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An enhanced topological analysis for
Lamb waves based SHM methods

Arthur Lejeune1,2 , Nicolas Hascoët1, Marc Rébillat1 ,
Eric Monteiro1 and Nazih Mechbal1

Abstract
Topological data analysis (TDA) is a powerful and promising tool for data analysis, but yet not exploited enough. It is a
multidimensional method which can extract the topological features contained in a given dataset. An original TDA-based
method allowing to monitor the health of structures when equipped with piezoelectric transducers (PZTs) is introduced
here. Using a Lamb wave based Structural Health Monitoring (SHM) approach, it is shown that with specific pre-
processing of the measured time-series data, the TDA (persistent homology) for damage detection and classification can
be greatly improved. The TDA tool is first applied directly in a traditional manner in order to use homology classes to
assess damage. After that, another method based on slicing the temporal data is developed to improve the persistence
homology perception and to leverage topological descriptors to discriminate different damages. The dataset used to
apply both methods comes from experimental campaigns performed on aeronautical composite plates with embedded
PZTs where different damage types have been investigated such as delamination, impacts and stiffness reduction. The
proposed approach enables to consider a priori physical information and provides a better way to classify damages than
the traditional TDA approach. In summary, this article demonstrates that manipulating the topological the features of
PZTs time-series signals using TDA provides an efficient mean to separate and classify the damage natures and opens
the way for further developments on the use of TDA in SHM.
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Introduction

When trying to process and analyse complex informa-
tion, it is often difficult to exploit raw data. Most tech-
nics dedicated to prediction, detection and data-based
decision-making need to rely on special structuring and
pre-processing steps in order to give better results. A
massive raw dataset should not be processed as a single
block. In fact, the raw data contain a whole set of infor-
mation, some of them are useful to predict or detect
specific behaviour, but other ones are simply useless in
the current application or are repeating some knowl-
edge already present somewhere else in the database.
Therefore, the first step of any data analysis process
remains to extract useful information in order to fit the
dataset to the main purpose of the analysis.

In this article, the main purpose of the analysis is to
detect and characterize a damage inside a composite
plate structure. In the context of Structural Health
Monitoring (SHM), detecting damages and impacts is
very important to estimate the remaining useful life1

and to develop a predictive maintenance process.2

There are classically five main steps in a SHM process:
(1) damage detection, (2) damage localization, (3) dam-
age classification by type, (4) damage severity for the
structure and (5) prognostic of the structure health. As
detailed in the paper3 written by Rahbari et al. the
SHM research community agreed on solving these
issues through four different steps. First a physical eva-
luation of the health structure, then acquisition of data
measured by sensors to provide information about the
structure. After that, it is necessary to extract features
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that underlines the structure health to finally train
models using damage features and real health indica-
tors as input data. Among all kinds of existing SHM
techniques, the ultrasonic guided waves strategy is par-
ticularly effective for such composite structures
because guided waves can propagate over important
distances and thus cover a large area with few sensors
and reduced testing times.4 There exist many ways to
extract relevant information from data using time
series, statistical approaches or Fourier transform, for
example. These approaches are well covered by the lit-
erature.1,2,5 Many methods have been validated to
assess several steps for SHM purposes. Wavelet analy-
sis with Lamb wave measurement can be efficient for
quantification.4 Detection and classification of damage
on composite structures were solved thanks to order
reduction methods such principal component analysis
or more complex algorithms.6,7 Two different
approaches can be found to estimate the health of a
structure, the first one is supervised learning or model-
ling, which need the physical control result to work.
On the other hand, unsupervised learning aims to
detect, localize or cluster with the embedded sensor
data alone.6–8 In SHM, synthetic damage indicators
build up from time series and called damage index are
used instead of raw measurements. Damage indexes
can be built upon the understanding of the physical
behaviours of propagating waves. For example, the
time of travel of the waves or the residual energy can
be computed from temporal signals. The spectral anal-
ysis with FFT gives frequential energy, critical modes.
Wavelet analysis can also provide several coefficients
to enrich the damage index list. They can also be built
arbitrarily by using some empirical mathematical for-
mulae. Methods relying on such damage indexes have
already proved to be able to monitor damages inside a
composite structure.2,5,9

The topological data analysis (TDA) is an alterna-
tive method that allows to extract topological features
from a given dataset. It can be interpreted as an origi-
nal manner to quantify the ‘shape’ of multidimensional
data and provides a new way to infer damage indexes
for high dimensional data spaces. The main algebraic
topology tool used in the TDA is called persistence
homology. The persistence homology gives information
about the global and local form of the data and conse-
quently extracts topological invariant features from the
data. Previous research works have proven the effi-
ciency of the topological analysis in several domains.
In financial networks, topological methods are used to
detect critical transition in financial data.10 TDA is also
useful in medicine11–13 to analyse functional magnetic
resonance imaging data of the brain.14 Topological
analysis enables to classify human body movements
during activities.15 An introductive and first attempt,

well-documented work, on the use of TDA for SHM is
given in Gowdridge’s article16. In the previously men-
tioned article, an approach based on the concept of
persistent homology, which represents a general mathe-
matical framework (see the Appendix for more details on
the homology concept) able to encode the evolution of the
topology (homology) of families of nested spaces has been
explored to analyse damage on a mass-spring-damper
model and a Z24 bridge case study. The approach used a
barcode persistence representation17,18 assessing the Betti
number evolution and the p-Wasserstein distance19 to exhi-
bit the effect of damages, in terms of manifold structures,
on the data topology.

In this article, an extension of these pioneering
works is proposed to tackle the problem of damage
monitoring in composite structures using guided wave-
based techniques. The article will show that a direct
application of the TDA on the raw measured signals is
not effective to classify damages. However, by slicing
the temporal data into several time-windows, it is pos-
sible to highlight similarities existing between each
damage type and then to successfully classify them. In
fact, each window generates unique persistence image
using the lower-star filtration (LSF)20 method and
enable to extract convenient topological features on
each data frame. TDA tools enable to represent the
extracted topological features in two-dimensional dia-
grams or images. A simple convolutional neural net-
work (CNN) is a very convenient way to classify the
resulting images with few images and few layers. That
makes the training step very accurate and fast and
could be transferred on many more experimental and
simulated data.

Here, four different carbon fibre-reinforced polymer
(CFRP) plates endowed with five piezoelectric ele-
ments are considered. Three of them have been dam-
aged with different methods trying to reproduce the
physical effects of real damage. The SHM approach
developed here is based on the analysis of Lamb waves
propagation between piezoelectric transducers (PZTs)
in both damaged and healthy states. This work falls
within the framework of research which tries to bridge
the gap between what is undertaken in the laboratory
and the industrial deployment of SHM processes.21

Indeed, the method proposed in this work tackles one
of the problems that hinders the industrial deployment
of machine learning-based SHM method, which is the
strong dependency to the availability of a large data-
base encompassing different damages. In fact, here a
small amount of data is necessary to detect and classify
damages using the proposed TDA-based approach. A
description of the experimental set-up is done in the
article to fully understand the context of the dataset,
and the physical phenomena that enable to generate
and collect data. Then, some TDA for time series



applications and tools are presented. Finally, the TDA
tools are applied on SHM experimental data to detect
and classify the damage on the composite plate.

Description of the experimental set-up
and dataset

The experimental data are provided by PZT bonded
on composite CFRP plates. The test specimen is an
eight-ply CFRP composite laminate with symmetrical
stacking [0�, 245�, + 45�, 0�]. The dimensions of each
laminate are 400 mm3 300 mm3 0:28 mm. The
mechanical properties of the lamina are listed in Table
1, and Figure 1 presents the Lamb wave test bench and
the composite specimen with its PZT network.

A set of N = 5 PZT elements (Noliac NCE51) from
NOLIAC� are surface-mounted on the composite
plate.22 Each piezoelectric element is 20 mm in dia-
meter and 0:1 mm in thickness. The pitch/catch princi-
ple is considered here, wherein one PZT acts as an
actuator whereas the others act as sensors. The coordi-
nates of the piezoelectric elements are listed in Table 2
and Figure 2.

In addition to the healthy plate, three other similar
specimens cut from the same original composite plate
have been manufactured and damaged with different
types of damage. Each damage is characterized with a
position and a radius. As the damages are not pro-
duced with the same methods, the physical properties
of the damaged area will not be the same. The first type
of damage is an impact which is made by dropping
masses on the plate (Figure 2). Impacts induce in fact
several damages because it breaks down the carbon
fibre in addition of the delamination. An illustration of
the impact location and of the induced damage is

shown in Figure 2. Delamination damage is created,
during the manufacturing process, by placing a sheet of
polytetrafluoroethylene between two consecutive plies.
This material prevents the two layers to join in order to
emulate a delamination. The last damage type is a
reversible one. It consists of two magnets placed on
both side of the plate. The two magnets are cylinders
with 30 mm of diameter and has a mass of 150 g each.
The magnetic field enables the magnets to stay in place.
By pinching the plate, these magnets generate two per-
turbations on the dynamic behaviour by adding a local
mass and by locally modifying the boundary condi-
tions. All these damages try to represent different type
of mechanical disturbances that can be met in practice
during the composite structure life cycle (Table 3).

In Figure 2(a), the damage is located at (300,
150) mm. The excitation signal is generated by a
33500B Series Waveform Generator (Trueform) and
amplified to 10 V using a voltage amplifier from FLC
Electronics. It is a five-cycle sinusoidal tone burst with
a central frequency of f0 = 200 kHz, modulated by a
Hanning window (Morlet wavelet type). The sampling
frequency is fixed to 1 MHz.

Successively, each PZT becomes the transmitter and
the four other the sensors. The same experiment is
repeated 100 times in order to assess the repeatability
of the process. On the ‘smart composite’, it takes only
0.5 s to perform a test. Hence, only 50 s are needed to
perform 100 repetitions. At the end, the dataset is com-
posed of 500 time series for each PZT switch from sen-
sor to actuator, multiplied by the four damage types.
In the first step, the measured signals are used without
any additional post-processing step. A recording in the
case of the healthy and delaminated structure is given
in Figure 3 as an example.

Figure 1. (a) The experimental test bench. (b) The composite plate with the PZT network.
PZT: piezoelectric transducer.



Each sensor measures different signals because they
are not located at the same position (cf. Figure 3). In
Figure 3, the PZT3 is the actuator, this way the PZT3
signal corresponds to the emitted wave which is the
Morlet wavelet mentioned earlier. The first detected
packet corresponds to the direct path between the
actuator and the sensor. After that, the received signal
corresponds to a mix between indirect path waves,
which are due to the boundary and to the damage.

It is then necessary to analyse the recorded signals
by extracting some features allowing to separate and to
classify the different damages. Each damage has a
different response to the input signal. That can usually

be seen by watching the differences between the dam-
aged responses and the healthy one which is taken as a
reference. By comparing the results, it is visible that
delamination and impact damages return echoes with
more energy than magnets perturbation. That can be
explained because the magnets are not damaging the
material inside when impact and delamination are
doing it. This effect is well-represented in Figure 4, as
it can be seen that in fact the difference signal ampli-
tude is lower for the magnets case than other damages.
The Lamb waves difference signal will furthermore not
be impacted the same way for all the PZT paths. The
signal strongly depends on the path followed by the
Lamb waves. This is why it is not possible to compare
signals from two different paths. In the article, data are
always compared path by path to avoid this issue.
Watching the signals for one path shows that the mag-
net damage induces a less energetic footprint than the
two other damages. It is also important to mention
that the signal depends on the location of the damage
because of the reflections of the waves on the borders.

Table 1. Mechanical properties of the composite plate.

Density (kg=m3) Ply thickness (mm) E11 = E22 (GPa) E33 (GPa) G12 = G13 = G23 (GPa) y12

1554 0:28 69 8:1 4:8 0:03

Table 2. PZT locations.

Coordinate direction PZT1 PZT2 PZT3 PZT4 PZT5

X (mm) 30 200 370 113:5 286:5
Y (mm) 225 225 225 75 75

PZT: piezoelectric transducer.

Figure 2. (a) PZT and damage position on the experimental plate. (b) A 14 mm impact (top) C-scan of the impact (bottom).
PZT: piezoelectric transducer.

Table 3. Damage locations and sizes.

Coordinate direction Impact Delamination Magnets

X (mm) 300 100 185
Y (mm) 150 147 155
Radius (mm) 14 10 30



TDA and results representation

TDA

In this section, the main steps of the TDA are briefly
presented. However, for the completeness of the article,
all the notions and algorithms quoted here are detailed
in the Appendix.

Processed data always has a discrete representation.
The first step to achieve TDA is to construct a simplicial
complex from the data. It describes the data as a global
structure. Processing two-dimensionnal (or more) data
is the main purpose for the TDA research works.
Algorithms are working the same way regardless of the
dimension (as long as it is higher than one). More
recently, time series and more generally one-dimensional

data analysis has provided interesting results. Several
tools have been developed to make it easier.15,23

Manipulating time series requires to apply extra steps.
The main TDA tools are presented on two-dimensional
data in Appendix. Several frameworks have been
developed for TDA such as Giotto-TDA24 or Ripser
(scikit-tda).17

TDA for time series

The major difference between multidimensional data
analysis and time series analysis is that there is no
defined trivial distance in the one-dimensional space.
Time series vertices are sorted along the time axis. To
create the simplicial complex and use it for TDA, it is

Figure 3. Generated and received signals with PZT3 as actuator for healthy and delaminated plates.
PZT: piezoelectric transducer.

Figure 4. Signal difference between damaged and healthy plates for each damage from actuator 5 to sensor 4.



necessary to define such a distance. This distance will
provide a way to find neighbours for each point in the
time series.

LSF for time series. The LSF,25 also called sublevel sets
filtration, describes the local extreme values (minimum
and maximum) on the time series. The LSF has an
intuitive graphic representation. Homology classes fol-
low a rising level of water on the Y-axis starting at the
minimum to the maximum amplitude of the time series.
When the water’s threshold exceeds a local minimum,
a new pool forms, it corresponds to a homology class
birth. When the water’s level reaches a local maximum
and two different pools are merging, it makes the latest
homology class die. By considering a raising of the
level from the minimum value continuously increasing
to the maximum, it gives persistence homology on the
dataset. The t = 0 axis and t = tmax are considered as
walls with infinite height (Figure 5).

Let f be a monotonic function f : K ! R defined on
a given simplicial complex K. Being monotonic means
if D1 � D2 2 K then f D1ð Þ<f D2ð Þ. Applied to mono
dimensional time series, the result is that if
t1<t2, f �1 t1ð Þ is a subcomplex of f �1 t2ð Þ. This means
that it is possible to make a sublevel sets filtration with
different f �1 function. The Vietoris–Rips filtration is
the sublevel filtration of the diameter of a circle (cf.
Appendix). In the LSF, the increasing threshold is used
as the f �1 function. The lower-star time filtration
approach uses the sparse distance matrix. It is compa-
rable to an adjacency matrix. To build such a matrix,
each point is connected to its next neighbours (follow-
ing time axis). In fact, in a time series, each point has 1
or 2 neighbours. Edges in the simplicial complex are
bidirectional that implies the matrix is symmetrical.
The sparse distance matrix is reduced to an upper tri-
angular matrix as explained in the two papers written
by Bauer17 and Boissonat et al.26 After computing the
matrix, the Vietoris–Rips filtration can be applied, and
the approach become identical two-dimensional
method. The persistence diagram obtained only con-
tains H0 homology because the data set is one dimen-
sional, this means that the persistence homology will
only be zero dimensional. This way of analysing the

data gives information about the range of multi-scale
behaviours.

Results representation

The first topology invariant computed is the Betti num-
ber27 which gives information about the number and
the dimension of appearing homology. There is much
more efficient representation of persistence homology.
This article will focus on the main tools being used and
is not extensive.

Persistence diagrams and persistence images. The persis-
tence diagram is a two-dimensional scatter chart with
homology class birth as x-axis and deaths as y-axis.
The birth value is always inferior to death, this implies
that all points are situated above the y = x function. All
homology classes are represented on the same graph.
Dealing with one-dimensional data implies to represent
homology of dimensions 0 only as H0 points.

Figure 6 shows the homology persistence of the
double cosines time series. First, the nearest the point
is from the (y = x) asymptote the less the persistence
homology is. Points around the identity function can
be considered as noise representation or small ampli-
tude signal because their death is very close to their
birth. It is possible to denoise the diagram by filtering
those points to get better results. In the diagram of
Figure 6, the three highest persistence homologies cor-
respond to the three periods of the high-amplitude
cosines signal. The other points are reference to the
lower amplitude cosines signal. With this diagram, we
can conclude that the signal looks like three ‘pools’ on
which we added some lower amplitude signals with a
fixed periodicity.

The persistence image is another way to visualize the
homology persistence. This image is built in the
persistence-death plan as in Figure 7. By using a discre-
tized space on the persistence-death plan it is possible
to generate an image from the persistence diagram.
This discrete image is used after a convolution with a
Gaussian kernel as the persistence image. The comput-
ing of the persistence image23,35 is detailed in the
Appendix. Please refer to this Appendix where all the
steps and the correspondent equations are summarized.

These persistence images are efficient ways to com-
pare, find similarities and classify datasets. The stan-
dard deviation of the Gaussian kernel and the number
of pixels of the image are important parameters to gen-
erate the image from the original diagram. It also
enables to represent the data homology in a vectorial
space in order to use Euclidian metrics. These metrics
are traditionally preferred for machine learning and
image processing operations.

Figure 5. Star lower filtration.



Diagrams comparison tools. The main purpose for the
TDA is to extract topological features in order to
compare signals one with another. With image analysis
algorithms, it is possible to compare directly or indirectly
persistence images. Another method to compare signals
with persistence homology is to define a distance between
two persistence diagrams. The Bottleneck and the
Wasserstein distances compute a pairwise distance
between points in the two diagrams.

Definition 1: Let D1 and D2 be two persistence dia-
grams, p.0, the p-Wasserstein distance is:

Wp D1,D2ð Þ= inf
u

P
x2D1

jjx� u xð Þjjp‘

!1
p

ð1Þ

where u : D1 ! D2 is the function which gives the
pairwise point of x 2 D1 in the diagram D2 and
jjxjj‘ = max x1j j, . . . , xnj jf g then jjx� yjj‘ = max x1� y1j j,f
x2� y2j jgfor the two point x= x1,ð x2Þ and y= y1,y2ð Þ:

Definition 2: Similarly, the Bottleneck distance is:

W‘ D1,D2ð Þ= inf
u

sup
x2D1

jjx� u xð Þjj‘
� �

ð2Þ

The function u is linked with the transportation theory
because it links points in pairs by minimizing a cost
function which represents the distance between the two
points.

Image comparison tools. To use the persistence images to
cluster or classify damages in the composite plates, it is
mandatory to find calculations to compare images with
each other. These indicators will enable to estimate the
efficiency of the classification model in the next steps.
The simplest way to compare two images is to compute
the difference values pixel to pixel on every pixel of the
images. To do so, it is necessary to relate same shape
images. The first, tools used in the article is the mean
square error (MSE). The MSE is defined as:

Figure 6. Persistence diagram computed for sum of two cosines signal: f tð Þ= cos (2x) + 0:4 cos 8:6x + p
6

� �
.

Figure 7. Persistence diagram and image from the two cosines signal: f tð Þ= cos 2xð Þ+ 0:4 cos 8:6x + p
6

� �
. (a) Persistence diagram of

H0 homologies. (b) Persistence image of H0 homologies.



MSE Img1, Img2ð Þ=
1

Npix

XNpix

pix

jjImg1 pixð Þ � Img2 pixð Þjj2

ð3Þ

where Img1 and Img2 are the two compared images,
and Npix is the number of pixels of the two images.

SHM data analysis application

Applying LSF to time series

As described before, the goal of this work is to use
TDA tools to classify data corresponding to different
damaged structures and the one coming from healthy
plates. Every time series contains the same number of
points, these data are sampled at the same sampling
frequency. The simplest approach is to perform a LSF
on the full time series. Doing so, the obtained result is
a single persistence diagram for each time series. The
Wasserstein distance enables to compare each diagram
one to another. With this method, it should be possible
to find a difference between healthy experimental data
and damaged one. In the remainder of the article,
every time series are pre-processed temporal data mea-
sured by each sensor. The use of different signals will
not be studied here. The main issue of using the whole
time series is that the physical propagation of Lamb
waves is not considered at all. However, it is known
that the received signal is the sum of waves coming
from different paths and from boundaries reflexions.
The output data from the piezoelectric sensor are

strongly related to the input signal and to the time of
fly. Unfortunately, the LSF algorithm does not use the
temporal information of the data. Therefore, the
results of the LSF computed on each time series are
not operable for classification or regression purposes.

In Figure 8, it is clearly seen that TDA tools such as
LSF on time series without pre-processing and physical
understanding cannot be used to classify the damages.
In fact, by computing over the whole interval, the LSF
only consider highest amplitude data. This leads to
ignore lower amplitude data and then miss some useful
information. Applying it in a raw way, the LSF applied
on time series will not give any good result to detect
neither to classify damages.

To cope with this LSF issue, the idea is to split each
measured signal into several smaller time series, which
can be seen as a windowing processing. Each window
will be set at a fixed size. This slicing window size is set
to 30 ms for the entire article. It was determined by an
impact study of its value on the classification capabil-
ities (cf. ‘Impact of the slicing window size’ section). It
also corresponds to the time duration of the input sig-
nal in the experimental set-up. Figure 9 shows the pro-
cessing pipeline from experimental processing to
classification and regression algorithms.

As every time series inside the dataset has the same
length, it is possible to compare each window with a
constant slicing. The TDA tools do not need aligned
time series to successfully compute persistence homol-
ogy on it. The slicing of each time series into several
smaller ones implies to have lined up series in view of

Figure 8. Persistence images for each damage type.



the comparison stage between windows. The rephasing
operation is done with cross-correlation estimation,
which gives the lag between the two signals. The cross-
correlation lag is computed for two discrete signals f

and g of size N with:

f �gð Þ l½ �=
PN
i = 0

f i½ �g i + l½ � ð4Þ

where the lag l and f i½ � are the complex conjugates of f i½ �.
The chosen lag is equal to the value at the maximum

of cross-correlation. Knowing the gap enables to line
up every signal on one reference signal. After the sli-
cing, the LSF computes the corresponding persistence
diagrams and next step computes the persistence
images. These images are very convenient to manipu-
late because of their uniform shapes. On the other side,
the quantity of data contained inside every image is
bigger than inside the corresponding diagram.

After all these processes, it is possible to construct a
dataset of images to work with. Here, for this application,

each time series of 900 points length is divided into 30

series of 30 ms. This special value will be discussed in a
future section (cf. section ‘Impact of the slicing window
size’). It is important to notice that, 30 ms corresponds to
the duration of the emitted signal. Each window gives one
persistence image of 30 pixels by 30 pixels. This means
that each measurement time series can be represented as
an image of 900 pixels by 30 pixels by concatenating each
persistence images from its window time series.

Figure 10 shows an example of the result obtained
after applying LSF and Vietoris–Rips filtration on a
sliced time series. In figure, the time series is cut on ver-
tical grey lines, which represent the windows. The lower
row represents the persistence images computed with
the proposed persistence diagrams. The Gaussian ker-
nel is parametrized with the standard deviation s. This
value changes the spreading of each spot on the images.
This impact directly the comparison of two images and
can improve or deteriorate the classification score. The
value of s is computed with the formula:

s dgmð Þ=

max
h2dgm

persistence hð Þð Þ

npixel

ð5Þ

In the previous equation, dgm is a persistence diagram
containing one or several homology h and npixel is the
number of pixels required in the persistence image.
This formula was selected for this study after empirical
tests. There is a different sigma value for each com-
puted image. Two diagrams or images taken from the
same time series cannot be compared as they do not
represent the same window in the data and have differ-
ent algorithm parameters such as s. The most interest-
ing thing to do is to compare the result coming from
two different time series and corresponding to the same
window in the temporal axis. The persistence image
generation can fit to each persistence diagram. This
makes the persistence image very local information and
make the comparison with other persistence images
more difficult. In order to compare images coming
from different data, it is better to generate them with

Figure 9. TDA methodology for SHM time series analysis with
slicing window method.
TDA: topological data analysis; SHM: Structural Health Monitoring.

Figure 10. Sliced time series and corresponding persistence diagrams and persistence images for [2–1] path.



global fitting parameters. The main parameter to fit is
the image range on both axes; by using a global range
for image generation, it is possible to compare directly
to diagram with their corresponding image. As shown
before, s is the main parameter used to generate persis-
tence images. But there is also a sampling processing
which enable to mesh the space and make the Gaussian
kernel working. Figure 11 shows the impact on images
generated with local or global parameters.

Using global parameters to generate the persistence
images gives better results to separate different data.
When the persistence images are computed with local
parameters, they are very similar as shown in the (b)
and (c) images in Figure 11. By taking the full data
range and the biggest standard deviation like on the
two images (d) and (e) in Figure 11, the two images are
very different, and it is easier to compare them. The

counterpart of using the global parameters appears
when there are more than two diagrams to compare.
By increasing the global range of persistence, the lower
persistence points will be moving to the top and right
of the image. This means that it will be more difficult
to differentiate low persistence homology when there
are higher persistence homology classes in the same
image generation. This issue could be avoided by gen-
erating multiple images with different range of para-
meters. This way it could be possible to use different
scaling factors and enable to compare and classifies
several diagrams.

As the experimental processes use five PZTs with
precise location, the measured waves are strongly
dependent of the selected path. The attenuation has a
bigger impact on longer paths and damages that
change the behaviour of the wave depending on its

Figure 11. Persistence image generation with global or local fitting parameters.



location compared to the actuator and the sensor.
Therefore, each image generation parameter is settled
for each different path. Another physical property of
the experimental environment is that two opposite
paths should provide a very similar response. For
example, actuator0 ! sensor1 and actuator1 ! sensor0

should be the same. To consider all these rules, s is
computed as follows:

s path, damage, windowð Þ

= max
direction

max
repetition

sdirection, repetition path, damage, windowð Þ
� �

ð6Þ

Persistence image comparison

Now, the dataset is composed of images (size
900 3 30 pixels) which represent the topological fea-
tures of the time series from the experimental dataset.

Figure 12 displays the computed persistence images
for one instance of each damage types. The persistence
images generated for each sample have common and
distinct spots. By analysing and comparing the position
and width of each spot, it should be possible to classify
the different damages. One can notice that the differ-
ences are now visible to the naked eye, which is promis-
ing for an automatic classification of the different
images. The objective here is to find out differences
between healthy and damaged persistence images. To
do so, the MSE is used to estimate the distance between
each persistence images. These computations give a
score to characterize the similarity between two images.
By using these scores on every set of images, it is possi-
ble to construct the distance matrix between them.

The MSE matrix is divided in the 4 different dam-
ages states and the 100 repetitions of each measure.
This means that the 1003100 first pixels give the MSE
between the 100 repetitions of the healthy plate
measurement in Figure 13. In these matrices, the
images corresponding to the same damaged state are

remarkably similar because their distances are small.
In fact, all 1003100 squares following the diagonal
have the lowest values of MSE. On the other hand, the
distance between images from different damage state
are bigger, that means that it is possible to separate the
images and then the damage states. The persistence
images generated with the magnet damage is more sim-
ilar to the healthy plate than other ones. This could be
an issue for the classification step.

Impact of the slicing window size

The slicing window size is a crucial parameter for clas-
sification efficiency. Because of the fixed shape of the
time series of 900 ms, which corresponds to 900 points,
the window size is selected to respect the integer factor-
ization. It is also necessary to avoid partial slicing at
the end of the signal. For this reason, the values of the
parametric study are presented in Table 4:

For every configuration in Table 4, the MSE is com-
puted on each window to compare the persistence
images. The minimum window size is set to 9 ms
because it is needed to generate the persistence dia-
grams with enough points in the time series. In fact,
the narrower the slicing window is, the less significant
the topological features are. By doing this, the results
can be stored inside a similarity matrix as in Figure 13.
This way, it is possible to estimate the ability of the
LSF to regroup the same damage data and to separate
damages with each other (Figure 14).

Because each computation is done here for 10 repeti-
tions, the similarity matrix is (40340). To reduce the
matrix dimension, a pooling operation28–30 is computed
to extract the worst and the best cases. This gives two
matrices of shape (434), one from the max pooling
Mmaxð Þ and one for the min pooling Mminð Þ. Two simi-
larity indexes are proposed to compare the similarity
and the diversity of the sample by changing the window
size. The first tool is the simple matching coefficient
(SMC):

Figure 12. Persistence images for each damage sample.



SMC Mn, nð Þ=

Pn
i = 0 miiPn

i = 0

Pn
j = 0 mij

ð7Þ

With these definitions, the worst similarity matrix are
multiples of the identity matrix with a SMC k � In, nð Þ= 1

and the best configurations are the matrices

BMn, n = k3 1½ �n, n � In, n

� 	
when SMC BMn, nð Þ= 0 and

for k 2 R.
To optimize the classification learning, the goal is to

maximize the SMC index. Because each computation is
done for each different paths and for 10 repetitions,

the worst case will always be used. The worst case is
computed using the max pooling on the diagonal val-
ues and the min pooling on the other. The worst simi-
larity matrix is computed as follows:

WMn,n =

poolingmax Mn,nð Þ � di,j +poolingmin Mn,nð Þ � 1�di, j

� �
 �
i, j2 n

with di,j theKronecker delta

This classification score is computed for each path on
every slicing configuration and the results are presented
in the following figure:

Figure 15 shows the estimation of the effectiveness
of the classification for each slicing configuration. To
maximize this efficiency of the classification model, the
similarity indexes must be minimized. First, the maxi-
mum value on each path of the SMC is decreasing with
the reduction of the window size. Decreasing the
window size below 25 ms deteriorates the SMC score.
On the other hand, wide windows will decrease the
classification abilities because SMC indexes rise
(Figure 16).

This parametric study gives an optimized range
from 25 to 75 ms. In addition, the smaller the window
is, the higher is the number of persistence images.
More persistence images, mean more computation cost
to generate the images, to process the data and to fit
the classification model. In this article, the time dura-
tion of the input signal 3 � 10�5 s

� �
is chosen to slice

the time series. As shown in the previous section 30 ms
is inside the optimal range for the slicing window size.
Moreover, parameter to consider should be the stride
of the slicing windows to add recovering information.

Figure 13. MSE score between each damage states images on
the path [2–1].
MSE: mean square error.

Table 4. Window size values and corresponding number of windows.

Window size (ms) 9 18 25 30 36 50 75 90 150 180 450
Number of windows 100 50 36 30 25 18 12 10 6 5 2

Figure 14. Similarity matrix computed with MSE on the path [3–5].



By doing so, the number of time series to manipulate
increases which implies more persistence diagrams.
This parameter will not be studied in this article, and
the stride value will be equal to the window size to
avoid any recovering. It could also be interesting to use
a better rephasing algorithm to fit the slices with the
exact waves time of arrival on the sensor.

Classification using CNNs

The first tool which enables a comparison between two
diagrams is the Wasserstein and Bottleneck distance
matrix. As explained in the Definition 2, these matrices
give a distance between several diagrams thanks to
transportation theory and Euclidian distances. With
this, it should be possible to separate the healthy case
from damaged one. By doing so, it is possible to feed a
Machine Learning algorithm with this distance in
order to compute classification or regression. As the
persistence diagram strongly depends on the time series
shapes, most of the time, two diagrams corresponding
to two different time series will not have the same num-
ber of points. That fact is an issue because Wasserstein
distance needs to have the same shapes for the two
input diagrams. The issue can be avoided by applying

a persistence filter to delete the less persistent points in
the diagrams, but this implies an important informa-
tion loss. For example, if the two diagrams to compare
contain 3 points for the first and 10 for the second, it
will be necessary to suppress the 7 less persistent points
in the second diagram which could be a loss of infor-
mation. An alternative solution is to use persistence
image to make the classification. Using the persistence
images rather than persistence diagrams will not
change the topological features processed because they
wrap the same information but in two different spaces.
This type of classification is based on Machine
Learning methods for images. CNNs are very popular
for image classification31–33 because they produce bet-
ter results than other Machine Learning methods with
complex images. It resolves the input dimension prob-
lem because it admits the whole image when fully con-
nected neural network needs 1D input data. The
neural network used to achieve the classification is
shown in Figure 17, and each neural layer is detailed in
Table 5. Using CNN induces to modify the shape and
the number of images through the convolution and
pooling layers. A3(B;C) means that the format of the
data is A images of shape (B; C). For the next applica-
tions, only the manipulation corresponding to one path
will be considered. All the approach will be repeated
for each different path in order to give a result.

The optimizer used to compile the CNN model is
ADAM34 with a learning rate equal to 10�4 and the
loss is cross-entropy. The cross-entropy loss is com-
puted following this equation:

H p, qð Þ= �
P
x2X

p xð Þ log q xð Þð Þ ð8Þ

with p the predicted value and q the true value of the
label and represented the loss between the predicted
and the real output in order to train the network. To
ensure the reliability of the network results, a cross-
validation has been performed. This means that several
loops of training and testing have been processed when
the training and test dataset were randomly picked in
the entire dataset. During the training, the model is
learning with 15 epochs, this is enough to get an accu-
racy of 1.0 on most validation. The dataset is split into
three sets: 64% for the training set, 16% on validation
and the last 20% is the test batch. The training, valida-
tion and test sets are picked up by taking care that the
amount of data corresponding to each damage are
close. In fact, the neural network needs to train on
balanced input data to improve classifying all damages.
If one class of data is overrepresented, the CNN will
be influenced by biases and could prevent to classify
other damages. Most of the time accuracy converge to
the maximal value on the test set. Figure 18 shows how

Figure 16. SMC index average value on each wave path.
SMC: simple matching coefficient.

Figure 15. SMC classification score by the size of the slicing
windows.
SMC: simple matching coefficient.



this neural network is learning to classify the dataset.
The training step is done using a cross-validation tech-
nics. This means that the initial dataset is divided into
5 training batch. Each batch will be tested as testing set
when the 4 others will operate the fitting step. For this
reason, 5 results are given and displayed in Figure 18.
Each configuration is numbered from 0 to 4 and the
CNN reach 100% accuracy on 4 of them.

After the training step, the neural network has to
predict test data in order to verify if it has learnt well
to analyse new unknown persistence images. Figure 18
displays that the neural network has learned well, with
a 100% of accuracy, for classes of impacts and delami-
nation damages. The accuracy corresponds to the ratio

between number correct prediction and the number of
total predictions done by the network, that is:

Accuracy =
TP+TN

TP+TN+FP+FN
ð9Þ

where TP is the true positive, TN is the true negative,
FP is the false positive and FN is the false negative.

However, there is still some confusion between the
healthy plate and the damage generated by the magnet.
These results were exposed before on the image com-
parison section. In fact, the persistence images from
healthy and magnet damage are more similar than the
two other classes. The results in Figure 19 show that
the neural network is well learning to classify the dam-
ages for each training batches. Each score in the confu-
sion matrix corresponds to one prediction for a single
time series by the neural network. The test set is 20%
of the 400 time series dataset, which corresponds to 80
time series.

The classification process is trained on each path
signal. That makes the learning network dependent to
the position of the actuator and the sensor. The same
training phase has been computed for every path, and
the results have been concatenated in a single confu-
sion matrix in Figure 20.

Figure 20 indicates that the classification error
between the healthy plate and the magnet damage is
occurring but is not very common. This could be
explained by the amount of energy generated with
magnets perturbation. In fact, impacts and delamina-
tion return more energy and that make them easier to
detect and classify. This effect is the same occurring on
the MSE and structural similarity index calculation in
the previous persistence image comparison section. The
method presented in this section must be applied on
each path. This means that the algorithms will return a
result for each different path stored in the dataset. The
last step to compute a unique decision about the health
of the structure is to gather all the results in a scalar,

Figure 17. CNN for classification.
CNN: convolutional neural network.

Figure 18. Loss and accuracy evolution during training for several training batches.



for example the mean function could be a solution or a
voting-based consensus algorithm.35,36

Conclusion and perspectives

This article presents a damage detection and classifica-
tion method by processing the wave propagating on
structural part. This approach provides an original
solution to SHM research field. Many data processing
works are now interested in TDA tools to solve detec-
tion and classification problems on multi-dimensional
data. These tools open a new paradigm to solve SHM
issues because it does not analyse information on a
strict physical wave-based way. One of the main differ-
ence between current SHM works2,5,37 and the TDA
application method is that most of the time frequency
analysis are based on the analysis of the difference of

Figure 19. Confusion matrix for five test batches.

Figure 20. Test confusion matrix sum on every paths.

Table 5. Neural network architecture and parameters.

No. Layer type Parameters Shapes output Number of learning weights

1 Convolutional layer Kernel: (3,3)
Activation: Relu

43 28, 898ð Þ 40

2 Max pooling Pool size: (2,2) 43 14, 449ð Þ 0
3 Convolutional layer Kernel: (3,3)

Activation = Relu
163 12, 447ð Þ 592

4 Flatten [ 13 85, 824ð Þ 0
5 Dense layer Activation: Softmax 13 64ð Þ 5,492,800
6 Dense layer Activation: Linear 13 4ð Þ 260



two signals when TDA tools use directly the measured
guided waves. The article displays the interest of TDA
to characterize and analyse the topological data com-
ing from waves. In fact, the four damages type such as
impacts, delamination, stiffness perturbations and
healthy case can be predicted by analysing the topolo-
gical features of the data coming from the piezo trans-
ducers. Applying TDA tools such as LSF on raw data
without any physical understanding is not a good way
to solve our problem. But better results can be found
by slicing the temporal data into several windows. In
fact, each windows generate unique persistence image
with the LSF method and enable to extract convenient
topological feature on each data. By this way, it is pos-
sible to show the difference and the similarities of the
features between each damage type and then to classify
them. A simple neural network with convolutional
layers can classify the images with few images and few
layers. That makes the training step very convenient
and fast and could be transferred on many more
experimental and simulated data. This work also shows
that the topological analysis parameters are very
important in order to separate the persistence homol-
ogy of each damage. The damages are not on the same
location because they were manufactured to test sev-
eral approaches for several goals like detection, classifi-
cation, localization and quantification steps of SHM
process. In fact, it is possible to see the problem in a
different way by considering that a damage is defined
by a damage type and a localization. Testing this
method on a single damage for different locations or
on a single location for several damage could be inter-
esting to show the ability to classify the damage type
alone or to localize the damage.

This approach could be used for future works to
estimate the location or the size of the damage inside
the structure (learning a regression instead of the classi-
fication presented here). TDA technics provide many
ways to analyse the data, the slicing window method23

is another approach to analyse time series which have a
cyclic behaviour. The TDA opens a lot of methods and
representations to make classification or regression.
For example, it is possible to use the persistence dia-
grams by considering them as point clouds. The Betti
number and other representation, which are not pre-
sented in this article, could be useful in future works
such as persistence barcodes and landscapes.18,38

Because of the experimental data analysis, the current
results are linked to the physical properties of the plates
and the PZT. Similar work on different materials, geo-
metries and transducers could give a better vision
about the global purpose of TDA for SHM applica-
tion. Moreover, the methods developed in this article
are analysing waves from one actuator measured by a
single sensor. This mean that the neural network learns

to classify the damages on a single wave path. Even if
the classification results are good for each path, it is
important to concatenate the different prediction of
damage for each path to use all accessible information.
This kind of gathered decision-making is an entire
computer science field where many solutions provided
by research exists. For example, the voting-based con-
sensus algorithms could be a simple way to achieve this
kind of operations. Transfer learning technics could
provide a way to extract common topological features
from time series. Another way to use TDA is to con-
sider each time series as a spatial axis. This would pro-
vide a way to write the measured data as a multi-
dimensional point cloud and enable to use Vietoris–
Rips filtration. The TDA method for SHM classifica-
tion could be an alternative or an improvement for
other methods. In fact, it could be possible to use clas-
sical SHM method and add some TDA features to get
better results. In any case, comparing the method with
other one is interesting to be able to have a critical eye
on it; this is why it will be done in future works. It is
worth noting that as the efficiency of an SHM process
is strongly dependent on structure and on the damage
types, measuring the robustness of the TDA method to
classify the damage on different structures and dam-
ages is a crucial step to validate the potential of this
method on real structures. This is why testing methods
on several structure shapes should be the best way to
compare them. A benchmark comparison with other
features generated by other methods will be carried out
in future work.
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Appendix: TDA and persistent homology

For clarity’s sake, we will only consider two-
dimensional dataset to apply TDA tools, but it is
important to remember that the theory is useful for
every dimension data. We will focus on the most used
algorithm for TDA named Vietoris–Rips filtration, but
it is not the only method to construct a simplicial com-
plex from a dataset. Čech complex and Delaunay com-
plex are also used in special situations.27 The two most
significant topological objects used in TDA are the fol-
lowing ones.

A k-simplex is the equivalent element for the triangle
in k dimension. To construct a k-simplex, k + 1 ver-
tices are necessary. A k-simplex is like a complete graph
of k + 1 nodes. This means that a 0-simplex is a point,
a 1-simplex is a segment and a 2-simplex is a triangle. A
simplex can be described as a set of lower dimension
objects. These objects are called n-face with n giving the
dimension. The 1-faces of a 2-simplex are the edges of
the triangle when 0-faces are these vertices (Figure A1).

A simplicial complex is a set of simplices that must
respect two rules. Let be K a simplicial complex:

� Every face of simplices of K is contained in K.
� The intersection of two simplices in K is empty or a

n-face of both

Vietoris–Rips filtration

Today, the Vietoris–Rips filtration is one of the most
important algorithms used in TDA. It uses the
Vietoris–Rips complex, which appears in Vietoris
work39 and later in Rips work.

Let X , ∂Xð Þ be a finite metric space with e the filtra-
tion parameter. ∂X (xi, xj) defines the distance between
the two points xi, xj. The Vietoris–Rips complex con-
tains the k-simplex sk according to the following
condition:

sk = fx0, . . . , xkg 2 VRe if ∂X xi, xj

� �
<2e, i, j<k

e must be positive. By increasing e step by step, the
algorithm constructs a set of Vietoris–Rips complexes.
At e = 0, VRe = [ and e =max(∂X (X )), VRe = X .

The Vietoris–Rips complex has a graphic represen-
tation. In two-dimensional space, e is analogue to the
radius of circles (and sphere in 3D) drawn around each
point of X (Figure A2).

The Vietoris–Rips complex constructed is an abstract
simplicial complex. For each value of e, the complex
defines a connection between points. By joining com-
plexes for several values of e, it is possible to construct a
filtration. In fact, if 0<e1\e2, VRe1

Xð Þ � VRe2
(X ).

Homology definition

The homology of a topological space a set of invariant
features of X, it is represented as homology groups
written Hk Xð Þ. k corresponds to the dimension of fea-
tures, and X is the topological space which is in practice
the dataset. Hk gives information about k-dimensional
topological features (also called holes) inside the data.

To find the homology groups, it is necessary to define
the boundary mapping of a k-chain or a k-simplex. The
boundary of a p-chain is the sum of the boundaries of
its simplices. With the definition, it is possible to make
a mapping using the boundary function (Figure A3).

The homology group, Hp(K) = Zp(K)=Bp(K). In other
words, pth homology group consists of p-cycles that
are not boundaries of the Cp+ 1 group.

With geometrical meanings, being a p-cycle means
that the object forms the envelope of a p-dimensional
space. Meanwhile, not being p-boundary means that this
p-dimensional interior does not belong to the underlying
space. This supports the idea that homology express
information about the p-dimensional holes. 1D holes are
described by H1(K) and can be seen as circular holes. 2D
holes are cavities, etc. Nevertheless, H0(K) makes an
exception because it encodes information about con-
nected components in the simplicial complex K.

The Betti number is a topological invariant, and it
represents the number of p-dimensional homology
class in the simplicial complex K. It is denoted as
bp = rank(Hp).

Persistence homology

It is possible to extract homology classes for each homology
dimension from H0 to Hp for a p-dimensional simplicial
complex. Considering homology groups and classes at a sin-
gle state will not provide a lot of information about the
topological features of data. That is why it is necessary to
use what is called persistence homology. To do so, it is
needed to consider the sequence of chain complexes among
the filtrations.

http://math.uchicago.edu/may/REU2017/REUPapers/Zhang,yujie.pdf
http://math.uchicago.edu/may/REU2017/REUPapers/Zhang,yujie.pdf
http://math.uchicago.edu/may/REU2017/REUPapers/Zhang,yujie.pdf


Fj
p : Cj

p ! Cj + 1
p with Cj

p = Cp(X j) is the filtration
mapping, this is the direct mapping of the filtration
inclusion. The composition of several homomorphisms
is denoted Fi, j

p : Cp(X i)! Cp(X j).
∂j

p : Cj
p ! C

j
p + 1 is the boundary mapping.

The two-dimensional diagram shows the mapping
for each filtration by the boundary map.40 This repre-
sentation will be helpful to understand the homologies
persistence:

The persistence homology consists of catching the
moment; the precise value of the filtration parameter e
when a homology class appears and disappears. These
moments are called births and deaths.

Let i, j 2 N i\j,
Figure A4 shows the [c] homology class be born at

index i and die at index j.
Following the filtration index, births and deaths can

be considered as index or equal to the value of the

Figure A1. Simplicial complex computation. Only (3) is a valid Simplicial complex.

Figure A2. The Vietoris–Rips complex from a data point cloud.

Figure A3. Boundary mapping.



filtration parameter. Both are related with a bijective
morphism, so this does not change the result.

The difference Death� Birth is called persistence.
Persistence is always positive as DeathøBirth.
Sometime, persistence is also denoted lifetime because
it refers to the delta between birth and death.

Persistence representation. Once the simplicial complexes
have been constructed, invariants or homology groups
for dataset can be identified. Then, we can use the con-
cept of persistent homology to encode the evolution of
the homology (or topology) of the classes of nested
spaces. The goal is to adapt the algorithm to keep track
of a homology basis and pairs positive simplices (birth
of a new homological class) to negative simplices (death
of an existing homology class).

Persistence diagrams. The persistence diagram is a two-
dimensional scatter chart with homology class birth as x-
axis and deaths as y-axis. The birth value is always infer-
ior to death, this implies that all points are situated above
the y = x function. All homology classes are represented
on the same graph. Dealing with two-dimensional data
implies to represented homology of dimensions 0 and 1.

Figure A5 shows the homology persistence of the
circle point cloud. Every time, H0 homology is born at
0 index, that is why H0 point is on the y = 0 axis. H0

homology deaths correspond to the geometric pairwise
distance between point in the dataset. The most impor-
tant information that can be extracted is the H1 class
represented by the left and top points in the diagram.
This means that only one topological one-dimensional

hole is contained in the dataset. This result is right
comparing to the topology theory. In fact, an ellipse in
a two-dimensional space is considered as a one-
dimensional homology class.

Persistence images. The persistence images are com-
puted by discretization on the persistence diagram
space. This representation allows to manipulate the
same shape image rather than different shape dia-
grams. The discrete space image is not operable directly
because it does not describe well several points close to
each other. To improve the representation, a gaussian
kernel convolution41,42 is always used. This convolu-
tion is based on a Gaussian distribution defined by its
mean (ux, uy) and its variance (s2) in the formula:

gu x, yð Þ=
1

2ps
exp �

x� uxð Þ2 + y� uy

� �2

2s2

 !
ðA1Þ

with (x, y) the position of the homology in the
persistence-death space.

Figure A6 shows a simple example of the discretiza-
tion (b) and the effect of the gaussian convolution (c).
The larger s is, the larger will be the spot for each
homology in the image.

To generate persistence image, it is necessary to split
the persistence diagram into each homology dimension.
Therefore, there are two different persistence images
for two-dimensional data. In fact, the first image corre-
sponds to H0 homology group, and the second one is
H2 persistence image (Figure A7).

Figure A4. Birth and death of [c].



Figure A5. Persistence diagram computed with the Vietoris–Rips filtration on perfect circle point cloud (two dimensional).

Figure A6. (a) Persistence diagram. (b) Persistence image before convolution. (c) Persistence image after convolution.

Figure A7. Persistence images from the circle point cloud.
Right: Persistence image of H0 homology persistence. Left: Persistence image of H1 homology persistence.




