
HAL Id: hal-04565984
https://hal.science/hal-04565984

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

End-to-End Traffic Flow Rate Estimation From
Compressed Video Streams

Benjamin Deguerre, Clement Chatelain, Gilles Gasso

To cite this version:
Benjamin Deguerre, Clement Chatelain, Gilles Gasso. End-to-End Traffic Flow Rate Estimation From
Compressed Video Streams. IEEE Transactions on Intelligent Transportation Systems, 2024, pp.1-11.
�10.1109/TITS.2024.3367414�. �hal-04565984�

https://hal.science/hal-04565984
https://hal.archives-ouvertes.fr

1

End-to-end traffic flow rate estimation from MPEG4
part-2 compressed video streams

Benjamin Deguerre, Clement Chatelain, Gilles Gasso

Abstract—Automatic traffic surveillance usually relies on the
estimation of traffic flow parameters through either dedicated
sensors or the processing of road surveillance cameras. How-
ever, dedicated sensors are expensive to deploy and maintain.
Moreover, available video processing algorithms usually require a
complex multi-step pipeline, unsuited for large scale deployment.
Herein, we address the problem of automatically estimating the
flow rate (number of vehicles/unit of time) from surveillance
cameras at low computation cost. To do so, we rely on end-to-end
deep architectures applied to compressed MPEG4 part-2 video
streams issued from road surveillance cameras. By leveraging the
approximate flow representation induced by the compression, we
heavily reduce the computation and memory requirements. We
propose three end-to-end deep architectures using this coarse
pixel flow representation as input. We also release two datasets,
one based on synthetic videos and one collected on industrial
tunnel cameras. By training the deep models on the newly
introduced datasets, we evidence the effectiveness of predicting
the flow rate directly from MPEG4 part-2 compressed video
streams. We demonstrate an improved accuracy in comparison
with a more classical RGB-based architecture and show an
impressive speed up of ×2065 at prediction time.

Index Terms—MPEG4-part2, Deep Learning, Compressed
video, Motion Vectors.

I. INTRODUCTION

Traffic management and surveillance systems are key com-
ponents to ensure the safety of road users. Such systems
usually rely on a few fundamental traffic parameters (flow
rate, density, velocity, etc.) to produce an overview of the5

road traffic [1]. Usually, these traffic parameters are acquired
or estimated using induction loops. Induction loops are elec-
tromagnetic sensors embedded in roads that activate when
a vehicle passes. Such sensors allow for a microscopic (per
vehicle) analysis of the flow of vehicles and therefore provide10

a fine-grained analysis of the traffic flow in real-time. However,
as they are recessed in the road, they are expensive to deploy
and maintain: for each installation/maintenance operation, one
needs to dig-in the road to access them. Because of these
costs, induction loops are deployed at strategic areas on the15

road network, leaving large road sections without direct flow
analysis.

While induction loops are scarcely deployed, cameras are
extensively used for safety reasons: operators need to see
the road in case of incidents (accidents, congestion, etc.).20

Therefore, the exploitation of these cameras for the estimation
of traffic flow parameters would prove beneficial, allowing to
cover a larger portion of roads while limiting additional de-
ployment costs. With this in mind, many works have leveraged
the recorded RGB videos to provide with real-time traffic flow25

estimation. Early approaches (e.g. [2], [3], [4]) mainly rely on

handcrafted features and complex processings. Such methods
are not suitable for large scale deployment as they usually need
to be calibrated for each camera. More recently, thanks to the
NVIDIA AI CITY challenge [5], [6], [7], [8] deep learning30

based methods have emerged (e.g. [9], [10], [11]). However,
as the challenge focuses on microscopic traffic flow estima-
tion, rather than macroscopic flow prediction, the proposed
approaches usually rely on a classical, and computationally
expensive, detect-and-track pipeline. Hence, these methods are35

also not suitable for large scale deployment.

Fig. 1. Visualization of a video stream frame alongside its compressed
representation. From left to right are the original RGB frame, the residual
image and the Motion Vector (MV) representation. Only the moving vehicles
generate information to be compressed. Note that motion vectors point in the
opposite direction of the vehicles flow as they refer to previous frames.

Traffic cameras, and more generally surveillance cameras,
have the peculiarity that they record a fixed background,
with only the objects of interest moving on screen. As video
compression algorithms usually only encode differences be-40

tween images, the compressed representation appears relevant
for flow prediction as it extracts the moving objects per
design (c.f. Figure 1). Therefore, many works (e.g. [12], [13],
[14]) have tried to leverage the compressed video data to
estimate various flow parameters. Still, these methods heavily45

rely on handcrafted features such as texture or displacement
information, limiting de facto their large scale deployment.
Overall, the lack of fully learned methods stems from the
fact that large datasets for traffic flow analysis and estimation
are scarce. Without access to induction loops, the annotation50

of such dataset requires to detect and track each vehicle
throughout the video frames, and to extrapolate the traffic flow
parameters from visual cues, such as lane marking. Hence,
annotating hours of traffic videos reveals a daunting task.

In this work, we propose a new method for estimating55

the flow rate of objects moving on fixed background from

2

MPEG4 part-2 compressed videos (see Figure 2 for an il-
lustration). Especially, we get rid of the pre-defined hand-
crafted procedures and instead we introduce a deep learning
approach that allows to learn the target task in a end-to-60

end manner. Specifically, we solely rely on motion vectors
to efficiently estimate traffic flow rate through dedicated deep
models. As learning deep architectures requires large amounts
of labelled data, we introduce two new datasets: the Moving
Digits (synthetic data) and the Urban Traffic Camera (UTCam)65

dataset (onsite data). Extensive evaluations on these datasets
demonstrate impressive speed-up gains while improving the
accuracy when compared with a classical detection-tracking-
estimation model. The contributions of the paper can be
summarized as follows:70

• We cast the traffic flow rate estimation problem as a
regression problem using the compressed MPEG4 part-2
videos as input.

• Deep yet lightweight and efficient architecture are pro-
posed to directly handle these compressed data.75

• We introduce two datasets, Moving Digits, based on
generated videos1, and UTCam, composed of 58 hours of
videos recordings from multiple tunnel cameras spanning
over two days2.

The remainder of the article is divided as follows. We review80

related works in section II. We formulate the problem and
detail the proposed methods in section III. We introduce the
new datasets in section IV. And, in section V we detail the
experiments and results.

-

Residual

MV = (-10,12)

16

16

Reference Frame Current Frame

Best Match

Fig. 2. The MPEG4 part-2 compression algorithm is based on block-wise
motion compensation [15]. It introduces two main compression artifacts:
Motion Vectors (MVs) and residuals. MVs encode the displacement of each
block in the current frame relative to its best match in the reference frame5.
Residuals are the difference information between two matched blocks. As
shown, MVs are vectors of size 2 while a residual block is of size 16 x 16
pixels6.

1The code for the dataset generation is available at the following repository.
2The dataset can be downloaded at the following link.

II. RELATED WORKS85

Available methods for traffic flow estimation can be divided
into two main groups: tracking-based and feature-based meth-
ods. While the former bases its estimation on the computa-
tion of vehicles tracks, the latter directly estimates the flow
parameters from salient features. Hereafter, we describe both90

categories. Note that, we restrict the reviews to video-based
methods, knowing that multiple other ways to predict traffic
flow parameters exist (GPS data [16][17], traffic sensor data
[18] [19], etc.). Such methods are out of our scope.

A. Tracking-based estimation95

In tracking-based estimation each vehicle is detected and
tracked and then, the flow parameters can be naturally esti-
mated.

Early methods are based on hand-crafted pipeline to carry
the tracking and estimation. They are aimed towards the100

surveillance of roads from Unmanned Aerial Vehicles (UAVs)
[20], [21] or from high point of views [4]. This set-up has
the main advantage to avoid vehicles occlusions thanks to the
position of the camera. For instance, in [20] the authors carry
vehicles counting through a multi-step procedure based on Shi-105

Tomasi features [22], a Kanade-Lucas-Tomasi (KLT) feature
tracker [23], [24] and clustering. [21] relies on Haar cascade,
a classification network and a KLT tracker to estimate flow
density and speed. Similarly, [4] detects and tracks vehicles
from high view points by relying on a Lucas-Kanade (LK)110

tracker [23]. Few works have also tackled the flow estimation
problem in the context of pedestrian surveillance. For instance,
[25] carries foreground segmentation and use optical flow
information to count the pedestrians crossing a predefined line.

Recently, newer methods based on deep learning have115

emerged [9], [10], [11], [26], [27], [28], [29], [30], [31].
However, due to the scarcity of data, they are mostly related to
the yearly NVIDIA AI city challenge [5], [6], [7], [8]. As the
challenge evaluation is based on vehicle’s microscopic velocity
estimation, most of these methods hinge on closely related120

steps. They apply the same global scheme of a deep detector
followed by multi-object tracking, 2D to 3D projection and
flow parameters estimation. Mainly, these methods differ in
few steps in the processing pipeline. For instance, the detection
network is either: Faster R-CNN [9], [27], [28], Mask R-125

CNN [26], [11], [29], [30] or YOLOs [10], [31]. The tracking
algorithm can variate: median flow [11], hungarian matching
[30] or DeepSORT [31], [27]. Also, the projection-estimation
methods can differ: areas from landmarks [9], vanishing point
estimation [11], [26] or intersections crossing [27], [29], [30].130

And, unrelated to the AI City Challenge, [32] uses a Faster R-
CNN to detect vehicles from an UAV and then estimates traffic
flow parameters based on manually computed lane lengths.

Finally, let mention that few research works have proposed
to detect objects using compressed videos. For instance, [33]135

extracts and clusters groups of MVs to compute handcrafted
features that are then provided to a gaussian radial basis

5Note that herein, the reference frame is always the previous frame.
6The 16 x 16 block could actually be sub-divided depending on the

compression parameters. This is not the case for this work.

https://github.com/D3lt4lph4/mpeg4_flow_estimation.git
https://zenodo.org/record/6826009

3

function network to classify the level of service (free flow,
congested, etc.). Also leveraging MVs to carry object detec-
tion, [34] adds RGB information to avoid mixing up multiple140

vehicles which can then be tracked and counted.
Overall, the tracking-based framework has been improved

in the recent years. Indeed, the NVIDIA CITY challenge [5],
[6], [7], [8] allowed the replacement of old handcrafted detec-
tors with newer learned detectors. However, even the newer145

methods still heavily rely on heuristics for the estimation of
the various flow parameters. Furthermore as they are based on
deep RGB-based image detectors, scaling up such methods
would prove computationally expensive.

B. Estimation from salient features150

Another trend of methods directly extracts salient features to
predict traffic flow parameters. A large body of such methods
is based on the processing of RGB-based inputs. For instance,
[2] and [3] lie on the usage of intensity profiles to determine
the speed of vehicles. The main idea is to segment road lanes155

with the presence or absence of vehicles and to compute the
shift between two segmentations at consecutive time steps.
Taking another approach, [35] extracts features such as edges
or textures to predict density through regression. And, relying
on the computation of a mean background image, [36] extracts160

the changes in new frames and then estimates the traffic flow
from the ratio of foreground over background pixels.

Although RGB-based methods are efficient, they do not
leverage the flow information encoded in videos by the com-
pression algorithms. In particular, the MV frames and the165

residual images, that respectively encompass flow and texture
information, can be used. For instance, [12] and [13] extract
the MVs from the video flux and filter them based on their
intensity and the texture information of the DCT coefficients.
Then, they project them from the 2D frame space into the170

3D road space to estimate the speed and density of vehicles
on the road. Also using both MV and residual information,
[14] handcrafts a multi-dimensional feature vector (based on
variables such as MV mean, standard deviation, etc.) which is
fed to Gaussian Mixture Hidden Markov Models to estimate175

the traffic state (stopped, empty, etc.). Ignoring part of the
compressed information, other methods solely rely on the MVs
to estimate the traffic flow parameters. For instance, [37] uses
the MVs for calibration of the camera (detection of the area
to process in the frame) and to estimate the mean velocity.180

[38] extracts various features (area, perimeter, shape of MV
blobs, histogram of MVs, etc.) and then estimates the number
of vehicles using a regression model. Finally, [39] leverages
the MVs to correctly position a controllable camera and to
estimate the traffic flow parameters in the RGB domain.185

As for the tracking-based methods, the estimation of traffic
flow parameters from extracted features does not scale to
large road networks because of the required manual calibration
steps.

III. PROBLEM STATEMENT AND PROPOSED SOLUTION190

Let focus on our task of interest, the estimation of the flow
rate from surveillance cameras. In particular, we address the

problem from a macroscopic perspective. We first formalize
the learning problem and then, we detail the proposed solution
as well as a baseline method.195

A. Problem formulation

We abstract from the vehicle counting to a more general
object related formulation. Let S be a set of training examples
drawn from a distribution DX×Q. The input space X ∈
(RH×W×C)∗ is the set of all possible sequences (a sequence
is denoted by the ∗ symbol) of video frames (compressed or
not) of height H , width W and with C channels. The output
space Q ∈ R+ is the set of flow rate values q, defined as
the number of objects ∆N that have crossed a given image
section during time interval ∆T . Note that we consider the
average value in case of multiple object flows. Each example
in S consists of a pair (x, q). In general, the sequence x is
of length L (in frames), over which the value q is computed.
We also define l ∈ [1, L] as the frame index of a given input
sequence. As q refers to the average number of passing objects
over the L frames, we make the assumption that each sequence
is statistically independent from the others. The aim is to build
a regression model h such that:

q = h(xL, . . . , xl, . . . , x1) + ε = h(x) + ε, (1)

where ε is the measurement error. Hereafter, we will design
h as a deep network trainable in end-to-end manner. It is
important to note that h must not require high computation and
bandwidth resources as we aim to produce a highly scalable200

solution.

Fig. 3. 3D plot representation of Motion Vectors for vehicle flux within a
tunnel. The plot shows 9 vehicles passing over 3 different lanes.

B. Proposed solution: learning from motion vectors

Equation 1 addresses the counting problem by analyzing
each frame within the targeted time interval. Naively using
the plain RGB videos (see subsection III-C) will lead to205

cumbersome deep networks not suited to a scaled deployment.
Rather, we seek to leverage the compressed video streams in

4

ConvLSTM

ConvLSTM

3D Conv

Es
tim

at
io

n
Es

tim
at

io
n

Es
tim

at
io

n

CLF

CLS

3D

2D
Conv

3D
Conv

Fig. 4. The three proposed approaches for the estimation of the flow rate through regression. (Top) the DeepMotion CLF approach, (middle) DeepMotion
CLS and (bottom) DeepMotion 3D.

order to benefit from a more compact representation as input.
The MPEG4 part-2 norm uses Residual frames and MV frames
to compress videos (see Figure 2 for a reminder of the MPEG4210

part-2 compression). Residual frames contain the difference
between video frames. Although they are sparse due to the
removal of the background, residual frames are identical to
RGB frames, both in shape and type of data (textures). As
such, using Residual frames, in lieu of RGB frames, would not215

resolve the computation and memory issues. Conversely, MV
frames contain a coarse representation of the flow of pixels
between frames. They compress the information by providing
the motion information for blocks of 16×16 pixels. Thus, MV
frames allow to comparatively reduce the dimensionality of the220

input by a factor 256. This motivates us to base our proposed
networks solely on sequences of MV frames. We now discuss
different approaches to handle sequential and spatial aspects
of the modelling.

1) Sequential modelling: We aim to devise models that can225

process MV frames to predict the associated q values. Such
processing requires to jointly analyse spatial and temporal
information. Figure 3 illustrates the spatial and temporal
context for a given sequence of MV frames. We first address
the problem through sequential modeling, decoupling spatial230

and temporal processing. As all MV frames are expected to
have similar properties, the spatial processing can be addressed
using shared 2D Convolution layers. As for the temporal pro-
cessing, such problematic is often addressed through Recurrent
Neural Networks (RNNs) [40], [41]. To account for spatial235

information, we consider recurrent network with ConvLSTM
layers [42]. Therefore, the first proposed architecture is based
on the combination of shared 2D convolutions and ConvL-
STM. We call this network DeepMotion CLF (DM CLF) for
DeepMotion ConvLstm Frame. The overall pipeline is shown240

in Figure 4, top panel.
2) Sequential modeling through coarse spatiotemporal clus-

tering: DM CLF architecture may face the issue of modelling
a long temporal dependency as the input sequence typically
covers 20 seconds (about 500 frames). Moreover, RNN-based245

networks for long sequences do not allow to properly lever-
age the parallelization capabilities of the GPU. In order to
circumvent these problems, we propose to process the input
data second by second rather than frame by frame. By doing
so, the ConvLSTM layer has fewer time steps to process,250

consequently limiting the effects of both lack of GPU par-
allelization and long-term dependencies. For this approach we
keep the ConvLSTM layer for temporal processing. However,
as the unit component is now formed of multiple consecutive
frames (25 in our case), we replace the 2D convolutions255

by 3D convolutions. The resulting architecture is denoted
as DeepMotion CLS (DM CLS) for DeepMotion ConvLstm
Second. The model is detailed in Figure 4, middle panel.

3) Full spatiotemporal modeling: The third architecture
considers the input sequence x as a whole and process the L260

frames altogether through stacked 3D convolutions. As such,
this architecture can be seen as the limit case of DM CLS
where the frames grouping is carried over 20 seconds. Such
approach maximizes the use of the GPU by fully leveraging
its parallelization capabilities. We name this approach Deep-265

Motion 3D (DM 3D). It is detailed in Figure 4, bottom panel.
To train the proposed networks, we want to minimize large

prediction errors which could raise false alarms in surveillance
systems. Therefore, we choose to use the Mean Squared Error
(MSE) so as to more strongly penalize large errors:

MSE =
1

n

n∑
i=1

(qi − q̂i)2, (2)

5

where n is the number of sample in the training batch and qi
and q̂i are respectively the annotated and predicted q values.

C. RGB Baseline: Detect and Track

We design a baseline RGB method that will serve as refer-270

ence. It is based on the classical detection-tracking-estimation
pipeline. In such case, the regression model h consists in a
three-step pipeline: 1) process each frame for detection, 2)
generate tracks and 3) count the number of valid tracks to
estimate q.275

For detection, as the sought model is intended to be fast and
to have low memory consumption we select the well known
SSD detector [43] that trades off performances and speed.

Regarding the tracking system, various solutions exist, the
most renown being Sort [44] (a combination of a Kalman Filter280

[45] for object displacement estimation and the hungarian
algorithm [46] for object association between frames) and its
recent deep variant DeepSORT [47]. Because the model is
to be deployed on cameras that may have different setups
(angle, distance to road, etc.), we choose to solely rely on285

the hungarian algorithm, with euclidean distance, so as to
minimize the required manual calibrations.

Finally, for the estimation we manually set a virtual induc-
tion loop and count the number of detected tracks crossing
the loop to estimate q. The overall procedure is detailed in290

Figure 5.

Calibration CountingDetection Tracking

Fig. 5. Illustration of the RGB detect-and-track baseline method. First, the
camera is manually calibrated by drawing a reference line (black line on
the left image). Then, each frame is processed by the detector, leading to
tracks computed using the hungarian algorithm. Finally, the tracks are used
to compute the flow rate.

IV. DATASETS

To address the problem of traffic flow estimation we con-
stitute and release both a synthetic and a real world datasets.
The latter is constructed composed of collected video record-295

ings and induction loop readings. Below, we introduce both
datasets: Moving Digits and Urban Tunnel Cameras (UTCam).
The characteristics of each dataset are summarized in Table I.

A. A synthetic dataset: Moving Digits

To evaluate the proposed networks in various scenarios that300

will mimic real life conditions of road tunnel recordings,
we design a synthetic dataset with controllable features. In
particular, we target the two following issues: change of
camera angle and change of number of lanes.

Time

Orientation Multi Lane

Fig. 6. Examples of simulated frames by our Moving Digits generator. The
frames are shown in chronological order on each column. The first two
columns show digits moving with different orientations. The last column
illustrates digits moving on two separate flows. Same figures with different
styles can follow each other, similar to cars of the same brand/colour in real
life.

Moving Digits dataset is based on MNIST [48]. It is com-305

posed of randomly selected digits crossing a black screen in a
given direction. We build a generator so as to control various
parameters during generation. These parameters include:
• coordinates on the screen of the start and exit points

(orientation),310

• a scale factor (of the object size),
• the speed (number of frames for object to go from the

starting point to the exit point),
• the maximum number of digits in the stream,
• the generation frequency ratio (probability of a new object315

being generated).
We generate multiple datasets covering the two mentioned
issues (camera orientation and number of lanes). For the
camera orientation, we generate datasets with a flow of digits
that always cross the center of the video frames. We consider320

the following angle values {0, 45, 90, 135, 180, 225, 270,
315}, w.r.t the abscissa, 0° being a horizontal flux from left to
right. Flows ending in the top of the frames (45°, 90°, 135°)
can be considered to mimic tunnel cameras looking at the rear
of vehicles (”Going”), the flows ending at the bottom (225°,325

270°, 315°) mimic cameras looking at the front of vehicles
(”Coming”) and the remaining orientations (0°, 180°) are in-
between position neither ”coming” nor ”going”. Finally, we
generate videos with two flows (resp. above and below the
horizontal axis) for the angle fixed at 0°. For all those setups,330

we set the generation frequency ratio to 0.01, the maximum
number of digits to 20 and the speed to 120 frames. MPEG4
part-2 encoded generated videos are 20 seconds long, at a
frame rate of 25 FPS and 200x200 pixels in width and height.
For each explored parameter, we simulate three sets (train,335

6

TABLE I
SUMMARY OF THE SPECIFICITIES OF EACH DATASET

Number of datapoints Number of configurations Video
Dataset Size Duration FPS Overlap

Moving Digits 17,000 per configuration 9 (8 orientations & 1 multi-flow) 200x200 20s 25 NA
UTCam ≈ 10, 000 5 cameras 352x576 21s 25 1s

(a) G13 (b) G24 (c) G33 (d) C12 (e) C24

Fig. 7. Snapshots of the recorded cameras. Each camera is identified by a tag (G stands for Going and C stands for Coming). The index indicates the number
of lanes. Black patches are used to anonymize the cameras.

validation and test) with respectively 10,000, 2,000 and 5,000
videos. Example of generated frames are shown in Figure 6.
Note that, we apply random dilation and erosion onto the digits
throughout their displacement to add some noise and avoid a
too simplistic scenario.340

B. Real world Data

Annotating videos with flow information by hand is a
complex task. We couple videos from Paris’ tunnel roads
with induction loop measurements to provide pairs of samples
(xi, qi). Details of the annotation process are provided in the345

appendices, section A. The video recordings were carried over
2 days at various hours over 5 cameras. Twelve hours of
videos were recorded per camera for a total of 58 hours (two
hours were removed because of roadworks). This amounts to
about 10000 datapoints. The resolution of the cameras is of350

352x576 pixels. Each sample covers 21 seconds of recording,
with an overlap (about 1 second) with previous and subsequent
datapoints. For each of the datapoint, we collect the associated
flow rate q value, computed over 20 seconds non overlapping
window, as well as the RGB, MV and residual frames7.355

Out of the five recorded cameras, three look at the back
of the cars and two look at them approaching. We identify
the two cameras looking at the vehicles approaching as C1-2
(Coming 1-2) and the three cameras looking at the rear of the
vehicles as G1-3 (Going 1-3). As the number of lanes are not360

identical between the cameras, they are indicated as indexes
to the camera IDs (see Table II). Finally, one camera (C12) is

7The residuals were not directly extracted from the video flux and are in
the RGB space, not in their frequency representation.

TABLE II
DETAILS FOR EACH OF THE AVAILABLE CAMERAS

Orientation
Camera ID Coming In Going Number of lanes Is outside

G13 X 3
G24 X 4
G33 X 3
C12 X 2 Yes
C24 X 4

at the entry of a tunnel and is therefore subject to night and
day illuminations. The specificities of the cameras are detailed
in Table II. Snapshots of the cameras are shown in Figure 7.365

For each of the five cameras, G13, G24 and G33, C12, C24,
we use the first day for training and validation (respectively
3,982 and 995 datapoints, or about 800 and 200 per camera)
and the second day for testing (5,233 datapoints in total, or
about 1,050 datapoint per camera).370

V. EXPERIMENTAL EVALUATIONS

Experiments are conducted to assess the accuracy of the
proposed deep architectures. First we investigate the strengths
and limitations of the proposed methods in a controlled
environment using the synthetic Moving Digit dataset. Then,375

we evaluate these deep models on the UTCam dataset and the
results are compared with the baseline RGB detection method.

A. Networks architectures

The tested networks follow the three architectures proposed
in subsection III-B (DeepMotion CLF, DeepMotion CLS,380

DeepMotion 3D). Note that because the two datasets do not

7

have the same frame resolution, we use slightly different
versions of the networks to fit the varying input frames
dimensionality. Mainly, filters are added to the networks used
for the UTCam dataset to account for the increase in the frame385

dimensions. All the architectures are available in the provided
github repository.

For the DeepMotion CLF architecture, we use two 2D con-
volutions with stride 2 so as to reduce the spatial dimension of
the input data. Then, we apply a ConvLSTM layer and finally390

use two consecutive dense layers. For the DeepMotion CLS
network, we use two 3D convolutions, with stride 2. Further,
we add an average pooling layer to reduce the dimensionality
on the time axis. We also apply the ConvLSTM layer followed
by dense layers. Finally, for the DeepMotion 3D architecture,395

we use two 3D convolutions followed by an average pooling
layer and directly use two dense layers for prediction.

For the baseline RGB-based model, we use a SSD [43] net-
work trained on a detection dataset extracted from the tunnel’s
cameras. The threshold for the selection of the detected boxes400

is set to 0.5. The virtual induction loops are manually set for
each camera.

B. Training and evaluation details

The networks are trained on a single NVIDIA GTX 1080
GPU. We use an Adam optimizer, no weight decay is applied405

and the batch size is set to 32.
Accuracy of the networks is evaluated based on the Mean

Absolute Error (MAE):

MAE =
1

n

N∑
i=0

|yi − ŷi|, (3)

as well as on the correlation coefficient R between the
predicted and real values:

RY,Ŷ =
E[(Y − µY)(Ŷ − µŶ)]

σY σŶ
. (4)

These two metrics account for both the overall precision of the
networks (MAE) as well as their capacity to follow the traffic
trend (R). For each experiment, the networks are trained five
times and the results are averaged.410

Regarding inference speed, we evaluate the number of
video streams that can be processed by a network in parallel
(RealTime Stream Processing [RTSP]). We set the batch size to
8 and run 1000 predictions. As the proposed architectures are
extremely fast due to their reduced size when compared with415

classical RGB-based networks, we pre-load the datapoints into
memory to avoid any data input bottleneck. The final RTSP
value is the average over the total number of predictions. Note
that further optimisations brought by some frameworks (e.g.
NVIDIA’s DeepStream) could be used to increase the speed of420

computation. However, as such frameworks do not cope well
with compressed inputs, we did not use them for fairness of
comparison.

C. Evaluation on the synthetic dataset

We aim to evaluate the generalization capabilities of the425

proposed architectures w.r.t the flow orientation and number

of flows. We consider orientation angles in [0°-315°] and the
number of flows in {1, 2}).

1) Accuracy and speed evaluation: Obtained results are
reported in Table III. They show high performance level for all430

models. The MAEs range from 0.17 to 0.21 with a correlation
R of 0.99. The best architecture being DM CLS at 0.17 of
MAE. The three architectures have stable accuracies regardless
of the number of flows and the orientation. This shows that
the networks can be used seamlessly in different settings.435

Regarding speed, we see that DM CLF is the slowest net-
work with 811 streams processed in realtime. Such result was
to be expected due to the sequential nature of the architecture,
preventing to fully leverage the parallelization capabilities of
the GPU. The fastest model is DM 3D that only uses 3D440

convolutions and exploits fully the parallelization capabilities
of the GPU.

Overall, the results show small error with impressive speed,
demonstrating the efficiency of the proposed approach.

TABLE III
ACCURACY AND SPEED RESULTS OF THE VARIOUS PROPOSED

ARCHITECTURES ON THE MOVING DIGITS DATASET. THE ”ORIENTATION”
AND ”FLOW NUMBER” COLUMS RESPECTIVELY DETAIL THE ACCURACY
WHEN ONLY VARYING THE ORIENTATION AND THE NUMBER OF FLOWS.
THE ”AVG RESULTS” COLUMN SHOWS THE OVERALL RESULTS. RTSP
STANDS FOR REALTIME STREAM PROCESSING (I.E. THE NUMBER OF

STREAMS THAT CAN BE PROCESSED IN PARALLEL IN REALTIME).

Metric Avg Results Orientation Flow number RTSP

DM CLF MAE 0.20± 0.02 0.20± 0.02 0.21± 0.03 811R 0.99± 0.00 0.99± 0.00 0.99± 0.00

DM CLS MAE 0.17± 0.01 0.17± 0.01 0.14± 0.01 11,637R 0.99± 0.00 0.99± 0.00 0.99± 0.00

DM 3D MAE 0.19± 0.02 0.19± 0.02 0.17± 0.01 32,382
R 0.99± 0.00 0.99± 0.00 0.99± 0.00

2) Prediction towards unseen configurations: We now aim445

to study the generalisation capacities of the networks when
the orientation or the number of flows varies.

First, we train each network in a leave one out settings for
each orientation (i.e. training on orientation angles from 0° to
270° and testing on 315°, training on 45° to 315° and testing450

on 0°, etc.) and report the results in Table IV. The results
show that the DM CLF and DM CLS architectures give the
best performances with a MAE of 0.53 and 0.50 in average
respectively. The least performing architecture is DM 3D with
an averaged MAE of 0.85 and a standard deviation of 0.44.455

The three architectures well capture the trend of flow rate as
the correlation coefficients are high.

Figure 8 further illustrates the obtained predictions. The first
graph shows typical predictions when tested on a configuration
similar to the training set. The second graph shows the typical460

results for the DeepMotion CLF and DeepMotion CLS in the
leave-one-out setting. Finally, the last graph shows the worst
prediction of the DeepMotion 3D architecture in the leave-
one-out setting. In the latter case, the network overestimates
the actual flow rate values, hence the slightly higher MAE.465

Results relative to varying number of flows at training and
testing stage are reported in Table V. Opposite to varying
orientations, the trained networks fail to properly generalize.
Overall, the MAE ranges from 1.41 to 3.21, which strongly
differs from the results from Table IV. Such behavior was to be470

https://github.com/D3lt4lph4/mpeg4_flow_estimation/blob/main/flow_estimation/networks/networks.py

8

TABLE IV
PREDICTION PERFORMANCES WHEN TRAINING ON ALL ORIENTATIONS BUT ONE ON MOVING DIGITS DATASET. EACH COLUMN IS THE ORIENTATION

LEFT OUT AND TESTED UPON. BEST RESULTS ACCORDING TO EACH ORIENTATION ANGLE ARE MARKED IN BOLD FONT.

Metric Average All but one
0° 45° 90° 135° 180° 225° 270° 315°

DM CLF MAE 0.53± 0.19 0.42± 0.06 0.51± 0.13 0.52± 0.07 0.52± 0.20 0.90± 0.21 0.45± 0.07 0.43± 0.09 0.45± 0.05
R 0.96± 0.01 0.96± 0.01 0.96± 0.01 0.95± 0.01 0.96± 0.01 0.96± 0.01 0.97± 0.01 0.97± 0.01 0.96± 0.00

DM CLS MAE 0.50± 0.16 0.59± 0.08 0.37± 0.05 0.51± 0.03 0.40± 0.02 0.81± 0.17 0.37± 0.04 0.53± 0.09 0.45± 0.06
R 0.97± 0.00 0.96± 0.00 0.97± 0.00 0.96± 0.00 0.97± 0.00 0.96± 0.00 0.97± 0.00 0.97± 0.00 0.97± 0.00

DM 3D MAE 0.85± 0.44 0.93± 0.05 1.15± 0.14 0.36± 0.07 0.58± 0.07 1.61± 0.30 0.73± 0.13 0.30± 0.03 1.11± 0.11
R 0.97± 0.00 0.98± 0.00 0.97± 0.00 0.97± 0.00 0.93± 0.01 0.97± 0.00 0.97± 0.00 0.98± 0.00 0.97± 0.00

(a) (b) (c)
Fig. 8. Prediction plots when training and testing on similar orientation (a) and in a leave-one-out setting (b) and (c). (a) a typical result when training and
testing on the same orientation angle. (b) typical predictions by DeepMotion CLF and DeepMotion CLS architecture when trained in a leave-one-orientation-out
manner. And, (c) is the worst result for the DeepMotion 3D in the leave-one-out setting on the orientations. Experiment was implemented on Moving Digits.

expected. As the networks are not forced to learn to detect the
objects, adding or removing object flows is likely to change
too drastically the inputs’ distribution.

Overall these results empirically demonstrate that the pro-
posed networks properly generalize towards unseen flow475

orientations. However, the current formulation shows some
limitations in the case of varying number of flows.

TABLE V
PREDICTION ACCURACY WHEN TRAINING AND TESTING ON GENERATED
DATASETS WITH VARYING NUMBER OF FLOWS (MOVING DIGITS). WHEN

TESTING IS DONE ON 1 FLOW, TRAINING WAS DONE ON 2 (AND
CONVERSELY). THE BEST ACCURACY FOR EACH COLUMN IS IN BOLD.

Metric Average Number of flows (test
1 flow 2 flows

DM CLF MAE 2.26± 0.29 1.86± 0.29 2.66± 0.43
R 0.36± 0.03 0.44± 0.12 0.27± 0.20

DM CLS MAE 3.21± 0.21 3.48± 0.26 2.93± 0.45
R 0.68± 0.04 0.60± 0.19 0.75± 0.16

DM 3D MAE 1.41± 0.07 1.26± 0.22 1.55± 0.24
R 0.96± 0.00 0.97± 0.00 0.95± 0.01

D. Evaluation on tunnel roads dataset
Hereafter, achieved performances by the proposed deep

networks on UTCam dataset are reported and compared to480

the baseline RGB-based model.
1) Accuracy and speed evaluation: In the first experiment,

compared models are trained and evaluated on samples issued
from all cameras. Table VI summarizes the results.

The DM CLS architecture yields the best performances with485

0.69 of MAE when compared with the RGB baseline (0.80 of

MAE). The two other architectures, DM CLF and DM 3D,
almost match up with the baseline.

Nevertheless, the proposed networks are much more effi-
cient in term of memory and speed of processing. In particular,490

where the RGB baseline saturates all the VRAM of the GPU,
the DeepMotion CLS and DeepMotion 3D architectures take
up 10× less space. Moreover, while the RGB architecture
can barely process three cameras in parallel with a GPU, the
DeepMotion CLS network can handle 5,699 streams in parallel495

and the DeepMotion 3D network, 10,604, which amounts to
a speed up of ×2065 and ×3699 respectively.

Overall, the results show that learning deep architectures
solely based on MVs leads to competitive (or even better)
accuracy and a drastic reduction in computation and memory500

requirements.

TABLE VI
PREDICTION ACCURACY AND INFERENCE SPEED WHEN TRAINING ON ALL

CAMERAS OF THE UTCAM DATASET. MIB STANDS FOR MEBIBYTE AND
RTSP FOR REALTIME STREAM PROCESSING.

Network Metric Results # of weights GPU (MiB) RTSP

RGB baseline MAE 0.80 26.29 M 7,805 2.76R 0.9

DM CLF MAE 0.81± 0.03 0.08 M 2,753 667R 0.89± 0.01

DM CLS MAE 0.69± 0.02 0.46 M 675 5,700R 0.93± 0.00

DM 3D MAE 0.83± 0.02 0.36 M 675 10,210R 0.89± 0.01

2) Generalisation analysis: We investigate the generaliza-
tion abilities of the proposed networks. To do so, experiments

9

Fig. 9. Prediction plots over time for cameras G24 and G33 (first and second column) with the DeepMotion 3D network on UTCam. The top panels show
the predictions for the two cameras when trained and tested on themselves (day 1 for training and day 2 for testing). The second line shows the results in the
leave one out setting (similar camera orientation).

TABLE VII
MEAN ABSOLUTE ERRORS AND CORRELATION COEFFICIENTS (BETWEEN REAL AND PREDICTED VALUES) WHEN TRAINING ON ALL THE CAMERAS BUT
ONE AND PREDICTING THE FLOW RATE ON THE CAMERA LEFT OUT. THE COLUMNS ARE THE ERRORS FOR THE LEFT OUT CAMERA. BEST RESULTS ARE

IN BOLD.

Metric All but one All but one (Coming) All but one (Going)
G13 G24 G33 C12 C24 G13 G24 G33 C12 C24

DM CLF MAE 1.69± 0.49 1.50± 0.27 0.88± 0.21 3.64± 0.60 2.65± 0.55 2.87± 0.36 1.20± 0.10 1.70± 0.31 2.60± 0.47 4.46± 0.93
R 0.78± 0.03 0.54± 0.09 0.76± 0.11 0.65± 0.13 0.54± 0.11 0.67± 0.06 0.42± 0.09 0.66± 0.08 0.64± 0.13 0.34± 0.14

DM CLS MAE 2.61± 0.33 1.34± 0.15 1.52± 0.15 3.84± 0.38 1.90± 0.21 3.27± 0.26 1.43± 0.07 1.48± 0.15 5.66± 1.13 3.20± 0.38
R 0.82± 0.02 0.35± 0.13 0.85± 0.01 0.72± 0.05 0.53± 0.04 0.77± 0.08 0.08± 0.11 0.83± 0.04 0.48± 0.35 0.47± 0.12

DM 3D MAE 2.48± 0.07 1.65± 0.38 1.45± 0.16 3.19± 0.34 2.81± 0.46 3.60± 0.21 2.15± 0.55 1.56± 0.28 4.79± 0.39 3.96± 0.47
R 0.75± 0.03 0.70± 0.04 0.82± 0.01 0.66± 0.02 0.59± 0.04 0.71± 0.03 0.78± 0.02 0.82± 0.04 0.43± 0.07 0.40± 0.08

in the leave one camera out setting are performed. Two
types of experiments are implemented: (i) either all cameras,505

regardless of their orientation, are considered, or (ii), the
cameras are grouped by orientation (coming or going). The
results under these two settings are in Table VII.

Regarding setting when all the cameras are considered,
regardless of the orientation, in a leave-one-out fashion, the re-510

sults show that the proposed models do not properly generalize
to the unseen camera. However, we can notice that the cameras
G24 and G33 seem to provide with the best results overall.
This can be explained by the fact that these two cameras
are operating in almost similar conditions (c.f Figure 7) and515

therefore benefit from one another at prediction stage. Notice
that G24 and G33 differ in number of lanes (respectively 4
and 3), which could hinder the generalization power of the
models. Indeed, prediction in case of varying number of flows
has proven a difficult task in the Moving Digits experiment.520

We discuss the setting when the cameras are grouped by
orientation. The expectation of such experiment is to improve
the accuracy of the networks trained on data with alike
distributions (avoid differences in noise such as headlights,
etc.). As before, we observe limited prediction accuracies,525

with better results on the cameras G24 and G33. Figure 9
further details the results on camera G24 and G33. The first
line shows the prediction over time for the two cameras when
trained and tested on themselves (day 1 for training and day

2 for testing). In such setting, we observe extremely good530

predictions. The second line shows the results in the leave-one-
out setting (similar orientation, DeepMotion 3D). We can see
that predictions for camera G24 are underestimated and that
predictions for camera G33 are overestimated. However, we
can also notice that the network manages to correctly follow535

the targeted flow rate trend, with similar peaks and pits at
prediction time. Given that the cameras are alike in orientation,
such results hint towards a problem linked with the changing
number of lanes. As a lane is removed or added, the network
wrongly estimates the final flow rate value.540

Finally, comparing the two experimental settings, we can
notice that training with more cameras, even if they have
dissimilar orientations, helps improve the overall accuracy.
Such results indicate that the proposed networks should be
able to properly generalize to unseen cameras if more cameras545

were to be added to the dataset.
3) Synthesis: Looking at the results from subsubsec-

tion V-D1 DeepMotion CLS architecture provides with the best
speed vs accuracy trade-off. Indeed, it is the more accurate
model out of the three, both in terms of MAE and R, while,550

at the same time, providing with an impressive speed up of
×2065 when compared with the RGB baseline (see Table VI).

subsubsection V-D2 further confirms these results. Although
all three models have limited generalisation capabilities to-
wards unseen configurations, the DeepMotion CLS architecture555

10

clearly has the edge over the two others with respectively 4
and 6 of the best MAE and R out of 10 testing configurations
(see Table VII).

VI. CONCLUSION

We presented an end-to-end deep learning approach for the560

estimation of traffic flow rate leveraging the flow information
present in the MPEG4 part-2 compressed videos. In order to
train the proposed networks, we also introduce two datasets:
Moving Digits, composed of generated videos, and UTCam,
based on recordings from five surveillance cameras from Paris’565

tunnels. Our experiments show impressive speed gains when
compared with a classical RGB detection-tracking-estimation
method, while improving the accuracy. Moreover, the non
frame-based architectures (DeepMotion CLS and DeepMotion
3D) require little memory and hence, perfectly fit industrial570

constraints.
In future work, we plan to explore the use of part of

the residual information to provide the networks with tex-
ture information and help them better generalize to unseen
cameras. A more general direction is to extend the use of the575

compressed motion information to other vision related task. In
particular we expect large speed up gain for object detection
as the moving objects are extracted per design by the MPEG4
part-2 compression.

REFERENCES580

[1] L. Immers, S. Logghe, Traffic flow theory, Faculty of Engineering,
Department of Civil Engineering, Section Traffic and Infrastructure,
Kasteelpark Arenberg 40 (21).

[2] Y. Cho, J. Rice, Estimating velocity fields on a freeway from low-
resolution videos, IEEE Transactions on Intelligent Transportation Sys-585

tems 7 (4) (2006) 463–469. doi:10.1109/TITS.2006.883934.
[3] T. N. Schoepflin, D. J. Dailey, Algorithms for calibrating roadside

traffic cameras and estimating mean vehicle speed, in: 2007 IEEE
Intelligent Transportation Systems Conference, 2007, pp. 277–283.
doi:10.1109/ITSC.2007.4357806.590

[4] M. Bernaś, Objects detection and tracking in highly congested traffic
using compressed video sequences, in: L. Bolc, R. Tadeusiewicz, L. J.
Chmielewski, K. Wojciechowski (Eds.), Computer Vision and Graphics,
Springer Berlin Heidelberg, Berlin, Heidelberg, 2012, pp. 296–303.

[5] M. Naphade, D. C. Anastasiu, A. Sharma, V. Jagrlamudi, H. Jeon,595

K. Liu, M.-C. Chang, S. Lyu, Z. Gao, The nvidia ai city challenge,
in: Prof. SmartWorld, Santa Clara, CA, USA, 2017.

[6] M. Naphade, M.-C. Chang, A. Sharma, D. C. Anastasiu, V. Jagarlamudi,
P. Chakraborty, T. Huang, S. Wang, M.-Y. Liu, R. Chellappa, J.-N.
Hwang, S. Lyu, The 2018 nvidia ai city challenge, in: Proc. CVPR600

Workshops, 2018, pp. 53––60.
[7] M. Naphade, Z. Tang, M.-C. Chang, D. C. Anastasiu, A. Sharma,

R. Chellappa, S. Wang, P. Chakraborty, T. Huang, J.-N. Hwang, S. Lyu,
The 2019 ai city challenge, in: The IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2019, p. 452–460.605

[8] M. Naphade, S. Wang, D. C. Anastasiu, Z. Tang, M.-C. Chang, X. Yang,
L. Zheng, A. Sharma, R. Chellappa, P. Chakraborty, The 4th ai city
challenge, in: The IEEE Conference on Computer Vision and Pattern
Recognition (CVPR) Workshops, 2020, p. 2665–2674.

[9] M. Tran, T. Dinh-Duy, T. Truong, V. Ton-That, T. Do, Q. Luong,610

T. Nguyen, V. Nguyen, M. N. Do, Traffic flow analysis with multi-
ple adaptive vehicle detectors and velocity estimation with landmark-
based scanlines, in: 2018 IEEE/CVF Conference on Computer Vision
and Pattern Recognition Workshops (CVPRW), 2018, pp. 100–1007.
doi:10.1109/CVPRW.2018.00021.615

[10] Z. Tang, G. Wang, H. Xiao, A. Zheng, J.-N. Hwang, Single-camera and
inter-camera vehicle tracking and 3d speed estimation based on fusion
of visual and semantic features, in: Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition (CVPR) Workshops, 2018.

[11] H. Shi, Z. Wang, Y. Zhang, X. Wang, T. Huang, Geometry-aware traffic620

flow analysis by detection and tracking, in: 2018 IEEE/CVF Conference
on Computer Vision and Pattern Recognition Workshops (CVPRW),
2018, pp. 116–1164. doi:10.1109/CVPRW.2018.00023.

[12] X. D. Yu, Ling-Yu Duan, Qi Tian, Highway traffic information extraction
from skycam mpeg video, in: Proceedings. The IEEE 5th International625

Conference on Intelligent Transportation Systems, 2002, pp. 37–42.
doi:10.1109/ITSC.2002.1041185.

[13] X. Yu, P. Xue, L. yu Duan, Q. Tian, An algorithm to estimate mean vehi-
cle speed from mpeg skycam video, Multimedia Tools and Applications
34 (2006) 85–105.630

[14] F. Li, F. Porikli, X. Li, Traffic congestion estimation using hmm models
without vehicle tracking, in: In IEEE Intelligent Vehicle Symposium,
2004, pp. 188–193.

[15] Information technology – Coding of audio-visual objects – Part 2: Vi-
sual, Standard, International Organization for Standardization, Geneva,635

CH.
[16] P. Wang, J. Lai, Z. Huang, Q. Tan, T. Lin, Estimating traffic flow in large

road networks based on multi-source traffic data, IEEE Transactions on
Intelligent Transportation Systems 22 (9) (2021) 5672–5683. doi:
10.1109/TITS.2020.2988801.640

[17] C. Zheng, X. Fan, C. Wen, L. Chen, C. Wang, J. Li, Deepstd: Mining
spatio-temporal disturbances of multiple context factors for citywide
traffic flow prediction, IEEE Transactions on Intelligent Transportation
Systems 21 (9) (2020) 3744–3755. doi:10.1109/TITS.2019.
2932785.645

[18] A. Abadi, T. Rajabioun, P. A. Ioannou, Traffic flow prediction for road
transportation networks with limited traffic data, IEEE Transactions on
Intelligent Transportation Systems 16 (2) (2015) 653–662. doi:10.
1109/TITS.2014.2337238.

[19] C. Chen, Z. Liu, S. Wan, J. Luan, Q. Pei, Traffic flow prediction based on650

deep learning in internet of vehicles, IEEE Transactions on Intelligent
Transportation Systems 22 (6) (2021) 3776–3789. doi:10.1109/
TITS.2020.3025856.

[20] R. Ke, Z. Li, S. Kim, J. Ash, Z. Cui, Y. Wang, Real-time bidirectional
traffic flow parameter estimation from aerial videos, IEEE Transactions655

on Intelligent Transportation Systems 18 (4) (2017) 890–901. doi:
10.1109/TITS.2016.2595526.

[21] R. Ke, Z. Li, J. Tang, Z. Pan, Y. Wang, Real-time traffic flow parameter
estimation from uav video based on ensemble classifier and optical flow,
IEEE Transactions on Intelligent Transportation Systems 20 (1) (2019)660

54–64. doi:10.1109/TITS.2018.2797697.
[22] J. Shi, C. Tomasi, Good features to track, IEEE Conference on Computer

Vision and Pattern Recognition (1994) 593–600.
[23] B. D. Lucas, T. Kanade, An iterative image registration technique with an

application to stereo vision, in: Proceedings of the 7th International Joint665

Conference on Artificial Intelligence - Volume 2, IJCAI’81, Morgan
Kaufmann Publishers Inc., San Francisco, CA, USA, 1981, p. 674–679.

[24] C. Tomasi, T. Kanade, Detection and tracking of point features, Tech.
rep., International Journal of Computer Vision (1991).

[25] G.-G. Lee, B.-s. Kim, W.-Y. Kim, Automatic estimation of pedestrian670

flow, in: 2007 First ACM/IEEE International Conference on Distributed
Smart Cameras, 2007, pp. 291–296. doi:10.1109/ICDSC.2007.
4357536.

[26] A. Kumar, P. Khorramshahi, W.-A. Lin, P. Dhar, J.-C. Chen, R. Chel-
lappa, A semi-automatic 2d solution for vehicle speed estimation from675

monocular videos, in: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (CVPR) Workshops, 2018.

[27] Z. Liu, W. Zhang, X. Gao, H. Meng, X. Tan, X. Zhu, Z. Xue, X. Ye,
H. Zhang, S. Wen, E. Ding, Robust movement-specific vehicle counting
at crowded intersections, in: Proceedings of the IEEE/CVF Conference680

on Computer Vision and Pattern Recognition (CVPR) Workshops, 2020.
[28] P. Bergmann, T. Meinhardt, L. Leal-Taixé, Tracking without bells and

whistles, in: The IEEE International Conference on Computer Vision
(ICCV), 2019.

[29] L. Yu, Q. Feng, Y. Qian, W. Liu, A. G. Hauptmann, Zero-virus: Zero-685

shot vehicle route understanding system for intelligent transportation,
in: Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR) Workshops, 2020.

[30] M. Chang, C. Chiang, C. Tsai, Y. Chang, H. Chiang, Y. Wang, S. Chang,
Y. Li, M. Tsai, H. Tseng, Ai city challenge 2020 – computer vision for690

smart transportation applications, in: 2020 IEEE/CVF Conference on
Computer Vision and Pattern Recognition Workshops (CVPRW), 2020,
pp. 2638–2647. doi:10.1109/CVPRW50498.2020.00318.

[31] N. Bui, H. Yi, J. Cho, A vehicle counts by class framework using dis-
tinguished regions tracking at multiple intersections, in: Proceedings of695

http://dx.doi.org/10.1109/TITS.2006.883934
http://dx.doi.org/10.1109/ITSC.2007.4357806
http://dx.doi.org/10.1109/CVPRW.2018.00021
http://dx.doi.org/10.1109/CVPRW.2018.00023
http://dx.doi.org/10.1109/ITSC.2002.1041185
http://dx.doi.org/10.1109/TITS.2020.2988801
http://dx.doi.org/10.1109/TITS.2020.2988801
http://dx.doi.org/10.1109/TITS.2020.2988801
http://dx.doi.org/10.1109/TITS.2019.2932785
http://dx.doi.org/10.1109/TITS.2019.2932785
http://dx.doi.org/10.1109/TITS.2019.2932785
http://dx.doi.org/10.1109/TITS.2014.2337238
http://dx.doi.org/10.1109/TITS.2014.2337238
http://dx.doi.org/10.1109/TITS.2014.2337238
http://dx.doi.org/10.1109/TITS.2020.3025856
http://dx.doi.org/10.1109/TITS.2020.3025856
http://dx.doi.org/10.1109/TITS.2020.3025856
http://dx.doi.org/10.1109/TITS.2016.2595526
http://dx.doi.org/10.1109/TITS.2016.2595526
http://dx.doi.org/10.1109/TITS.2016.2595526
http://dx.doi.org/10.1109/TITS.2018.2797697
http://dx.doi.org/10.1109/ICDSC.2007.4357536
http://dx.doi.org/10.1109/ICDSC.2007.4357536
http://dx.doi.org/10.1109/ICDSC.2007.4357536
http://dx.doi.org/10.1109/CVPRW50498.2020.00318

11

the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR) Workshops, 2020.

[32] I. Brkić, M. Miler, M. Ševrović, D. Medak, An analytical framework
for accurate traffic flow parameter calculation from uav aerial videos,
Remote Sensing 12 (22). doi:10.3390/rs12223844.700

URL https://www.mdpi.com/2072-4292/12/22/3844
[33] R. Tusch, F. Pletzer, A. Krätschmer, L. Böszörmenyi, B. Rinner,

T. Mariacher, M. Harrer, Efficient level of service classification for
traffic monitoring in the compressed video domain, in: 2012 IEEE
International Conference on Multimedia and Expo, 2012, pp. 967–972.705

doi:10.1109/ICME.2012.101.
[34] C. Kas, M. Brulin, H. Nicolas, C. Maillet, Compressed domain aided

analysis of traffic surveillance videos, in: 2009 Third ACM/IEEE Inter-
national Conference on Distributed Smart Cameras (ICDSC), 2009, pp.
1–8. doi:10.1109/ICDSC.2009.5289345.710

[35] Y. Sun, Z. Liu, Z. Pan, Intersection traffic flow counting based on hybrid
regression model, in: 2019 IEEE International Conference on Signal,
Information and Data Processing (ICSIDP), 2019, pp. 1–4. doi:10.
1109/ICSIDP47821.2019.9173285.

[36] Y. Zhou, Y. Lei, S. Yang, T. Shao, D. Tian, J. Shi, A traffic flow715

estimation method based on unsupervised change detection, Multimedia
Systems (2021) 1–9.

[37] Y. H. Fu, H. Sahli, X. Fa Dong, J. Wang, A high efficient system for
traffic mean speed estimation from mpeg video, Artificial Intelligence
and Computational Intelligence, International Conference on 3 (2009)720

444–448. doi:10.1109/AICI.2009.358.
[38] Z. Wang, X. Liu, J. Feng, J. Yang, H. Xi, Compressed-domain highway

vehicle counting by spatial and temporal regression, IEEE Transactions
on Circuits and Systems for Video Technology 29 (1) (2019) 263–274.
doi:10.1109/TCSVT.2017.2761992.725

[39] K. Mbonye, F. Ferrie, Attentive visual servoing in the mpeg compressed
domain for un-calibrated motion parameter estimation of road traffic, in:
18th International Conference on Pattern Recognition (ICPR’06), Vol. 4,
2006, pp. 908–911. doi:10.1109/ICPR.2006.281.

[40] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Com-730

putation 9 (8) (1997) 1735–1780.
[41] K. Cho, B. van Merrienboer, D. Bahdanau, Y. Bengio, On the proper-

ties of neural machine translation: Encoder-decoder approaches, CoRR
abs/1409.1259. arXiv:1409.1259.
URL http://arxiv.org/abs/1409.1259735

[42] X. Shi, Z. Chen, H. Wang, D.-Y. Yeung, W.-k. Wong, W.-c. WOO,
Convolutional lstm network: A machine learning approach for
precipitation nowcasting, in: C. Cortes, N. Lawrence, D. Lee,
M. Sugiyama, R. Garnett (Eds.), Advances in Neural Information
Processing Systems, Vol. 28, Curran Associates, Inc., 2015.740

URL https://proceedings.neurips.cc/paper/2015/file/
07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf

[43] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. E. Reed, C.-Y. Fu,
A. C. Berg, Ssd: Single shot multibox detector., in: B. Leibe, J. Matas,
N. Sebe, M. Welling (Eds.), ECCV (1), Vol. 9905 of Lecture Notes in745

Computer Science, Springer, 2016, pp. 21–37.
URL http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#
LiuAESRFB16

[44] A. Bewley, Z. Ge, L. Ott, F. Ramos, B. Upcroft, Simple online and
realtime tracking, in: 2016 IEEE International Conference on Image750

Processing (ICIP), 2016, pp. 3464–3468. doi:10.1109/ICIP.
2016.7533003.

[45] R. E. Kalman, A new approach to linear filtering and prediction
problems, Journal of Basic Engineering 82 (1) (1960) 35. doi:
10.1115/1.3662552.755

URL http://dx.doi.org/10.1115/1.3662552
[46] H. W. Kuhn, B. Yaw, The hungarian method for the assignment problem,

Naval Res. Logist. Quart (1955) 83–97.
[47] N. Wojke, A. Bewley, D. Paulus, Simple online and realtime tracking

with a deep association metric, in: 2017 IEEE International Conference760

on Image Processing (ICIP), 2017, pp. 3645–3649. doi:10.1109/
ICIP.2017.8296962.

[48] Y. LeCun, C. Cortes, MNIST handwritten digit database [cited 2016-
01-14 14:24:11].
URL http://yann.lecun.com/exdb/mnist/765

APPENDIX

We discuss key points induced by the annotation process.
The collected videos are annotated using induction loop
records. Tunnel videos are recorded at about 25 FPS by onsite

coders. The traffic flow is recorded from induction loops and770

stored by Automatic Data Recording (ADR) stations in log
files at fixed intervals of 20 seconds. As both video and traffic
data come from separate sources, we need to synchronize
them so as to annotate the videos with the corresponding
traffic flow labels. However two main problems arise: the non-775

synchronization of the time clocks and inconsistencies in the
videos frame rate.

In particular, coders and ADR stations time clocks are
not synchronized, furthermore, each coder has its own clock.
Therefore, the offset between each pair of coder/ADR station780

needs to be computed. Obviously the computation of such
offset can only be done by matching the recorded flow rates
with the visual video information. Luckily, the loop detectors
compute the flow parameters for each lane, simplifying this
matching. We use the proposed RGB baseline for offset785

calibration and verify by hand the truthfulness of the obtained
offsets.

The second issue is the inconsistency of the video frame
rate. Although the theoretical frame rate is of 25 FPS, in
practice, this is not the case due to exploitation constraints790

(packet loss, etc.). Hence, when associating video recordings
with flow rate values, not only do we need to compute the
offsets between each ADR station and the associated camera,
but we also must visually check that shifts do not occur in
the stream. Such task is done in a semi-automated way using795

a script, which prompts the user for confirmation at given
intervals. This methodology possibly implies a slight shift in
the data, and therefore we choose to associate videos of 21
seconds with the recorded traffic flow measurements so as to
ensure that each video encompasses the whole measurement800

period of flow parameters. Consequently, annotations might
be noisy as more vehicles than the ones accounted for in the
measurements may be visible on screen.

https://www.mdpi.com/2072-4292/12/22/3844
https://www.mdpi.com/2072-4292/12/22/3844
https://www.mdpi.com/2072-4292/12/22/3844
http://dx.doi.org/10.3390/rs12223844
https://www.mdpi.com/2072-4292/12/22/3844
http://dx.doi.org/10.1109/ICME.2012.101
http://dx.doi.org/10.1109/ICDSC.2009.5289345
http://dx.doi.org/10.1109/ICSIDP47821.2019.9173285
http://dx.doi.org/10.1109/ICSIDP47821.2019.9173285
http://dx.doi.org/10.1109/ICSIDP47821.2019.9173285
http://dx.doi.org/10.1109/AICI.2009.358
http://dx.doi.org/10.1109/TCSVT.2017.2761992
http://dx.doi.org/10.1109/ICPR.2006.281
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
http://arxiv.org/abs/1409.1259
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/07563a3fe3bbe7e3ba84431ad9d055af-Paper.pdf
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16
http://dblp.uni-trier.de/db/conf/eccv/eccv2016-1.html#LiuAESRFB16
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1109/ICIP.2016.7533003
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1115/1.3662552
http://dx.doi.org/10.1109/ICIP.2017.8296962
http://dx.doi.org/10.1109/ICIP.2017.8296962
http://dx.doi.org/10.1109/ICIP.2017.8296962
http://yann.lecun.com/exdb/mnist/
http://yann.lecun.com/exdb/mnist/

	Introduction
	Related works
	Tracking-based estimation
	Estimation from salient features

	Problem Statement and Proposed solution
	Problem formulation
	Proposed solution: learning from motion vectors
	Sequential modelling
	Sequential modeling through coarse spatiotemporal clustering
	Full spatiotemporal modeling

	RGB Baseline: Detect and Track

	Datasets
	A synthetic dataset: Moving Digits
	Real world Data

	Experimental evaluations
	Networks architectures
	Training and evaluation details
	Evaluation on the synthetic dataset
	Accuracy and speed evaluation
	Prediction towards unseen configurations

	Evaluation on tunnel roads dataset
	Accuracy and speed evaluation
	Generalisation analysis
	Synthesis

	Conclusion
	References
	Appendix

