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Abstract— This paper reports a super twisting sliding 

mode control strategy applied to a planar tensegrity system. 

The main objective is to drive the system to a desired angular 

position while the tensions in the cables are kept within a 

predetermined range to preserve the prestressed condition 

characterizing tensegrity systems. Stability conditions for the 

proposed control strategy are established and closed-loop 

stability is demonstrated through numerical simulations and 

experimental validations. In addition, the stiffness variation 

of the system has been experimentally performed using the 

same control strategy. Moreover, robustness to external 

perturbations using the proposed control strategy has been 

evaluated. 

Keywords— Tensegrity mechanism, Sliding mode control, 

Nonlinear systems. 

I. INTRODUCTION  

Tensegrity systems, as prestressed mechanical structures, 
have dedicated elements working under compression (e.g., 
rods) and other elements working under tension (e.g., cables). 
These compliant structures are lightweight systems with 
inherent stability [1]. As reported in [2] "A tensegrity system 
is a system in a stable self-equilibrated state comprising a 
discontinuous set of compressed components inside a 
continuum of tensioned components." A tensegrity 
mechanism is an actuated tensegrity structure, performed by 
either actuating the compressive elements or the tensile 
elements. 

Some open-loop control strategies for tensegrity 
mechanisms have been introduced in [3] and [4] obtaining a 
stable equilibrium position using a kinematic approach. These 
strategies cannot deal with friction effects, nonlinearities, or 
unmodeled dynamics. Closed-loop control strategies for 
tensegrity systems have also been considered in [5], where an 
external loop focuses on the reconfiguration of the system, 
while an inner loop handles the tensions in the cables.  

A constrained model predictive controller, based on the 
linearization of the dynamic model, has been reported in [6]. 
Bounded torques of the actuators are guaranteed according to 
the controller constrains and through a tension distribution 
algorithm. 

The computed-torque control (CTC) strategy together 
with proportional-derivative (PD) or proportional-integral-
derivative (PID) controllers, have been reported by several 
authors [7]-[11] for a trajectory tracking task.  

The CTC scheme, based on feedback linearization, allows 
a system to perform trajectory tracking with acceptable 
results. In [7], the correct selection of the controller 
parameters guarantees an asymptotically stable tracking error 
with an exact knowledge of the system parameters and in the 
absence of disturbances. When considering uncertainties in 
the system parameters and in the presence of disturbances, a 
bounded tracking error is obtained. These results are obtained 
from numerical simulations. 

The work presented in [9], proposes a CTC scheme to 
generate a desired wrench based on a system dynamic model. 
The necessary forces to generate the desired wrench are 
chosen according to predefined stiffness values. The authors 
reported a non-desired behavior when performing trajectory 
tracking tasks due to negative stiffness values. This situation 
could imply the loss of tension in the tensegrity system.  

The use of a static model to compute the set of possible 
forces applied for each equilibrium position is reported in 
[11]. A CTC with a PID correction is used to compute the two 
forces to generate the actuation wrench by neglecting Coriolis 
effects since the motion at low speeds is considered. In 
addition, friction effects are neglected too. 

Unmodeled dynamics such as inertia effects due to 
neglected masses ([7] and [9]) or friction in joints or pulleys 
([8], [9] and [11]) cause errors and unwanted behaviors. 

The SMC approach is a robust technique to deal with 
external disturbances, unmodeled dynamics, and parametric 
uncertainties [12]. SMC strategies have been applied to 
different system types including nonlinear systems, multiple 
input/multiple output systems, discrete-time models, large-
scale and infinite-dimensional systems, and stochastic 
systems [13]. Within SMC, the system states are forced to 
reach and move through a predefined sliding surface. Hence, 
the system dynamics is determined by this surface instead of 
being influenced by uncertainties or disturbances. This 
approach allows the dynamic performance of the system to be 
fixed [14]. 

To the best of the authors' knowledge, the control of 
tensegrity systems using the SMC approach has not yet been 
reported. Then, the main contribution of this paper concerns 
the implementation and experimental validation of the sliding 
mode strategy to control the position and the stiffness of this 
kind of systems. Simulation test followed by experimental 
validations of the control strategy with and without external 
disturbances are conducted on a planar one degree of freedom 



(DOF) tensegrity system. Stability analysis of the control 
approach is performed. 

This paper is organized as follows. Section II presents the 
dynamic modeling of the 1DOF rotational tensegrity system 
(RTS). Section III focuses on the sliding mode control design 
that is synthesized for the RTS. Section IV provides the 
stability analysis of the system under the proposed control 
strategy. Section V presents the tension distribution algorithm 
that allows the generation of two desired forces to apply a 
desired torque to the system. In Section VI, numerical 
simulations and experimental results are reported together 
with the validation of the effectiveness of the strategy under 
external disturbances. Conclusions of this work are finally 
presented in Section VII. 

II. TENSEGRITY SYSTEM MODELING 

An n-th  order tensegrity system has a generalized 

coordinates vector q = [q
1
  q

2
  ⋯  q

n
]

T
 where q

i
, i=1, 2, ⋯, n 

represents the i-th  independent coordinate involved in the 
configuration definition of the system. The first- and second-
time derivatives of this i-th coordinate are represented by q̇

i
 

and q̈
i
, respectively. When a Lagrange formulation is used to 

model the system of interest, the following energies need to 
be considered: the rotational kinetic energy EKR(q̇

i
) , the 

translational kinetic energy EKT(q̇
i
), the gravitational potential 

energy EGP(q
i
), and the elastic potential energy EEP(q

i
). Then, 

the Lagrangian L of the tensegrity system takes the form: 

L(q,q̇)=[ E𝐾𝑅(q̇
i
)+EKT(q̇

i
)]-[EGP(q

i
)+EEP(q

i
)] 

The Euler-Lagrange equations of motion of the n-th order 
tensegrity system, are obtained according to: 

d

dt

∂L

∂q̇
i

-
∂L

∂q
i

=Q
i
 () 

where 𝑄𝑖  represents the generalized force related with the 𝑖-th 
generalized coordinate. This set of differential equations can 
be represented in this compact form: 

M(q)q̈+C(q, q̇)q̇+G(𝒒)=Q(u) () 

where M(q)  is the n×n  positive definite symmetric inertia 
matrix, C(q, q̇)q̇ ∈Rn  groups the Coriolis and centrifugal 
effects, G(q) ∈Rn  is the vector of conservative forces and 
Q(u) ∈Rn is the vector of generalized forces that depends on 
the input u ∈Rp. For the set of n state variables provided in 
(3), the dynamic of the n-th order tensegrity system can be 
defined by the set of 2n differential equations in (4), where 
j=0, 1, 2, ⋯, n-1. 

{
x1=q

j+1

x2=q̇
1

 () 

{
ẋ2j+1=x2j+2

ẋ2j+1=x2j+2
 () 

The elements 𝑞̈𝑗+1  are the components of the vector 

q̈=[q̈
1
 q̈

2
 . . . q̈

n
]T

. 

The interest of this paper is in the design of a closed-loop 
super twisting control strategy that, for a tensegrity system, 

guarantees stability as well as small errors with respect to a 
reference signal. The design of a super twisting controller for 
this kind of systems is applied to a planar tensegrity device 
that is modeled using the Lagrangian approach. 

The tensegrity system under study is a four-bar linkage. 
All bars have the same length l and mass m. Their joints are 
located at the points A , B , C  and D  (see Fig. 1a). This 
parallelogram is driven by two rotary actuators through two 
rigid cables attached to the points B and C at one end and to 
the springs 1 and 2, on the other end. It is assumed that both 
springs are homogeneous and have the same stiffness constant 
k . The system angular position is defined by θ. Since the 
system is under a prestressed condition, θ=θ(F1,F2) where F1 
and F2 are the tension in the cables BD and CA, respectively.  

 

a) Rotational tensegrity system representation. 

 

b) Rotational tensegrity system experimental platform. 

Fig. 1. One DOF rotational tensegrity mechanism. 

Fig. 1b illustrates the RTS experimental platform. Two 
rotary actuators generate the displacements of cables BD and 
CA and, consequently, the angular motion of the system. A 
rotary encoder, placed at the joint in A, provides information 
on the parallelogram angular position. Two load cells are 
integrated to the cable transmission to measure the tensions in 
the cables. 

In order to reduce friction, bearings are mounted in each 
bar joint. Pulleys with bearings are also used. The main 
differences between the mechanism under study in this paper 
and the mechanism reported in [15] are presented in Table I.  

TABLE I.  MECHANISM DIFFERENCES. 

Characteristic New design [15] system 

Bars length 21 cm 7 cm 

Bar mass 80 g 10 g 

Number of cables 3 4 

Joints Bearings Polymer  

Bars material Polylactic acid Polymer  



A dynamic model developed using a Lagrangian approach 
of the RTS, is provided in (5) where C1 , C2  and C3  are 

physical parameters, θ̇ and θ̈ are, respectively, the first and the 
second time derivatives of θ. 

C1θ̈+C2θ̇+C3sin θ=F2lsin (
90+θ

2
) -F1lcos (

90+θ

2
) () 

The right side of (5) represents the extern generalized 
torques generated by the forces F1  and F2 . This model 
includes the viscous friction in each flexible joint as an 

external torque to the system, represented by the term C2θ̇. It 
is highlighted that θ<0 implies a clockwise angular motion 
(see Fig. 1a) and that the applied total torque vector is parallel 
to the respective z0 axis.  

III. SLIDING MODE CONTROL STRATEGY 

The mechanism presented in Fig. 1 is an overactuated 
system since two forces F1 and F2 generate a single torque τ 
providing an angular motion. The super twisting SMC 
strategy is depicted in Fig. 2. It allows to control the output of 
the system θm with respect to the reference θref. The controller 
generates a signal τd that represents the desired virtual torque. 
This signal is used as input to a tension distribution algorithm, 
developed by [16], that generates the reference forces 

F*=[F1
*  F2

*]
T
. 

 

Fig. 2. SMC control strategy. 

In order to synthesize a SMC strategy for the reported 
RTS, a state space representation of the model in (5) is 
provided in (6). First time derivative of x is represented by ẋ. 

ẋ=Ax+f(̅x)+g̅(x)τd  () 

where: 

x= [
x1

x2
] = [

θ

θ̇
] 

A= [

0 1

0 -
C2

C1

] 

f ̅(x)= [
0

f(x)
] g̅(x)= [

0
1

C1
⁄ ] 

The control signal τd corresponds to the torque required to 
reach a desired position and is associated to the springs’ forces 
F1  and F2 . The vector f(̅x)  contains the scalar nonlinear 
function: 

f(x)=2mglsin(θ) () 

where g  represents the gravitational acceleration. The 
proposed control strategy consists of two phases. The first 
one, is the reaching phase (ust) that attracts the state variables 
of the system to a desired sliding surface. The second phase is 

an equivalent control (ueq) that maintains the system on the 

sliding surface.  

The super-twisting algorithm acts directly on the second-
time derivative of the sliding variable xs, defined in (10), and 
has been reported as simple to implement [17]. 

The reaching super-twisting control law (ust)  is provided 
by (8), were α1  and  α2  are the control gains and S  is the 
sliding surface defined in (9). 

ust=α1|S|
1
2sign(S)+Z () 

with Ż=α2sign(S). 

S=Kxs (9) 

K=[K1   1]  is a row vector with a constant K1∈R , and  xs 

represents the sliding variable. Its expression is given by:  

xs= [
x1-x1ref

x2
] = [

θ-θref

θ̇
] () 

where x1ref=θref  is the desired angular position. Once the 

control ust  is obtained, an equivalent control ueq  is derived. 

The system states remain in the sliding surface if condition 
(11) is satisfied [13]: 

K
d

dt
S=0   when   S=0 () 

Considering the equivalent control in (12), (11) is 

satisfied. 

ueq= {
-
K[Ax+f(̅x)]

Kg̅(x)
   if g̅(x)≠0

 
0              else

 () 

The regulation task for the system provided in (6) is 
achieved by using the SMC defined in (13), where ust and ueq 

are defined respectively by (8) and (12): 

τd=ust+ueq () 

IV. STABILITY ANALYSIS  

The control law in (13) constrains the system states to 
reach and stay on the sliding surface. Then, the stability 
analysis of the controlled nonlinear system focuses on both the 
reaching and the sliding phases.  

During the reaching phase, condition S≠0  is fulfilled. 
Consider the positive definite Lyapunov function: 

V=
1

2
S2   for    S≠0 () 

and its time derivative: 

V̇=SṠ=KxsKẋ  (15) 

Considering (6), and (13), V̇ in (15) takes the form: 

V̇=KxsK[Ax+f(̅x)]+KxsKg̅[ust+ueq] (16) 



Substituting (8) and (12) into (16) and by simplifying 
terms, (17) is obtained as: 

V̇=SKg̅ [α1|S|
1
2 sign(S)+Z] (17) 

where Z= ∫ α2sign(S)
h

o
dt, with h  a finite time. Solving the 

integral Z=α2sign(S)h. 

Substituting Z  into (17), the time derivative of the 
Lyapunov function can be re-written as: 

V̇=α1|S|
1
2|S|Kg̅+α2|S|Kg̅h (18) 

where h>0 and Kg̅>0. When the control gains α1<0 and α2<0, 
V̇ is negative definite and the closed-loop system, during the 
reaching phase of the control strategy, is asymptotically 
stable. 

During the sliding phase, the system states remain in the 
sliding surface and condition (19) is satisfied: 

S=Kxs=0 (19) 

Substituting (10) into (19), the differential equation (20) is 
obtained:  

K1x
ref

− K1x
1
=ẋ1 (20) 

This equation describes the system behavior during the 
sliding phase. The solution of (20) and its derivative are given 
by: 

{
x1=xref-C0e-K1t

ẋ1=x2=-K1C
0
e-K1t

 (21) 

where K1>0 and C0  is a constant associated with the initial 
configuration of the system. The state x1  converges 
exponentially to the reference state and the state x2 converges 
exponentially to zero. The system is therefore exponentially 
stable during the sliding phase. 

Since exponential stability implies asymptotic stability 
[18], one can conclude that the system in closed-loop 
configuration is asymptotically stable.  

V. TENSION DISTRIBUTION ALGORITHM 

The desired virtual torque τd , generated by the SMC 

strategy, is transformed into a pair of desired tensions Fi
* in 

the cables. In order to guarantee that these desired tensions 
evolve in accordance with the real tensions F𝐦=[F1  F2]T, a 
PID controller is implemented, as illustrated in Fig. 5.  

The tension distribution algorithm uses the desired torque 
generated by the SMC strategy to obtain the reference tensions 

in the springs F*=[F1
*  F2

*]
T
 to be applied. These tensions are 

obtained by solving the constrained linear system in (22): 

{
WF*=τd 

such that: Fmin<F*<Fmax

 (22) 

where W=[-lcos(
90+θ

2
)    lsin(

90+θ

2
)]. This algorithm must 

ensure a positive bounded force in each spring to maintain a 
positive stiffness in the tensegrity mechanism. To do so, a 
positive bounded interval [Fmin; Fmax]  is defined where 

Fmin=[F1min  F2min]T  and Fmax=[F1max  F2max]T  are the 
admissible minimal and maximum forces in each spring. The 
solution of (22) takes the form [16]: 

F*=W+τd+Nwλ (23) 

where Nw= [-lsin(
90+θ

2
) -lcos(

90+θ

2
)]

T

is the basis of W  null 

space. W+  is the Moore–Penrose pseudoinverse of W  and 

λ ∈ R satisfies: 

Fmin-W+τd≤Nwλ≤Fmax-W+τd (24) 

The set B={λ|λmin≤λ≤λmax}  is computed using the 
inequality in (24). The value of λ  can be chosen as 

λ=(
λmin+λmax

2
). 

This approach allows to maintain the forces in the springs 
as far as possible from the maximum and the minimum values 
according to the mechanism orientation. These forces 
reproduce the desired torque generated by the SMC to be 
applied to the system in order to reach the reference 
orientation. 

VI. NUMERICAL SIMULATIONS AND EXPERIMENTAL 

TESTS 

A. Numerical simulations 

Closed-loop numerical simulations are carried out to 
evaluate the control strategy depicted in Fig. 2. The simulation 
parameters of the RTS are reported in Table II.  

TABLE II.  PARAMETERS. 

Parameter Value Units 

Bars length 0.21 m 

Bars mass 0.015 kg 

Springs 

constant 
219 N/m 

Constant C1 7.4x10-4 kg m2 

Constant C2 -0.04 kg m2/s 

Constant C3 0.6174 Nm 

𝐅𝐦𝐢𝐧 [2   2] N 

𝐅𝐦𝐚𝐱 [20   20] N 

 

The minimum admissible force in each spring was 
selected to always guarantee a positive tension in the cables. 
The maximum admissible force was selected to avoid 
oversizing the actuators.  

The control strategy performance depends on the values of 
the gains K1 , α1  and  α2 . For simulations and experimental 
tests, the system initial position is θ0=0° . This condition 
guarantees a stable position of the mechanism in absence of 
external disturbances. 



A trajectory that reaches θref=-45° in 1 second using a 
sigmoid function is considering to analyze the performance of 
the control strategy. The controller gains are selected 
heuristically depending on the stability analysis reported in 
Section IV. The behavior of the output signal is observed in 
Fig. 3 (red line) together with the reference trajectory (black 
line). 

 

Fig. 3. Behavior of 𝜃 (𝐾1 = 12, 𝛼1 = −0.0045, 𝛼2 = −0.01). 

In Fig. 3, a tracking error is observed during the transient 
response. Nevertheless, the steady state error ess=0°. The gain 
values of the super twisting SMC are K1=12, α1=-0.0045 and  
α2=-0.01. The springs forces behaviors are shown in Fig. 4. 
Forces on both springs remain positive and between the 
admissible minimal (2 N) and maximum (20 N) tensions.  

 

Fig. 4. Forces behavior (𝐾1 = 12, 𝛼1 = −0.0045, 𝛼2 = −0.01). 

B. Experimental tests 

To validate the proposed control approach, experimental 
tests were carried out using a STM32-NUCLEO board with a 
STM32F746ZGT6 ARM Cortex M7 microcontroller. An 
incremental encoder (LPD3806-400BM-G5-24C) with a 
resolution of 0.22°, coupled with the experimental platform, 
is considered to measure the angular position of the RTS. Two 
DC motors (GB37Y3530-12V-251R) are used to generate the 
desired forces in each spring (see Fig. 1b).  

The implementation of the control strategy was performed 
using the Rapid Control Prototyping methodology described 
in [19]. This methodology facilitates the programming of 
complex control systems in microcontrollers. 

As it has been mentioned previously, an inner control loop 
with a PID controller in considered to control the desired 
forces (see Fig. 5).  

 

Fig. 5. Experimental test control strategy. 

The gains of the PID controller, used to control the 
springs’ forces, have been tuned experimentally and chosen 
equal to Kp=710, Ki=0.001, and Kd=600. Initial forces in the 

springs equal 11  N, that is the mean value between the 
selected Fmin and  Fmax,have been applied. Initial conditions 

for these experimental tests are θ0=0° and θ̇0=0°. 

The parameters of the experimental platform have the 
same values used for the numerical simulations (see Table II). 
The system behavior (red line) is observed in Fig. 6 when 
performing experimental tests with controller gains K1=12.8, 
α1=-0.3, and α2=-0.06. The reference trajectory is the same as 
the one used in numerical simulations. 

 

Fig. 6. Experimental response of 𝜃 (𝐾1 = 12.8, 𝛼1 = −0.3, 𝛼2 = −0.06). 

The mechanism reaches the final stable position with 
0°<ess<0.22°. The forces in the cables are illustrated in Fig. 7. 
As it can be observed, the tensions in the cables remain 
positive and within the admissible range. 



 

Fig. 7. Springs forces behavior (𝐾1 = 12.8, 𝛼1 = −0.3, 𝛼2 = −0.06). 

As it can be observed, the experimental results related to 
trajectory tracking follow the tendency shown in the 
numerical simulations. 

C. Stiffness modulation 

The capacity of the system to counteract the effect of 
external forces is directly related to its stiffness [20]. The 
stiffness of the system in a stable configuration is defined [6] 
as: 

Kθ=-
∂τd

∂θ
 () 

Including (22) and considering the effect associated to the 
potential energy of the bars, the system stiffness can be 
calculated as: 

Kθ=-2mglcos(θ)-
l

2
[F2cos (

90+θ

2
) +F1sin (

90+θ

2
)] +kl

2
 () 

By modifying the value of λ in the tension distribution 
algorithm between λmin≤λ≤λmax, one can change the forces in 
the springs (23) without affecting the orientation of the RTS. 
Indeed, the variation of λ allows the variation of the internal 
forces in the system, which will directly affect the system 
stiffness. 

A desired position θref=-30° is established to perform a 
stiffness variation experiment by generating abrupt changes in 
the value of λ to modify the stiffness of the tensegrity system. 
The value of λ during the interval 0≤t<4 s is calculated by 

λ=(
λmin+λmax

2
) . At t=4  s, the value of λ  decreases to its 

minimum admissible value λmin, in consequence the forces F1 
and F2 present an increment (see Fig. 8). At t=9 s, the value 
of λ returned to its mean value. At t=14  s, the value of λ 
increase to its maximum admissible value λmax  causing a 
decrement in forces F1 and F2 as it can be observed in Fig. 8.  

These variations are highlighted with vertical dotted lines 
1, 2, and 3. These changes in the values of λ modify the 
solution of (23) and consequently the forces F1  and F2  to 
apply the desired torque τd.  

 

Fig. 8. Springs forces behaviors when changing the stiffness. 

The variations in the forces F1 and F2 are associated with 
the actions of the control signals to maintain the desired 
angular position (see Fig. 8 and Fig. 9). The changes in the 
forces F1 and F2 observed in Fig. 8, modify the level of stress 
in the cables of the system and, consequently, the stiffness of 
the RTS.  

As it can be observed in Fig. 9, the controller reacts to the 
variations of λ  at times t=4  s, t=9  s, and t=14  s with the 
objective of conserving the system at the desired position 
(θref=-30°) even when the forces in the springs are changing. 
This is mainly due to the fact that the changes in the internal 

forces F* is performed in the null space of W by changing the 
value of λ (23). 

 

Fig. 9. System behavior during stiffness modulation. 

The stiffness behavior is shown in Fig. 10. It is computed 
using (26) and considering experimental data. The changes on 
the forces observed in Fig. 8 are directly associated with the 
stiffness modulation represented in Fig. 10 (see dotted lines 1, 
2, and 3). As it can be seen in Fig. 8 and Fig. 10, the force in 
each spring and, in consequence, the system stiffness values 
remain almost constant, when the value of λ is not modified. 



 

Fig. 10. Stiffness variation during experiments. 

One of the advantages of tensegrity systems is the property 
they have to modulate their stiffness as it is shown in Fig. 10, 
where this modulation was performed in a closed-loop 
configuration using a super twisting controller. 

D. Robustness against external disturbances. 

The robustness of the control strategy with respect to 
external perturbations is experimentally evaluated. Once the 
mechanism reaches its stable position, a series of six external 
disturbances is applied to the system.  

The amplitudes of these disturbances vary from 15° to 20° 
and are applied at 6 s, 10.1 s, 16 s, 19.9 s, and 23.8 s. The 
response of the closed-loop system under the effect of these 
disturbances is shown in Fig. 11.  

 

Fig. 11. System behavior in presence of external disturbances. 

As it can be observed in Fig. 11, the action of the super-
twisting control strategy returns the mechanism to its stable 
position once the disturbance disappears, thus validating the 
robustness of the proposed control strategy. 

 

The forces behavior, when external disturbances are 
applied to the system, are shown in Fig. 12. Again, as it can 

be observed the system maintains a positive force in each 
spring in the presence of external disturbances. The variations 
of the spring’s forces highlight the antagonistic configuration 
of the tensegrity system (the force F1 increases when the force 
F2 decreases and vice versa).  

 

Fig. 12. Force behavior in the presence of external disturbances. 

Fig. 13 shows the behaviors of the actuators when the 
external disturbances are applied to the system. The control 
strategy reacts to the non-measured disturbances by moving 
the actuators and, in consequence, changing the springs’ 
forces that generate the required torque to relocate the system 
in the desired position. The displacements in the rotary 
actuators 1 and 2 are directly related, respectively, to the 
changes in the forces in springs 1 and 2 (see Fig. 1b). 

 

Fig. 13. Actuarors’ displacements under external disturbances. 

VII. CONCLUSIONS 

A super-twisting sliding mode control strategy for a planar 
tensegrity mechanism has been reported in this paper. This 
control strategy is applied to a nonlinear dynamic model of the 
tensegrity mechanism of interest with the objective to drive 
the system to a desired angular position.  

A tension distribution algorithm ensures a positive 
bounded force in each spring, guaranteeing the prestressed 



condition of the tensegrity system. The effectiveness of this 
control strategy has been verified with numerical simulations 
and validated through experimental tests. Experiments in a 
physical platform show an acceptable steady state error less or 
equal to the encoder resolution. Moreover, experimental 
validation of the capacity of the control strategy to modify the 
stiffness of the system has been demonstrated. 

Besides, closed-loop stability has been proved for both the 
reaching and the sliding phases of the proposed SMC strategy. 

The robustness of the control strategy against external 
disturbances was, experimentally, validated with satisfactory 
results. Once the external disturbances disappear, the 
controller is capable to return the system to the reference 
position without losing the tension in the springs and then, 
preserving the prestress condition that characterizes tensegrity 
systems. 
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