] also exist. The advant-
age o this type o BPEH structures is the smaller volume they
ensure. We consequently ocus on bistability based buckling
and how to design these types o BPEH in the ollowing study.

The aorementioned solution calls ormore intricatemodel-
ing that can be either inaccurate, either inappropriate or some
architectures. The purpose o this paper is to present a model
dedicated to the design and the prediction o the dynamic beha-
vior o a high perormance bistable piezoelectric harvester that
uses post-buckled beams to create bistability and a fexten-
sional device to convert the vibration into electric energy.

Concerning the modelling o these types o BPEH, a
number o models were proposed in literature. Vangbo rst
investigated the modeling o double-clamped post-buckled
beams with a centered actuation, proposing a Lagrangian
approach to study their static behavior [26] which considered
the beams’ bending and axial extension. This approach was
then extended by others to propose design approaches as well
as elastic static analytical models or post-buckled beams with

an o-centered actuation [27, 28]. Static modeling results are,
however, insucient to determine how post-buckled beams
aect the dynamic behavior o a bistable vibrating structure,
such as bistable piezoelectric energy harvesters (or BPEHs).

Hence, dynamic lumped models have been developed or
dynamic structures that use post-buckled beams. An inter-
esting example is the model developed and experiment-
ally veried by Sai or a tunable MEMS architecture in
the year 2000 [29]. It does not, however, take into con-
sideration the electromechanical aspect o the device which
is a key element o the study o BPEHs. Dynamic elec-
tromechanical lumped models were thus developed or BPEH
architectures.

The one proposed by Cottone et al in 2012 [30] comes
to mind as it describes the eect o the beams in the elec-
tromechanical equations or an architecture that uses piezo-
electric patches laminated on the bistable beams o the BPEH
[31]. More recently, a more detailed model or BPEH using
post-buckled beams with piezoelectric patches has been pro-
posed by Karadarakos et al [32]. The latter proposes a more
intricate model to account or a wider range o mechanical
deormations and conversion modes in the piezoelectric ele-
ment, which allows or more accurate predictions, but also
requires more computational power and a longer computation
time.

In addition, the eects o the post-buckled beams or this
type o architecture dier rom those o beams that incorporate
the piezoelectric element in a dierent way, more particularly,
when exploiting a dierent electromechanical coupling mode
(or ECM) such as the 3-3 mode using fextensionnal devices
[33].

Two piezoelectric ECMs are commonly used in elec-
tromechanical systems; the 3-1 mode, where the mechanical
strain is perpendicular to the polarization vector, and the 3-
3 mode, which uses stacks with interdigitated (IDT) elec-
trodes and or which strain and polarization are collinear. The
benet o exploiting 3-3 ECMs in the piezoelectric element
as opposed to the 3-1 ECMs, solicited in BPEH architec-
tures that use piezoelectric patches such as Qian et al’s [25]
or Chen et al’s [24] architectures, is to obtain a higher elec-
tromechanical coupling level as discussed by Kim et al [31],
which is a denite advantage in the context o vibration energy
harvesting.

A notable contribution to the modeling o this type o archi-
tecture, taking advantage o the 3-3 ECMS, is Liu et al’s
model or a BPEH that uses amplied piezoelectric actuat-
ors (or APAs), also reerred to as fextensional devices, or
energy harvesting purposes [34]. The eect o the bending
strain contribution o the post-buckled beams was included
in Liu et al’s model [35], and was proven to have no eect
on the electromechanical coupling o the BPEH or the archi-
tecture investigated. It is unclear, however, whether the axial
stiness, which represents the axial extension strain modes
o the beams, infuences the BPEH’s dynamic behavior or
structures that use 3-3 ECMs. We investigated the eect o
this axial stiness or a non-tunable BPEH architecture in a
previous article [36]. It was demonstrated that or this type
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o BPEH architecture, relatively low values o the axial sti-
ness o the beams can have a detrimental eect on the BPEH’s
power output.

Another contribution concerning this type o BPEH archi-
tecture is proposed by Huguet et al [37], in which a BPEH
architecture using an additional APA to achieve orbit jumps,
a method used to enhance the BPEH’s perormance, was sug-
gested. Unortunately, in this contribution, the lumped model
proposed does not account or the eect o the buckled beams
or that o the additional APA used to tune the buckling
level.

So ar, no work in literature has proposed a model or
BPEHs using APAs and post-buckled beams that considers the
infuence o beam axial and fexural stiness as well as the
stiness o any extra APA. The presented work aims to pro-
pose a lumped model or a tunable BPEH architecture, appro-
priate or testing orbit jump strategies, which accounts or the
use o APAs or energy harvesting and tuning purposes, as
well as the post-buckled beams’ eect on the dynamic beha-
vior o the harvester. Unlike previous contributions, this model
allows us to predict how each o the previously cited compon-
ents aects the dynamic response o the BPEH.

This article is organized in the ollowing manner: the
second section establishes the dynamic lumped model o the
BPEH architecture studied. The third section presents the
experimental validation o the proposed lumped model, using
an existing BPEH prototype. The ourth section exploits the
proposed lumped model to study how the beams and the tun-
ing APA can aect the dynamic response o the BPEH using
numerical simulations.

2. A dynamic lumped model for the tunable BPEH
architecture

2.1. The BPEH architecture presentation

The BPEH architecture studied in this paper is similar to
Huguet et al’s BPEH prototype described in [37], shown in
the diagram in gure 1 and in the prototype image in gure 2.
It includes an inertial mass, our bistable post-buckled beams
used to create bistability and two APAs. Four buckled beams
were chosen instead o two in order to prevent in plan rotations
o the inertial mass.

One o the two APAs is used or energy harvesting. This
APA generates power upon the inertial mass’s movement and
is linked to a simple resistance load or the rest o the study,
or simplication purposes. The harvested energy will be eval-
uated as the energy dissipated in the resistor.

The second APA is used as an actuator to adjust the buck-
ling level o the beams. When used as an actuator, the APA
is in compression along the horizontal axis when the applied
tuning voltage is positive, and in extension when this voltage
is negative.

The aim o this architecture is to make it easy to tune the
buckling level, so that the model can be validated at dierent
buckling levels. For a given real-world application, this second
APA could be removed.

Figure 1. A schematic o the studied BPEH architecture that
includes an inertial mass, 4 post-buckled beams, one APA or energy
harvesting and an additional APA or tuning the buckling level.

Figure 2. Image o the BPEH prototype used or the experimental
validation, that includes a 6g inertial mass, 4 post-buckled beams
and two APAs or energy harvesting (APA120S) and tuning
(APA100M).

2.2. The BPEH dynamic lumped model formulation

The modelling approach presented in this paper is illustrated
in the schematic shown in gure 3.

As shown in gure 3, we attach a xed Cartesian reer-
ence rame (−→ex , −→ey ) to the BPEH. The variable x represents
the displacement o the inertial mass M in the −→ex direction,
while D represents the damping coecient, and L the mass
rame distance. The variables K,Cp and α respectively rep-
resent the stiness, capacitance and orce actor o the energy
harvesting APA.

The axial extension and bending stinesses o each beam
are noted Ka and Kb. In addition, the eect o the tuning APA
is added by considering its stiness K2, capacitance Cp2 and
orce actor α2.

The voltage and electric current o the energy harvesting
and tuning APAs are respectively represented by the vari-
ables (v, I) and (v2, I2). As depicted in gure 3, the energy
harvesting APA is connected to a resistance load denoted by
R, whereas the tuning APA is connected to a voltage source.
Furthermore, the variable γ corresponds to the acceleration o
the ambient vibration. The amplitude o this acceleration will
be reerred to as γM.
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Figure 3. Schematic representation o the Lumped model proposed in this paper to describe the tunable BPEH architecture represented in
gures 1 and 2.

Prior to entering detailed modelling considerations o the
problem under study, some basic prerequisites and assump-
tions are introduced:

(1) The inertial mass M is considered moving along the −→ex
direction only, which is valid when considering the dis-
placement o the mass to be very small compared to the
length o the beams (x<< L).

(2) It is assumed that the strain o the 4 identical post-buckled
beams is the same. The strain contributions o the post-
buckled beams are accounted or by adding springs or
their bending and axial extension stinesses, respectively
named Kb and Ka that will thus have an identical value
rom one beam to another.

(3) The bending stiness Kb o the our identical beams act
in parallel on the mass and oppose its displacement along
the −→ex direction. They can thus be modelled with an equi-
valent stiness 4Kb as shown in gure 3. The axial exten-
sion stiness Ka oppose the mass’s movement along the−→ey direction. Along this axis the axial extension stiness
o the beams adds up on both sides o the mass, but are
in series when considering both symmetrical sides. The
global equivalent axial extension stiness Ka is then equal
to the axial extension stiness o one beam.

(4) The movements o the inertial mass in the −→ex direction
induces a displacement o the axial extension stiness
spring Ka and o both APAs in the −→ey direction. For a
displacement x o the inertial mass, a displacement vari-
ation ∆L in the −→ey direction occurs. The expression o
this displacement variation ∆L is described in (1). The
Pythagorean theorem is used to derive this ormula since
the model’s linkages enabling the mass’s movement are
assumed to be innitely rigid. The strain on the beams is
considered independently using the springs or the bend-
ing and axial extension stinesses Kb and Ka

∆L= 2(L− L(x)) = 2L− 2

L2 + x20 − x2. (1)

The latter is the dierence between themass-rame distance
L when the inertial mass’s displacement is equal to the buck-
ling level (x= x0), and the mass-rame distance L(x) or a
given inertial mass displacement (x ̸= x0).

The displacement variation o the energy harvesting APA
is denoted by yK, and the displacement variation o the tuning
APA is denoted by yK2 , while yKa represents the displacement
variation o the axial extension spring. The sum o these dis-
placement variations is evidently equal to the total displace-
ment variation ∆L. This thought is expressed in (2)

∆L= yKa + yk+ yK2 . (2)

With these considerationsmade, we can nowmove on to the
ormulation o the lumped model’s equations. As a classical
method, the Euler–Lagrange approach to modelling is used to
deduce the governing equations o the structure.

The generalized coordinates considered are the position
o the mass x, the variables yK and yK2 that represent the
displacement variation o the energy harvesting and tuning
APAs upon the inertial mass’s movements and two voltage
related coordinates λ and λ2 as λ̇= v and λ̇2 = v2. The corres-
ponding Euler–Lagrange balance is described by the equation
system (3)





Mγ−Dẋ= d
dt


∂L
∂ẋ


− ∂L

∂x

0= d
dt


∂L
∂ẏK


− ∂L

∂yK

0= d
dt


∂L
∂ẏK2


− ∂L

∂yK2

−I= d
dt


∂L
∂λ̇


− ∂L

∂λ

−I2 = d
dt


∂L
∂λ̇2


− ∂L

∂λ2

(3)

The Lagrangian unction L o the system is given by
equation (4)

L= T− S4Kb − SK− SKa − SK2 +Wc. (4)

The term T represents the kinetic energy o the inertial
mass. The variables S4Kb , SK, SKa and SK2 represents the elastic
energy stored in the springs considered, shown in the lumped
model schematic in gure 3. The variableWc is the piezoelec-
tric co-energy that exists in both APAs. The equations (5)–(10)
dene the expressions o these terms

T=
1
2
Mẋ2 (5)
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SKa =
1
2

Ka(∆L− yK − yK2)
2 (6)

SK =
1
2

Ky2
K (7)

SK2 =
1
2

K2y
2
K2

(8)

S4Kb =
1
2


4Kbx2


(9)

Wc =
1
2

Cpv2 +αvyK +
1
2

Cp2v
2
2 +α2v2yK2 . (10)

When combining the last equations, the Euler–Lagrange
balance or the present BPEH architecture takes the orm:





Mγ−Dẋ = Mẍ+ 4Kbx+ Ka(∆L−yK)2x√
L2+x2

0−x2

0 = Kyk −Ka (∆L− yk − yK2)−αv

0 = K2yK2 −Ka (∆L− yk − yK2)−α2v2

−I = Cpv̇+αẏK

−I2 = Cp2 v̇2 +α2ẏ2[6pt]

. (11)

The second and third equations o the system described
in (11) give way to the expressions o the displacement

variations yK and yK2 as unctions o the other general-
ized coordinates considered. These expressions are given
by (12) and (13)

yK =
α2v2 − αKa

K+Ka
v+ KKa

K+Ka
∆L

KKa
Ka+K +K2

(12)

yK2 =
KKa

K+Ka


1−


KaK

K+Ka



K2 +


KaK
K+Ka




∆L

+
1+

( Ka
K+Ka )

K2+( KaK
K+Ka )

K+Ka
αv−


Ka

K+Ka



K2 +


KaK
K+Ka

α2v2. (13)

In order to acilitate the development and interpretations
o the nal equation system, the expression o an equivalent
stiness Keq is introduced, as shown in equation (14)

Keq =


KaK

K+Ka


K2

K2 +


KaK
K+Ka

 . (14)

When injecting equations (12) and (13) in the Euler–
Lagrange balance, we obtain the equation system described in
(15)





Mẍ+ 4Kbx+
Keq

(
2L−2

√
L2+x2

0−x2
)

2x√
L2+x2

0−x2
+

Keq

K αv 2x√
L2+x2

0−x2
− Keq

K2
α2v2

2x√
L2+x2

0−x2
= Mγ−Dẋ

Cpv̇−α


Keq

K


2xẋ√

L2+x2
0−x2

+
1+

KaKeq
KK2

K+Ka
α2v̇− Keq

K2Kα2αv̇2 =−I

Cp2 v̇2 +α2
2

v̇2

K2+
KKa

K+Ka

− αα2Keq

KK2
v̇+ Keq

K2

2xẋ√
L2+x2

0−x2
=−I2

. (15)

Since the displacements o the mass and buckling level are
small with respect to L, a Taylor expansion o the rst order
can be applied on the terms o the equation system described
in (15), as shown by (19)

(x0 ≪ L, x ≪ L )⇒ x2
0 − x2

L2
≪ 1 ⇒


1+

x2
0 − x2

L2

≈ 1+
x2
0 − x2

2L2
+ o


x2
0 − x2

L2


. (16)

The application o the Taylor expansion developed in (16)
gives way to an equation system that includes a mechanical
Dung-type equation as well as two electrical equations as
seen in (17)





Mγ = Mẍ− 2Keq


2Keqx2

0
L2 − 4Kb − 2αeq2 v2

L


x+ 2Keqx3

L2

+Dẋ+
2α

(
Keq
K

)
xv

L

I = 2ακ̄xẋ
L −


Cp +

1+
KaKeq
KK2

K+Ka
α2


v̇+Ceqv̇2

I2 =
2α2(1−κ̄)xẋ

L −


Cp2 +
α2

2

K2+
KKa

K+Ka

v̇2


+

αα2Keq

K2K v̇

.

(17)

The writing o the equation system given by (19) is urther
simplied by introducing a ew variables that depend on the
structural parameters.

The rst variable considered appears when rewriting the
linear reaction orce o the BPEH as shown in (18)


2Keqx2

0

L2
− 4Kb −

2αeq2
v2

L


x =

2Keq

L2
x2
01x. (18)

5
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This variable noted x01 is representative o a new buckling
level written in terms o the ideal buckling level x0 and o the
infuence o the bending stiness Kb and tuning APA’s com-
pression that varies with the voltage v2. The expression o this
buckling level x01, which will be reerred to as the actual buck-
ling level as it is the one observed experimentally, is given
by (19)

x01 =

√
x2
0 −

2KbL2

Keq
− αeq2

v2L

Keq


. (19)

The second variable introduced is a correction actor that
will be reerred to as the elasticity actor κ̄ or the rest o
the study. This variable account or the elastic energy stored
in the tuning APA and axial extension stiness spring Ka o
the beams. The expression o the elasticity actor κ̄ is given
by (20)

κ=
1

1+ K
KaK2

K2+Ka

. (20)

In addition, the equivalent capacitances o the energy har-
vesting APA and tuning APA, respectively symbolized Cpeq

and Cp2eq
, as well as the additional capacitance Ceq are given

by (21)–(23)

Cpeq =
1+ KaKeq

KK2

K+Ka
α2 (21)

Cp2eq
=

α2
2

K2 +
KKa

K+Ka

(22)

Ceq =
αα2κ̄

K2
. (23)

The capacitances Cpeq and Cp2eq
account or the change

in boundary conditions o the APAs when xed to the rest
o the BPEH, and are added to the capacitances Cp and Cp2

respectively measured or the energy harvesting APA and tun-
ing APA or ree–ree boundary conditions. The capacitance
Ceq accounts or the existence o both APAs in the structure.

The equation system given by (24) stems rom applying the
Taylor expansion (see equation (16)) and considering the pre-
viously described variables





Mγ = Mẍ− 2Kκ̄ x2
01

L2 x+ 2Kκ̄x3

L2 +Dẋ+ 2ακ̄xv
L

I = 2ακ̄xẋ
L −


Cp +Cpeq


v̇+Ceqv̇2

I2 =
2α2(1−κ̄)xẋ

L −


Cp2 +Cp2eq


v̇2 +Ceqv̇[6pt]

. (24)

The purpose o this article is to investigate the response
o the BPEH architecture or dierent buckling levels, and to
compare the experimental response with the predictions o the
model. For this purpose, the value o the actual buckling level
x01 is modied by varying the tuning voltage v2 beore each
test, which consists o observing the dynamic response o the
BPEH.

Consequently, or the study carried out in this paper, the
actual buckling level is kept constant when the BPEH is sub-
jected to a given excitation o amplitude γM.

The voltage applied to the tuning APA is then kept constant
(v̇2 = 0, v2 = V2). The expression or the actual buckling level
is thereore that given by (25). The third equation in the system
o equation (24) is thus useless or the ollowing study, as it
only provides inormation on the current that fows through
the tuning APA as a unction o the BPEH’s motion

x01 =

√
x2
0 −

2KbL2

Keq
− αeq2V2L

Keq


. (25)

The two remaining equations given by (26) describe a
BPEH with a tunable buckling level that depends on the value
set to the tuning APA voltage V2.

Additionally, or the APAs considered in this paper, the
additional capacitances Cpeq, Cp2 eq and Ceq that account or
the dierence in boundary conditions in the energy conversion
process o the APAs are negligible in comparison to the capa-
citances Cp and Cp2 o the ree–ree APA conguration. The
terms containing these variables are thereore considered neg-
ligible in both electric equations, and the simplied equation
system given by (26) is nally ound





Mγ = Mẍ− 2Kκ̄ x2
01

L2 x+ 2Kκ̄
L2 x3 +Dẋ+ 2ακ̄

L xv

I = 2ακ̄
L xẋ−Cpv̇

(26)

The system o equation (26) describes the oscillations
o an inertial mass attached to a nonlinear spring and a
linear damper, with additional nonlinear electromechanical
coupling terms. These nonlinear terms are given by the
equations (27)–(29)

Fspring =−


2Kκ̄
x2
01

L2


x+


2Kκ̄
L2


x3 (27)

IM =
2ακ̄

L
xẋ (28)

FAPA =
2ακ̄

L
xv. (29)

The rst nonlinear term represents the nonlinear mechan-
ical spring orce Fspring. This nonlinear restoring orce is typ-
ical o dung-type oscillators. In this particular case, the term
proportional to x is negative and the term proportional to x3

is positive, which corresponds to the existence o two stable
equilibrium positions (xstable =±x01) and one unstable equi-
librium position (xunstable = 0) o the inertial mass.

Bistable oscillators can exhibit two dierent dynamic
responses; one is the oscillation o the mass around one o
the two stable equilibrium positions o the harvester (±x01)
without crossing the unstable position. This behavior is called
intra-well motion [35]. The back and orth oscillation o the
mass rom one stable equilibrium position to another, by cross-
ing the unstable position, is the second possible dynamic

6
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Figure 4. Schematic representation o the PRJ (Perect Revolute
Joint) lumped model used to describe the studied BPEH architecture
by Huguet et al [37].

response. This type o response is called inter-well motion
[35]. The latter is the oscillation that provides the high energy
broadband response sought or this type o nonlinearity.

The second nonlinear term is the term representing the
nonlinear electromechanical coupling (the piezoelectric dir-
ect eect where IM is the current generated when the APA
is deormed, and the piezoelectric inverse eect where FAPA

is the orce generated by the APA due to the voltage in its
electrodes).

The nonlinearity in the electromechanical coupling corres-
ponds to the act that the piezoelectric element is compressed
twice per period during the displacement o the dynamic mass
in the case o inter-well motion. This requency doubling
phenomenon illustrates the nonlinear nature o the coupling,
which is expressed by the products xẋ and xv in equation (26).

The advantage o the proposed lumped model described
in (26) or this specic BPEH architecture is that it accounts
or the eect o the tuning APA and the post-buckled beams’
main strain contributions.

As previously mentioned, the dierence with Huguet et al’s
modelling approach [37] is the consideration o the tuning
APA and the post-buckled beams’ bending and axial compres-
sion stinesses. When the energy harvesting APA’s stiness
is assumed to be small in regards to the tuning APA’s stiness
(K2 ≫ K), and when the post-buckled beams’ elasticity is not
considered, the equations describing the dynamic behavior o
the BPEH demonstrated by Huguet et al in [37] are obtained.
Such a model amounts to consider the energy harvesting
APA connected to the proo mass by Perect Revolute Joints
(PRJs) with innitely rigid bars (Kb = 0, Ka →+∞, κ= 1)
instead o real beams characterized by the axial and fexural
elasticities





Mγ = Mẍ− 2K x2
0

L2 x+ 2K
L2 x3 +Dẋ+ 2α

L xv

I = 2α
L xẋ−Cpv̇

. (30)

A schematic o the modelling approach proposed by
Huguet et al [37] is illustrated in gure 4.

In this study, we propose an extension o Huguet et al’s [37]
method or κ̄⩽ 1. The Huguet et al’s method will be reerred
to as the ideal PRJ model. One important conclusion stems
rom observing the dierence between the ideal PRJ model

and the model investigated in this paper: the tuning APA and
post-buckled beams aect the dynamic behavior o the BPEH
when κ̄ is inerior to one.

2.3. Initial considerations/lumped model normalization

In order to determine the eect o the tuning APA and post-
buckled beams’ eect on perormance, the infuence o κ̄ on
key normalized parameters o the BPEH must be observed.
The normalization o the equations is perormed to obtain
expressions o these key normalized parameters as a unction
o κ̄ , x01 and the rest o the structural parameters present in
the equation system (26)





γ̄ = ¨̄x+ ω2
0

ε2
x̄3

2 − ω2
0 x̄
2 + ω0

Qm
˙̄x+ k2

m
ω2

0
ε2 v̄x̄

ωrv̄ = x̄ ˙̄x
ε − ˙̄v

(31)

The normalized orm o the equations describing the
BPEH’s response is given by (31) and the expressions o the
normalized structural parameters o the BPEH that stem rom
it are expressed in (32)





x̄ = x
L

v̄ = CPv
2ακ̄x01

ε= x01
L

ω0 = ε


4Kκ̄
M

Qm = ε
√

4Kκ̄M
D

k2
m = km

2
APAκ̄

2

ωr =
1

RCp

. (32)

The variable k2
mAPA reers to the modied electromechanical

coupling coecient o the APA in a ree–ree conguration.
The latter’s expression is given by (33)

k2
mAPA

=
α2

KCp
. (33)

This normalization allows the model to highlight paramet-
ers relevant to study VEHs’ behaviors. Three parameters that
are common to both linear and non-linear VEH are the char-
acteristic pulsation ω0, the quality actor Qm and the elec-
tromechanical coupling coecient k2

m. An additional para-
meter ε that accounts or the buckling level is added or
BPEHs.

It is worth noting that since the quality actor is a meas-
ure related to the system’s damping, a variable that is challen-
ging to orecast, its value will be considered xed or the entire
study.

Consequently, the normalization allows us to conclude that
the elasticity actor κ̄ given by (20) impacts the value o the
characteristic pulsation ω0 and the electromechanical coupling
coecient k2

m.

7
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Figure 5. Experimental setup used or the impedance analysis tests
carried out or the BPEH prototype.

3. Experimental validation

3.1. Prototype and test presentation

Figure 2 shows a prototype o the BPEH architecture studied.
The prototype incudes an APX4 steel block that was man-

uactured by the spark erosion process and that includes the
beams, the inertial mass, as well as the spaces assigned or the
APAs.

The APAs used or energy harvesting and tuning the buck-
ling level are respectively the APA120S and the APA100M
rom Cedrat technologies.

Two types o experimental tests were carried out to explore
the predictive capacity o the lumped model proposed.

The rst type o tests are characterization tests that aim
to compare the estimated key normalized parameters o the
structure, based on the APAs’ identied characteristics and
beam geometry, to the ones obtained by impedance analysis.
Following these tests, the structural parameters o the BPEH
prototype are determined, and listed in table 3.

The second type o experimental tests consist o observing
the displacement, power and phase responses o the BPEH
prototype or a given sinusoidal ascending requency sweep
with a xed acceleration amplitude. The results are then com-
pared to the numerical estimations based on the lumped model.

3.2. BPEH impedance analysis tests

3.2.1. Experimental setup. The experimental setup or the
impedance analysis tests is represented in gure 5.

A Keysight E4990A impedance analyzer is connected to
the energy harvesting APA. The tests consist o varying the
buckling level o the BPEH by imposing a constant voltage
to the tuning APA through a Rhode and Schwartz NGE100
power supply, and then subjecting the BPEH to an impedance
analysis or a low voltage o 5 mV around each stable position
o the inertial mass.

The low level o voltage implies that the BPEH is subjec-
ted to a small excitation. In that regard, the observed response
corresponds to small displacements o the inertial mass around
the BPEH’s stable equilibrium points. In prior reerences,
these oscillations are reerred to as low orbits [37] or intra-
well movements [35].

Consequently, the non-linear terms o the proposed lumped
model described by (31) can be neglected, leading to a lin-
earized version o the electromechanical equations. The lin-
earized version o the normalized equations is given by (34),
with ū = x̄− ε (see equation (32)) and considering low values
o normalized displacement as described in equation (35)

{
γ̄ = ¨̄u+ω2

0 ū+ ω0 ˙̄u
Qm + k2

mω
2
0 v̄

Ī = ˙̄u− ˙̄v
(34)

ū ≪ ε. (35)

The analytical resolution o this system gives way to an

expression o the theoretical normalized admittance
⌣

Y = I
jCpω

,
similar to the one proposed by Kim et al [38]. This expression
o the theoretical normalized admittance

⌣

Y, given by (36), is
tted to the experimental response in order to deduce the val-
ues o (k2

m, Qm, ω0)

⌣

Y = 1+
k2

m

1− ω2

ω2
0
+ jω

Qmω0

. (36)

3.2.2. The elasticity factor experimental validation. The ol-
lowing study ocuses on the estimated and experimentally
determined values o k2

m and the characteristic requency f0,
linked to the value o the characteristic pulsation ω0 as shown
in (37)

f0 =
ω0

2π
. (37)

The theoretical value o k2
m is calculated using the expres-

sion given by (32).
In addition, the values o the length L, width lz and thick-

ness ly o the rectangular straight section o the post-buckled
beams are provided in table 1. These dimensions allow us to
determine the bending and axial extension stinesses Kb and
Ka o the beams, using the ormulas given by (38) and men-
tioned in [36], with EAPX4 the young modulus o the steel used
to manuacture the beams

(Kb,Ka) =

(
8EAPX4lzly

3

(2L)3
,
EAPX4lzly

L

)
. (38)

Moreover, the electromechanical coupling coecient k2
mPRJ

o the APA120S used or energy harvesting was measured
using the impedance analyzer on the energy harvesting APA
in a ree–ree conguration, beore installing it on the BPEH.
This value is listed in table 1 as well.

8
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Table 1. The measured values o the APAs and dimensions o the
beams used in the BPEH prototype.

BPEH parameter
Symbol (unit
i applicable) Value

Length o the beams L(mm) 35
Width o the beams lz (mm) 5
Thickness o the beams ly (mm) 0.2
APA120S coupling coecient k2

mAPA
0.11

Table 2. The theoretical values o the stinesses.

Theoretical parameter
Symbol (unit
i applicable) Value

APA120S stiness K
(
N µm−1) 0.342

APA100M stiness K2
(
N µm−1) 1.8

Beam axial extension stiness Ka
(
N µm−1) 6

Beam bending stiness Kb
(
N m−1) 196.87

Additionally, the nominal values o the energy harvesting
APA’s stiness K and tuning APA’s stiness K2 are listed in
table 2.

The values o k2
m and f0 are measured or dierent values

o the voltage imposed on the tuning APA, and thus, or di-
erent values o the buckling level x01, computed based on the
expression, given by (32), o x01 as a unction o the resonant
pulsationω0. The values o x01 are calculated using the theoret-
ical value o the elasticity actor κ̄. The measured values o the
electromechanical coupling coecient k2

m or dierent buck-
ling levels x01, and thus or dierent levels o the voltage o
the tuning APA, are represented in gure 6. Theory predicts a
xed value o the electromechanical coupling coecient (see
equation (32)), which is plotted in gure 6 as well. In addition,
the electromechanical coupling coecient computed rom the
PRJ model (gure 4), noted k2

mPRJ
, is plotted. The latter is equal

to the electromechanical coupling coecient o the APA120S
in a ree–ree conguration k2

mAPA
as an elasticity actor κ̄ equal

to 1 is considered or the PRJ model.
According to the experimental results represented in

gure 6, the measured values o the coupling coecient k2
m

are ar rom the value k2
mPRJ

, which is the value attained when
the elasticity actor κ̄ is equal to one. Moreover, these values
do not deviate rom the theoretical value by more than 10%
over the investigated range o buckling levels. Thus, the eect
o the beams and tuning APA must be considered to have an
accurate estimation o the electromechanical coupling coe-
cient o the BPEH k2

m.
The relative error between the proposed model and experi-

mental measurements may be due to measurement and manu-
acturing inaccuracies. It is observed that or high values o the
voltage o the tuning APA, and thus low values o the appar-
ent buckling level, the error reaches the uncertainty envelope’s
limit. This makes sense because or low resonance requen-
cies, the measured admittance is lower. Thereore, the current
measured by the impedance analyzer reaches lower values that

come close to the accuracy limit o the device, which justies
greater dispersion at low buckling levels.

Because the relative error between theory and experience is
still less than 10%, the theoretical value o the elasticity actor
is considered valid or the rest o the study.

3.2.3. The actual buckling level experimental validation.
Figure 7 represents the evolution o the actual buckling level
x01 as a unction o the voltage imposed on the tuning APA. A
theoretical curve is plotted as well, using the theoretical buck-
ling level x01 expression given by (19). An additional theor-
etical curve based on the ormula provided by (19) or a null
value o the bending stiness Kb and an elasticity actor κ
equal to 1 is presented, similar to the prior experimental valid-
ation. The latter will be reerred to as the PRJ buckling level.

According to the experimental ndings displayed in
gure 7, the measured values o the apparent buckling level
x01 dier rom the PRJ apparent buckling level values by at
least 0.4 mm. This underlines once more the importance o
accounting or the impact o the tuning APA and the beams
when making estimations.

The average relative error between the theoretical and the
experimental results is equal to 12% or a tuning voltage lower
than 70 V. For a tuning voltage V2 higher than 70 V, the buck-
ling level is too low and the assumption that the displacement
o the inertial mass is very small with respect to the buckling
level (ū ≪ ε) is no longer valid, which explains why the exper-
imental results dier rom the model. In addition, at these low
buckling levels, errors due to manuacturing deects, misalign-
ments or asymmetries take on a greater relative importance.
For a tuning voltage lower than 70 V, the average relative error
is low enough to draw the conclusion that the lumped model’s
presumptions are reliable and enable accurate prediction o
some BPEH properties beore testing.

For a thorough validation o the proposed lumped model,
oscillations rom one stable position to another, reerred to as
high orbits [37] or inter-well motions [35] are studied in the
next subsection. This type o response is relevant, as previ-
ously suggested, or energy harvesting applications.

3.3. BPEH response to an ascending sinusoidal frequency
sweep

3.3.1. Experimental setup. The experimental setup or the
high orbit tests is represented in gure 8.

The BPEH prototype is xed on an electromagnetic shaker
driven by a power amplier. The shaker’s acceleration is mon-
itored by an accelerometer xed on the shaker and connected
to a dSpace controlling board, which drives the power ampli-
er in a closed loop to control the acceleration amplitude with
a PI controller.

The displacement, velocity and acceleration o the inertial
mass are monitored with a dierential laser vibrometer also
connected to the dSpace controlling board. The tuning APA
is driven by a power supply that imposes a constant voltage;
the buckling level o the beams is thus xed or the duration

9



Smart Mater. Struct. 33 (2024) 045033 A Benhemou et al

Figure 6. The evolution o the measured electromechanical coupling coecient or dierent buckling levels (magenta circles and blue
triangles) and the theoretical (black solid line) and PRJ [37] model (red solid line) values o the electromechanical coupling coecient:
k2

m = κ̄2k2
mAPA

and k2
mPRJ

= k2
mAPA

.

Figure 7. The evolution o the measured, theoretical and PRJ [37] actual buckling level or dierent values o the voltage V2 applied
through the tuning APA.

o the experiments. The energy harvesting APA is connected
to a programmable resistance load, linked to the dSpace con-
trolling board that can adjust its value. The voltage across the
energy harvesting APA is also monitored with a voltage ol-
lower connected to the dSpace board.

3.3.2. Experimental validation results. This experiment con-
sists o observing the displacement amplitude, the harvested
power and the phase lag between the displacement and input
acceleration o the harvester or the BPEH prototype repres-
ented in gure 2, when the latter is in high orbit, or di-
erent values o the buckling level. The numerical responses
obtained by using the lumped model proposed and a numerical

dierential equation solver on MATLAB are then compared to
the experimental test response, or the xed initial conditions
expressed in (39)




x̄(t = 0)
ẋ(t = 0)
v̄(t = 0)


=




ε
0
0


 . (39)

The acceleration imposed is an ascending requency sweep
with an acceleration amplitude γ that ranges rom 30 Hz to
90 Hz. The sweep rate chosen is o 0.1 Hz per second, which
ensures a quasi-static evolution o the acceleration requency.

The identied parameters o the BPEH prototype represen-
ted in gure 2 are listed in table 3. The tested buckling level

10
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Figure 8. Schematic representation o the experimental setup used to observe the response o the BPEH prototype to an ascending
sinusoidal requency sweep.

Table 3. The identied structural parameters o the BPEH
prototype used or the experimental validation.

Parameter
Symbol (unit
i applicable) Value

Mass rame distance L(mm) 35
Inertial mass M(g) 6
Buckling level x0 (mm) {0.7, 0.85, 0.975,

1.05, 1.75}
Electromechanical
coupling coecient

k2
m 0.071

Quality actor Qm 160
Characteristic
requency

f0 (Hz) {47,57,65,70,78}

Resistance load R (Ω) 1000
Acceleration
amplitude

γM
(
m · s−2) 5

Acceleration
requency range

f (Hz) [30,90]

values, chosen resistance load as well as the acceleration amp-
litude and requency range can be ound in table 3 as well.

The experimental and numerical inter-well responses o the
BPEH prototype or dierent buckling level values are shown
in gure 9.

The calculated relative error between theoretical model and
experiment is computed using the next equation where nx01 and
n are the number o buckling levels and requencies tested.
Pth and Pexp are theoretical mean power and experimental
mean power respectively. Dth represents the theoretical dis-
placement amplitude and Dexp the experimental displacement
amplitude. The average relative error is equal to 5.86% or the
model presented in this article. For the ideal PRJ model, this
relative error is equal to 14.18%

Relative error

=
1

2nx01n

∑

nx01

∑

n

 |Pth −Pexp|
Pexp

+
|Dth −Dexp|

Dexp


. (40)

Consequently, the model assumptions can be considered
more predictive than the ones proposed by Huguet et al in
[37] or what is reerred to as the ideal PRJ model represen-
ted in gure 4. Furthermore, The response o the harvester or
dierent buckling levels is coherent with what was predicted
theoretically by Morel et al [39]; or a specic driving re-
quency f, the output power and displacement are higher or
higher buckling levels. However, the maximum power output
attained at the critical requency is lower or higher buckling
levels.

This leads to a very relevant conclusion regarding this type
o BPEH architecture; varying the buckling level can allow a
tuning o the BPEH’s perormance as it acts on the power har-
vested and on the bandwidth o its high orbit response. This
tunability can also be exploited or orbit jump strategies, as
suggested by Saint-Martin et al [40] or the prototype presen-
ted in this paper.

4. The effect of the elasticity factor κ̄ on a BPEH’s
dynamic performance

4.1. Numerical simulation presentation

In this section, we investigate the eect o the elasticity actor
κ̄ on the inter-well response [35] or high orbit response [39]
o a given BPEH. The dynamic response o the BPEH to a
sinusoidal ascending requency sweep with a high enough
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Figure 9. Displacement, power and phase lag responses o the BPEH prototype tested or an ascending requency sweep with a xed
acceleration γ = 5 m · s−2 and a xed resistance load R = 1 kΩ.

acceleration amplitude γ to cause this high orbit is investig-
ated using numerical simulations.

The numerical simulations are run using the lumped model
or dierent values o the elasticity actor κ̄, in the case o
a BPEH prototype with similar eatures as the one used or
the experimental validation presented in the previous section.
These simulations are carried out or an ascending requency
sweep with a xed acceleration γ = 20 ms−2.

The resistance load R is xed in regards to the value o
the damping ratio β, described in [39], which represents the
ratio between the electric and mechanical damping o the
BPEH.

The value o the resistance load R is chosen so as to have
the damping ratio β set to the closest value to 1 when the driv-
ing requency is equal to the cut-o requency fc o the high
orbit response or the set acceleration amplitude. The cut-o
requency fc, as described in [39], is the requency at which
the high orbit ceases to exist. When the electric damping ratio
β is set to 1, the electric damping and mechanical damping o
the BPEH are equal. Consequently, the maximum power o the
BPEH is reached and is equal to Plim which is given by (41)

Plim =
Mγ2Qm

8ω0
. (41)

The numerical results presented are obtained using a
numerical dierential equation solver on MATLAB or the
xed initial conditions expressed in (39).

The parameters set or the numerical simulations are given
by table 4.

Table 4. The BPEH structural parameters set for the numerical
simulation.

Variable Quantity (unit i applicable) Value

M Inertial mass (g) 5
x01 Actual buckling level (mm) 0.7
Qm Mechanical quality actor 100
L Mass-rame distance (mm) 35
K Energy harvesting APA stiness

(N µm−1)
0.342

k2
mAPA

APA120S coupling coecient 0.11
γM Driving acceleration amplitude

(g)
2

f Driving requencies tested (Hz) [40, 300]
κ̄ Elasticity actors tested (-) {0.1,0.3,0.5,0.7,0.9,1}

It is worth noting that the actual buckling level x01 is kept
at a constant value in these simulations. This can be achieved
by modiying the voltage that goes through the tuning APA or
each value o the elasticity actor κ̄ . For simplicity’s sake, the
quality actor’s value is considered to be constant regardless
o the beam geometry or the tuning APA used.

Consequently, the elasticity actor variation only aects the
electromechanical coupling level and resonant requency o
the harvester studied, as described by the equation system (32).

4.2. Numerical simulation results and physical interpretations

The simulation results are the displacement amplitude, the har-
vested power and the phase lag between the displacement and
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Figure 10. (a) Displacement, power and phase lag responses o the BPEH to an ascending requency sweep with a xed acceleration
γ = 20 m · s−2 or dierent elasticity actor values κ ∈ [0.1,1] (b) Damping ratio β as a unction o the driving requency f or dierent
values o the elasticity actor κ ∈ [0.1,1].

input displacement o the harvester, or dierent values o the
elasticity actor κ̄. These results are shown in gure 10(a).
In addition, the evolution o the damping ratio β, expressed
in (42) was plotted as a unction o the elasticity actor and
driving requency. This result is shown in gure 10(b)

β =
k2

mQmx2(RC0ω0)
2

4x2
0


1+ 4(RC0ω0)

2


2π f
ω0

2
 (42)

β equal to 1 is obtained at the cut-o requency fc with a
resistive load provided the value o k2

mQm surpasses a threshold
determined by the generator’s geometric parameters and the
level o acceleration. This threshold can be determined using
the simple model proposed by Morel et al [39], which gives
way to the condition described (43)

k2
mQm ⩾

12


2π fc
ω0



1+ 2


2π fc
ω0

2 . (43)

I the value o k2
mQm is high enough in regards to the previ-

ously described condition, the electric damping ratio β reaches
1 when the phase between the displacement and the accelera-
tion is equal to −90◦, and thus, when the driving requency is
equal to the cut-o requency. In this case, the rst takeaway
is that the cut-o driving requency fc remains the same when
varying the elasticity actor, despite it having an eect on the
electromechanical coupling k2

m and the resonant requency o
the BPEH. The elasticity actor variation does, however, have
an eect on the harvested power and displacement amplitudes.
When the elasticity actor is smaller, these amplitudes rise,
implying that more power is harvested since the amplitude

o the inertial mass’s displacement is larger. This is because
lower elasticity actor values imply more fexible structure
when compared to the stiness o the energy harvesting APA.
Moreover, we notice in gure 10(a) that the harvested power at
the cut-o requency increases as κ̄ decreases provided k2

mQm

is high enough and β equal to 1 is reached. This is because
Plim is inversely proportional to ω0 (see equation (41)) and ω0

is proportional to the square root o κ̄ (see equation (32)).
I k2

mQm is too low, which is the case or κ̄= 0.1, a value
o electric damping ratio β o 1 cannot be reached at the cut-
o requency with a resistive load. In this case, the maximum
harvested power does not reach Plim and the harvested power at
the cut-o requency decreases when κ̄ increases. At a certain
point, the degradation caused by lowering the elasticity actor
is thereore not benecial. Additionally, a change in the cut-o
requency due to the dierence in damping ratios is noticed.

These simulation results can be urther explained theoretic-
ally. The value o Plim is higher when the value o the elasticity
actor κ̄ is lower. This can be concluded by observing the or-
mula given by (41) since the value o the resonant pulsation
ω0 is lower when the elasticity actor κ̄ decreases, as shown
by equation (32). The expression given by (41) can thereore
be rewritten as a unction o the elasticity actor κ̄ to high-
light this urther, by considering the variable ω0PRJ which is

equal to ε


4K
M and corresponds to the resonant pulsation o

the BPEH when the perect revolute joint model is considered.
This expression is given by (44)

Plim =
Mγ2Qm

8ω0PRJ

√
κ̄
. (44)

However, the harvested power can only reach Plim i
the condition described by (43) is satised. Satisying this
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condition implies that the damping ratio can reach 1 when
the driving requency is equal to the cut-o requency. For the
condition described by (43) to be satised, the coupling coe-
cient k2

m must be high enough, since the quality actor Qm is
assumed to be independent o κ̄. A decrease in the value o the
elasticity actor κ̄ implies a decrease in the value o the coup-
ling coecient k2

m, as shown by the expressions given by (32).
Consequently, in order or the harvested power to reach Plim

at the cut-o requency the elasticity actor κ̄ must be equal to
the lowest value that guarantees that the criterion given by (43)
is satised. This optimal value ensures that the damping ratio
β can reach 1 at the cut-o requency fc and that the harvested
power reaches Plim at this particular requency.

The optimal value o κ̄ can be determined thanks to the
next equation that expresses the threshold value o (45) as a
unction o κ̄ using the equation (32)

κ̄2k2
mAPA

Qm =
12

√
κ̄


2π fc
ω0PRJ



κ̄+ 2


2π fc
ω0PRJ

2 . (45)

Since fc is constant when β = 1 is reached or a given
quality actor Qm and acceleration level γ, the equation can
be solved with respect to κ̄ or our architecture. Considering
Qm = 160 and γ = 20 ms−2, which imply a cut-o re-
quency o 179 Hz or our conguration, we nd an optimal
value o κ̄ equal to 0.21 by solving the equation with
ω0PRJ = 332.19 rad · s−1. Moreover, the optimal value o κ̄ can
be ound through numerical simulations by varying κ̄ and
observing the threshold where β = 1 is reached. The optimal
value is also ound to be equal to 0.21 or the BPEH studied at
γ = 20 ms−2. The value o the threshold k2

mQm is equal to 0.5
in our case.

Considering the value o the elasticity actor when design-
ing the BPEH is thus necessary. The optimal value o the
elasticity actor is the minimum value o κ̄ or which k2

mQm

is high enough to reach β = 1. The geometry o the beams
and tuning APA must consequently be chosen in regards to
the optimal value.

5. Conclusion

This paper presents a predictive lumped model suited or a type
o BPEH architecture that uses post-buckled beams to create
bistability, and APAs to harvest the vibration energy and, even-
tually, tune the BPEH’s buckling level. This model accounts
or the eect o the buckled beams’ bending and axial exten-
sion stinesses, as well as the eect o the tuning APA. The
lumped model proposed is established using Euler–Lagrange
equations, and a system describing the mechanical and elec-
trical response o the dynamic system’s behavior are ound.
The theoretical results that stem rom the lumped model pro-
posed to show that, while the bending stiness o the beams
has no eect on the dynamic response, the axial extension sti-
ness and the tuning APA’s stiness impact the latter and can
be taken into account using an elasticity actor.

Experimental tests were carried out using a BPEH proto-
type with the studied architecture. These tests reveal that the

numerical and theoretical results are in good agreement as they
show an average error below 6%. Furthermore, a numerical
study is made to investigate the eect o the elasticity actor
on the high orbit response o the BPEH. The results o this
study show that or a given BPEH, there’s an optimal value
o the elasticity actor that ensures a maximum power output
while maintaining the operating requency band.

By incorporating the elasticity actor, the suggested model
improves the understanding o the eect o the post-buckled
beams and tuning APA on the dynamic response o the BPEH.
The suggested lumped model’s predictive capability thereore
simplies the design o BPEHs or optimal dynamic perorm-
ance. Finally, the inclusion o the tuning APA’s eect in the
lumped model acilitates the simulation o orbit jump scen-
arios, made to improve the BPEH’s power response, using a
rapid buckling level variation, such as the one described in
Huguet et al’s [37] and Saint-Martin et al’s [40] contributions.
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