
HAL Id: hal-04565805
https://hal.science/hal-04565805

Submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution - NonCommercial - NoDerivatives 4.0
International License

Comparison of multiple Kalman filter and moving
horizon estimator for the anesthesia process

Bob Aubouin–Pairault, Mirko Fiacchini, Thao Dang

To cite this version:
Bob Aubouin–Pairault, Mirko Fiacchini, Thao Dang. Comparison of multiple Kalman filter and
moving horizon estimator for the anesthesia process. Journal of Process Control, 2024, 136, pp.103179.
�10.1016/j.jprocont.2024.103179�. �hal-04565805�

https://hal.science/hal-04565805
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://hal.archives-ouvertes.fr


Comparison of Multiple Kalman Filter and
Moving Horizon Estimator for the Anesthesia Process

Aubouin–Pairault Bob 1a,b, Fiacchini Mirkoa, Dang Thaob

aUniv. Grenoble Alpes, CNRS, Grenoble INP, GIPSA-lab, , Grenoble, 38000, , France
bUniv. Grenoble Alpes, CNRS, Grenoble INP, VERIMAG, , Grenoble, 38000, , France

Abstract

In this paper, a new method to estimate the states and the parameters of the anesthesia process is proposed and compared to a
Moving Horizon Estimator (MHE) approach. The proposed method makes use of multiple extended Kalman filters (MEKF) where
each EKF uses a different set of system parameters whose selection is based on a predictive performance criterion. In view of
usage in a closed loop, the comparison between the two methods is based on a metric quantifying the capability of the estimators to
predict the future behavior of the system. The metric is also used as a performance measure for tuning the hyperparameters of the
estimators. While the results on simulated data are similar, the MEKF method outperforms MHE on clinical data. Tests show that
the MEKF method can better predict the future trajectory of the system during the whole induction, on average for all the patients
but also for the worst scenario.
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1. Introduction

The field of anesthesia, an indispensable facet of modern
medicine, has undergone remarkable advancements over the
years. Its primary objective is to render patients insensible
to pain during surgery or other medical procedures, ensuring
their comfort and well-being. Anesthesiologists, equipped with
an array of powerful pharmacological agents, have the task of
inducing hypnosis (lack of consciousness), analgesia (lack of
pain), and muscle relaxation in addition to ensuring the stabil-
ity of hemodynamic and respiratory variables.

The control of drugs administered during these procedures
is fundamental for the success of anesthesia. Achieving the del-
icate balance between ensuring patient safety and maintaining
precise control over the depth of anesthesia is a paramount chal-
lenge. With the advent of quick-acting intravenous drugs like
propofol and remifentanil, and the use of EEG-based hypnotic
indicators such as the bispectral index (BIS), researchers have
been exploring the possibility of automating the drug delivery
process [1], [2].

Since the beginning of the century, many closed-loop meth-
ods have been proposed to control drug rates during general
anesthesia. As some of them have been tested in clinical trials,
metastudies agree on the benefits of such methods compared to
manual control [3], [4]. Nevertheless, some issues are still to
be appropriately addressed before such methods can be used in
clinical routine [5]. In fact, the huge uncertainties due to the
intra- and inter-patient variability along with the high level of
reliability required for this application are still relevant chal-
lenges.

Control methods often rely on a model of the patient’s re-

sponse to the drugs, either for tuning the controller, e.g. PID
methods [6], or to be directly employed in the controller, e.g.
MPC methods [7]. For intravenous drugs such as propofol
and remifentanil, compartment models are used to describe the
pharmacokinetics (PK) of drugs and surface models are used
to describe the pharmacodynamics (PD) of the drugs [8]. The
PK-PD model is often used to predict the effect of the drugs on
the patient. Such a model takes the drug rates as inputs and the
BIS (bispectral index) value as output. The BIS is an indicator
of hypnosis which varies between 0 and 100 where 100 means
a fully awake state while 0 stands for a flat EEG. A desired
BIS value during general anesthesia is in the interval [40, 60].
The main issue affecting the existing models is the uncertainties
associated with the models, in [9] the more recent models are
associated with a median absolute predictive error of 20%. To
tackle this issue, models specific to clinical situations have been
proposed, in [10] to model drug trapping in long-term anesthe-
sia and in [11] to model the effect of blood loss on the PK-PD
model for instance. However, those models are still subject to
uncertainties and cannot capture the diversity of events happen-
ing during surgical procedures.

Online parameter identification, on the other hand, could
be a solution to individualize the model for each patient. If
this solution is often used in control applications, some require-
ments are specific to its application to general anesthesia. In
fact, the identification must be fast enough to allow the con-
troller to compute the optimal drug dose. It should also be ro-
bust enough to ensure patient safety. Online parameter iden-
tification has already been studied, in particular for estimating
the PD parameters, as they are the most sensitive parameters
of the system [12]. In [13] and [14] the parameters of the PD
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models are identified periodically by solving a least square op-
timization problem for the propofol to BIS system. In [15] the
parameters of a reduced propofol-remifentanil to BIS system
are estimated. Recently, in [16], a Moving Horizon Estimator
was proposed to estimate both the states and the PD parameters
of propofol-remifentanil to BIS system. However, when using
this method in closed-loop, it appears that this approach does
not converge fast enough to ensure safe regulation of anesthe-
sia during the first minutes of the procedure.

The aim of this paper is to propose a method to estimate
both system states and parameters in order to be able to pre-
dict the future trajectory of the system. As those estimators
are intended to be used in a predictive control context for reg-
ulating the output value, the main objective is the identification
of a model able to predict the future evolution of the output,
rather than the real value of the states, not accessible in prac-
tice. To do so, an approach based on multiple Kalman filters is
proposed and compared to a Moving Horizon Estimator. The
different Kalman filters use different values of the PD parame-
ters to estimate the states of the system. Choosing one Kalman
filter results in practice in choosing a set of PD parameters and
states. This discrete approach to the estimation problem for the
PD parameters has been motivated by the poor observability of
the system, which leads to slow convergence of the parameter
estimates in standard estimation methods. The switching be-
tween the Kalman filters is based on the method analogous to
the one proposed in [17]. The method is compared to the Mov-
ing Horizon Estimator, first using data obtained by simulating
the uncertain model using known distributions of the parame-
ters in both the PK and the PD models, and then using real data
from the VitalDB dataset [18].

This paper is organized as follows. Section 2 recalls the
standard PK-PD model of anesthesia and discusses the observ-
ability of the extended system. Section 3 explains the details
of the proposed method and the metrics used to evaluate the
performance. The results on simulated data are presented in
Section 4 and those on clinical data in Section 5. Finally, some
conclusions are presented in Section 6.

2. Anesthesia Model

Drug models involved in anesthesia dynamics are usually
composed of two parts: the Pharmacokinetic (PK) and the Phar-
macodynamic (PD). The PK model describes the dynamics of
the drug concentrations in the patient’s body, whereas the PD
represents the link between the drug concentrations and their
physiological effects.

2.1. Compartments Pharmacokinetic Model

For pharmacokinetic (PK) models of both drugs, propofol
and remifentanil, a common approach is to use a four compart-
ment model. This model divides the body into three physical
compartments: blood, muscles, and fat; and a virtual effect site,
as illustrated in Fig. 1. The compartment model results in a
linear system represented by the following equations:


ẋ1
ẋ2
ẋ3
ẋ4

 =

−(k10 + k12 + k13) k12 k13 0

k21 −k21 0 0
k31 0 −k31 0
ke 0 0 −ke



x1
x2
x3
x4

 +


1
V1

0
0
0

 u

(1)
where x1, x2, x3, and x4 represent respectively the drug concen-
trations in blood, muscle, fat, and effect-site. The coefficients
can be determined from Eq. (2) below, except for ke which is
not related to a physical meaning:

k10 =
Cl1
V1
, k12 =

Cl2
V1
, k13 =

Cl3
V1
, k21 =

Cl2
V2
, k31 =

Cl3
V3

(2)

with Vi and Cli (i = 1, 2, 3) respectively the volume and the
clearance rates of each compartment, which can be computed
from a population-based model as in [19] and [20]. The input
u is the drug infusion rate. Next, the notation xp and xr for the
states of the compartment model for propofol and remifentanil
is used. Also, Ap, Bp, Ar, and Br are the state and input ma-
trices of both drugs. Finally, both compartment models can be
described by the decoupled system:(

ẋp

ẋr

)
=

(
Ap 04×4

04×4 Ar

) (
xp

xr

)
+

(
Bp 04×1

04×1 Br

) (
up

ur

)
. (3)

2.2. Pharmacodynamic Model

The impact of the drug concentrations on the bispectral in-
dex (BIS) is typically modeled by a Hill function. Due to the
synergy between propofol and remifentanil, the effect can be
modeled as a response surface model [21]:

y(t) = BIS (t) = E0

(
1 −

U(t)γ

1 + U(t)γ

)
(4)

with E0 the initial BIS, γ the slope coefficient of the surface and
U(t) the interaction term defined by:

U(t) =
xp4(t)
C50p

+
xr4(t)
C50r

. (5)

In these equations, xp4 and xr4 are the propofol and remifen-
tanil concentrations of the effect-site, C50p and C50r are the
propofol and remifentanil half-effect concentrations for BIS (i.e.
the concentrations to obtain half of the effect of the drugs).

Finally, the fully discretized model subject to noise can be
summarized by the following structure:{

x(k + 1) = Ax(k) + Bu(k)
y(k) = h(x(k)) + w(k) (6)

where h is the non-linear output function from Eq. (4)-(5) and
w models both the measurement noise and the eventual output
disturbances.

In the simulation, the parameters of [22] and [23] are used
respectively for propofol and remifentanil PK model. For the
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Figure 1: Schemes of the PK-PD compartments model

PD model, the parameters from [24] are implemented.

To have simulations as close to reality as possible, uncer-
tainties are added to the parameters. Particularly, each param-
eter uncertainty follows a log-normal distribution (the param-
eters of this distribution are specified in the previously cited
papers), and a realization of the distribution is used for each
patient. In practice, for each simulated patient, first a nomi-
nal model (Anom, Bnom, hnom) is computed using patient demog-
raphy data and then uncertainties are introduced to obtain the
simulated model (Asim, Bsim, hsim). This way of modeling the
inter-patient variability allows the estimator to have access only
to the nominal model and not to the simulated one.

2.3. Extended observability of the system

The goal of this paper is to compare two methods for esti-
mating both the states and the PD parameters. The parameter
E0 can be measured before the induction of anesthesia and Emax

is usually set equal to E0. Thus, the remaining parameters are
C50p, C50r, and γ, hence θ = (C50p, C50r, γ) is used to describe
the vector of unknown parameters. As the PD parameters are
not accessible, an extended system must be considered here.
The extended state is given by x̄ = (x, θ) with the dynamics:{

x̄(k + 1) = Āx̄(k) + B̄u(k)
y(k) = h̄(x̄(k)), (7)

with Ā =
(

A 08×3
03×8 I3×3

)
and B̄ =

(
B

03×2

)
. h̄ is the output function

h of the system parameterized by the PD parameters θ inside
the extended state x̄.

In order to analyze the observability of the system, we con-
sider the continuous time version of the dynamics. Given a
standard non-linear system of dimension N:

ẋ = f (x, u)
y = h(x),

The observability matrix ([25]) is defined by:

O =

(
∂h
∂x

∂L fu h
∂x

∂L2
fu

h
∂x · · ·

∂LN−1
fu

h
∂x

)
where L fu is the Lie derivative along fu defined by:

L fu h =
∂h
∂x

f (x, u)

Using a formal calculation software, one can conclude that
the observability matrix is full rank for the system (7) when the
states are non-null. This guarantees the structural observabil-
ity of the system. However, as this is a non-linear framework,
the persistent excitation of the system condition must be en-
sured to guarantee the practical observability of the system. To
verify this condition, the empirical observability Gramian can
be computed as in [26]. This matrix is positive semi-definite
if the persistent excitation of the system is verified. More-
over, the higher the eigenvalues are, the faster the estimator
will be able to converge. For system (7), the minimal eigen-
value of the Gramian matrix for 10 closed-loop simulations
(defined later in Section 4.1) is computed. A mean value of
approximately 2.1 × 10−7 ± 3.01 × 10−8 is obtained. For com-
parison, the same simulation with null inputs leads to a value
of zero, and input amplitude divided by 100 leads to a value
of 1.4 × 10−7 ± 4.4 × 10−8, which shows that the system is
weakly-excited. This means that the excitation of the system
is nearly sufficient to have observability, but the convergence
will be quite slow.

Note that this study on the observability assumes that Ā and
B̄ are known. In practice, though, uncertainties are present in
these matrices, which leads to a harder problem. All these con-
siderations imply that it is almost impossible to accurately es-
timate the extended state vector. However, as the end goal is
to use an estimator in a closed-loop process, it is sufficient that
the identified model can reasonably predict the future behav-
ior of the system. This is why the metric used to compare the
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estimators (described in Section 3.3) does not consider the con-
vergence of the states.

3. Methods

In this section, different methods used to estimate the un-
known parameters of the PD models are detailed.

The Multiple Extended Kalman Filter (MEKF) method se-
lects the best vector in a grid over the space of the parameters.
This discrete choice allows a fast convergence but less precise
at the end. The Moving Horizon Estimation (MHE) method
uses an extended state formulation to estimate the vector of
parameters along with the state in a continuous space. Thus,
the method could identify more precisely the parameters but is
more subject to noise and could be slower than MEKF.

3.1. Multiple Extended Kalman Filter
In order to identify the PD parameters, the MEKF method

uses a set of extended Kalman filter (EKF), one for every real-
ization of the vector selected within a grid in the space of the
parameters. The grid is designed to reasonably represent the
variability of the parameter vector. Then, the active vector is
chosen using a model-matching criterion. Fig. 2 illustrates the
principle of the method.

EKF is a state-estimation method that relies on the lineariza-
tion of a non-linear model. If we consider the model given in
Eq. (6) with the non-linear function h parametrized by θ, the
estimator using the parameter vector θi is given by:

Hi(k) =
∂h(x, θi)
∂x

∣∣∣∣∣∣
x=x̂i(k|k−1)

Ki(k) = Pi(k|k − 1)Hi⊤(k)
(
Hi(k)Pi(k|k − 1)Hi⊤(k) + R2

)−1

x̂i(k|k) = x̂i(k|k − 1) + Ki(k)
(
y(k) − h(x̂i(k|k − 1), θi)

)
Pi(k|k) = Pi(k|k − 1) − Ki(k)Hi(k)Pi(k|k − 1)

x̂i(k + 1|k) = Ax̂i(k|k) + Bu(k)

Pi(k + 1|k) = APi(k|k)A⊤ + R1

where, the notation X(k1|k2) represents the value of variable X
computed at time step k1 based on the knowledge available at
k2, and Xi denotes the variable associated to the parameter vec-
tor θi. The estimated state vector is x̂i and Pi is the covariance
matrix. A and B are the matrices describing the discretized dy-
namic system, Eq. (6). R1 and R2 are two constant matrices
used to respectively characterize the process uncertainties and
the measurements noise. Notice that in the Kalman filter the
assumption that process uncertainty can be modeled by addi-
tive process noises is implicitly made. For the studied system,
though, the process uncertainty comes from the matrix param-
eters which is different. However, as demonstrated later, this
assumption is sufficient to obtain an estimator able to estimate
coherent states, and to satisfactorily predict the future trajectory
of the system.

This method aims at selecting the ‘best‘ observer at each
time step, by using the criterion proposed in [17]. In [17], this
criterion has been proposed to choose an estimator between dif-
ferent Luenberger estimators using different gains. The novelty
here is to use this same criterion to select the best EKF among
a set of EKF using different system parameters.

To evaluate the criterion for each observer, the estimation
error on the output is ei(k) = y(k)−h(x(k|k−1), θi), computed at
each time step. The dynamics of the criterion for the ith observer
is then given by:

ηi(k + 1) = νηi(k) + λ1|ei(k)|2 + λ2|Ki(k)ei(k)|2, (8)

where λ1, λ2, and ν are three positive hyper-parameters. The
criterion depends both on the output estimation error ei(k) and
the correction effort of the observer Ki(k)ei(k). The following
equation can be deduced from Eq. (8):

ηi(k) = νkηi(0) +
k∑

j=1

νk− j−1(λ1|ei( j)|2 + λ2|Ki( j)ei( j)|2). (9)

where ηi can be seen as a cost, permitting to select the observer
with the minimal cost at each time step. The index of the cur-
rently selected observer is denoted by i∗. The parameter ν is a
forgetting factor; a small value of ν giving more importance to
the last error value but leading to bigger fluctuation of the EKF
choice. The ratio λ1

λ2
should be of the same magnitude as Ki in

order to give similar importance to the estimation error and the
correction effort.

To avoid too many switches between the observers, the pa-
rameter ϵ ∈ (0, 1] is introduced, and the switch takes place at
time step k only if it exists i , i∗ such that ηi(k) < ϵηi∗ (k). A
small value of ϵ will lead to a more stable behavior of the filter,
although, it will degrade the performance as the selected EKF
will not always be the one with the smallest criterion.

To initialize the criterion of each observer, ηi(0) is set to
reflect the prior probability of θi on the grid to be close to the
real θ.

3.2. Moving Horizon Estimation

In order to include the estimation of θ along the state esti-
mation, the MHE method uses an extended state formulation.
The extended system and its dynamics have been described in
Eq. (7) and an MHE method has been already presented and
tested in [16]. In this paper, a different MHE formulation has
been employed to meet the standard formulation given by:

minx̄(k) JN(x̄(k), ˆ̄x(k − 1), y,u)

s.t. x ∈ X
(10)

where X is the set of admissible state values (only positive val-
ues for our system) and the cost function is given by:
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Figure 2: Block diagram of the Multiple Extended kalman filter Estimator, adapted from [17].

JN(x̄(k), ˆ̄x(k − 1), y,u) =
k∑

i=k−NMHE

∥y(i) − h̄(x̄(i))∥R

+

k∑
i=k−NMHE+1

∥x̄(i) − (Āx̄(i − 1) + B̄u(i − 1))∥Q

+ ∥x̄(k − NMHE) − ˆ̄x(k − NMHE)∥P

where x̄(k), ˆ̄x(k − 1), y,u, respectively represent the state vec-
tor up to time k and the previously estimated state up to time
(k − 1) over the estimation horizon, the output, and the input
measurements over the estimation horizon. Q and P are two
positive semi-definite matrices used to penalize the deviation
from the model dynamics and the previous state estimation, R
is a positive scalar used to penalize the output error, and NMHE

is the length of the horizon. These four constants are used as
hyper-parameters.

3.3. Metric for the comparison
At first, simulated data was used to compare the two meth-

ods. In this setup, all simulation parameters and states are
known and a simple way to evaluate the performance of the
estimators could have been to compare the estimated states and
parameters with the true ones. However, this idea will lead to
inaccurate results. In fact, since the dynamics are different in
the simulation and in the estimators due to the introduction of
uncertainties ( (Asim, Bsim) for simulation and (Anom, Bnom) for
the observers, as discussed in Section 2.2), the identified param-
eters that better reproduce the observed behavior might not be
equal to those used for simulation. Nevertheless, as the compar-
ison between the estimations and the measured values is aimed
at predicting the BIS value, the capability of the estimators to
predict in open-loop the BIS value in the near future is consid-
ered as performance measure.

The idea, illustrated in Fig. 3, is to perform, at some in-
stants, an open-loop simulation of the system starting from the
estimated states and parameters and to compare the output of
the simulation with the actual output. The metric used to com-
pare the different methods is the mean square error (MSE) be-
tween the actual output and the simulated one. The MSE is
computed over the next two minutes after the end of the esti-
mation. This time length might be, for instance, related to the

Figure 3: Illustration of the proposed metric

MPC prediction horizon in a control framework. Thus, the met-
ric computed at time step k is given by:

MSE(k) =
k+NMS E∑

i=k

(
y(i) − h̄( ˆ̄xk(i))

)2
, (11)

where NMS E is the number of samples in two minutes, and ˆ̄xk(i)
is the extended state value computed in open-loop starting from
the state estimation ˆ̄x(k) at time step k:{

ˆ̄xk(i + 1) = Ānom ˆ̄xk(i) + B̄nomu(i)
ˆ̄xk(k) = ˆ̄x(k) (12)

4. Tests on simulated data

Consider first the tuning of the estimators and the analysis
on simulated data.

4.1. Data generation
To obtain a simulated dataset representative of clinical data,

a PID controller already proposed in [6] has been used. For
this control method, the ratio between propofol and remifen-
tanil rates is fixed to 2. Then a PID controller is used to control
the rates using the BIS signal. An example of the resulting con-
trol is represented in Fig. 4.
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Figure 4: Results of the control algorithm for a single random patient.

The final database includes induction (15 minutes) simula-
tion files for 500 different patients, with a sampling time of two
seconds. Patient features have been randomly chosen using uni-
form distribution (age ∈ [18, 70], height ∈ [150, 190], weight
∈ [50, 100], and gender ∈ {0, 1}). The parameters of the PK-
PD models were randomly chosen according to the distributions
from [22], [23] and [24]. Noise has been added to the output as
white noise (standard deviation of 3) filtered by a second-order
low-pass filter with a cut-off frequency of 0.03 Hz. Fig. 5 shows
the results of the simulations for the 500 patients. Simulations
are done using the Python Anesthesia Simulator [27], Python
code for data generation and estimators comparison is avail-
able on Github (https://github.com/BobAubouin/MEKF_
vs_MHE).
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Figure 5: BIS trajectory for all the simulations.

4.2. Tuning of the parameters

Tuning of the hyperparameters can be an arduous task for
observers. In order to obtain a fair comparison between the

0 2 4 6 8 10

C50p

0.0

0.2

0.4

0.6

0.8

1.0

C
u

m
u

la
ti

ve
d

is
tr

ib
u

ti
on

linear
spacing

selected value

Figure 6: Illustration of the parameters value choice for the grid construction.

methods, a single metric was used to tune the hyperparameters
of the observers. This metric is the integral of the mean square
error, as computed in Eq. (11). More precisely, the parameters
were tuned to minimize the following cost function:

f =
1

Npatient

Npatient∑
k=0

Nsim−NMS E∑
i=0

MSEk(i), (13)

where Npatient is the number of patients considered for the tun-
ing (16 random patients from the simulated database), Nsim the
duration of the simulation (15 minutes), MS Ek(i) the MSE com-
puted at time step i for the patient k.

A tree-structured parzen estimator algorithm [28] was used
to tune the main hyper-parameters of the observers. For the
MHE, four hyper-parameters were investigated: the horizon
NMHE , the penalty scalar R, a scalar q such that Q = q × Qconst

where Qconst is a given matrix and the value of β used in the
penalty matrix P as follows:

P =
(
P1 0
0 βP2

)
, (14)

where P1 ∈ R8×8 and P2 ∈ R3×3 are the penalty matrices for the
state and the parameters respectively, tuned to obtain a similar
rate of convergence for each variable. The best results are ob-
tained with R = 2.36×10−4, β = 4.35×10−4, and the estimation
horizon NMHE = 26.

For the MEKF, the grid of the parameters has been fixed
using the known distribution. More precisely, the interval [0,1]
is linearly partitioned into n equal parts, where n is the number
of different parameter values in the grid (n = 5 for C50p and n =
6 for C50r and for γ). Then, each value is evaluated using the
percent point function (inverse of the cumulative distribution
function) as illustrated in Fig. 6. The grid is the combination of
all the possible values of each parameter, leading to 180 points.

For the optimization, four hyper-parameters were investi-
gated: the penalty matrix R1 and a multiplicative coefficient for
R2 matrix in the Kalman filters, the value of λ2 in the com-
putation of the criterion in Eq. (8) and the value of ϵ for the
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Figure 7: Comparison of the metrics at different time steps for the two methods
on simulated data. Mean value and standard deviation are given.

switching rule. Parameters ν and λ1 were set respectively to
10−5 and 1, a small value of ν allowing the criterion not to for-
get the past error, while the value of λ1 is fixed since only the
ratio λ1/λ2 is relevant. The best results have been obtained
with R1 = 76.5, λ2 = 3.33, ϵ = 0.76, and R2 = 0.058 ×
diag([0.1, 0.1, 0.05, 0.05, 1, 1, 10, 1]).

4.3. Results

The results over the 500 simulated patients are shown in
Fig. 7. One can observe that both methods have similar metric
curves. The MEKF seems to converge faster during the first 2
minutes, but then the MHE is more precise. At the end of the
simulation, the two methods converge to the same mean value.
Concerning the spread of the curves, after 2 minutes the stan-
dard deviation of MHE is smaller than the one of MEKF (as for
the mean value), finally converging to the same value. These re-
sults might be explained by the proper structure of each method.
The MEKF employs a discrete grid of parameter values, while
MHE uses a continuous approximation of the parameters. Thus,
the MEKF can converge faster but less precisely than the MHE.
While a smaller final value for the MHE was expected, both
estimators in reality converge to the same value.

Considering the worst-case results, Fig. 8 shows the maxi-
mum of the metrics for each method. The same performances
are obtained as for the mean metrics. It should be noted, how-
ever, that the difference between the MHE and MEKF after 2
minutes is greater than for the mean value.

Concerning the computation times, the MEKF method is
faster than the MHE, with a mean iteration time of 50ms for
the MEKF and 130ms for the MHE. Both are suitable for a
real-time implementation, as the sampling time is 2 seconds.
However, the fact that the MEKF is faster is interesting, since
the computation of the Kalman filters could be done in parallel
to accelerate the process.

0 2 4 6 8
stop time (min)

100

200

300

400

500

m
et

ri
cs

MEKF

MHE

Figure 8: Maximum of the metrics at different time steps for the two methods
on simulated data.

Overall, the results of both methods are fairly similar and do
not demonstrate a clear superiority of one method. Moreover,
these results are still dependent on the tuning of the controller
and particularly on the choice of the grid for the MEKF. One
can imagine that a finer grid could help the MEKF method con-
verge to a better mean precision at the price of a higher compu-
tational burden.

5. Tests on clinical data

Clinical data selection and results analysis are presented
hereafter.

5.1. Data description

The methods were also tested using a clinical dataset, namely
a subset of the vitalDB dataset [18]. This recent repository is
the first open-source perioperative high-resolution database, it
involves 6388 surgical patients and is composed of intraopera-
tive biosignals and clinical information. The data used in this
paper is composed of 188 patients undergoing general anesthe-
sia. Cases with only propofol and remifentanil were selected,
and a visual inspection of the data was done to ensure the con-
sistency of the signals. The data was resampled to 0.5Hz and
the first 15 minutes, from the first injection, was used for the
study. This is justified by the fact that this period corresponds to
the ones with lower disturbances, as the surgery has not started
yet.

5.2. Results

Statistical results of the estimations with different methods
are presented in Fig. 9 and are obtained using the same param-
eters as in the previous section for both estimators. The estima-
tors could have been tuned again to better fit the clinical data,
however, the goal is to test the robustness of the method on new
data. Thus, both methods perform worse on this set of data
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Figure 9: Comparison of the metrics at different time steps for the two methods
on clinical data. Mean value and standard deviation are given.

than on the simulated data. The results are different from those
obtained on simulated data (Fig. 7). On the clinical data, the
MEKF estimator performs better than the MHE during all the
simulations. Both the mean value and the associated standard
deviation are smaller. This demonstrates the robustness of the
MEKF on real-world data. This might be explained by the fact
that the discrete approach of the parameter estimation is less af-
fected by the noise and the disturbances present in the clinical
data.

The maximum values for the metrics are available in Fig. 10
for both methods. Here the MEKF is also better than the MHE
during almost all the simulations. Overall, compared to the re-
sults on simulated data, the MEKF method performs better than
MHE when using the methods on clinical data. This could be
explained by the fact that this method uses a grid of parameters,
which is more robust than a continuous approach for the esti-
mation as in the MHE. This grid approach is less likely to lead
to incoherent and unstable parameter estimation.

6. Conclusion

This paper proposes a new estimation method, based on
multiple extended Kalman filters, and a comparison with the
classical MHE two methods to estimate both the states and the
PD parameters of a PK-PD system during general anesthesia.
For the comparison, both observers have been tuned using the
same criteria, which evaluate the ability of the estimators to
predict the future output of the system. Using the same metric,
tests on simulated data show that both methods have similar
behavior, converging to the same final value with different pro-
files. However, while using the same parameter for the tests on
clinical data, the MEKF method performs better than the MHE.
This suggests that a discrete approach to parameter identifica-
tion provides robustness to the estimation.

Future work will focus on using a combination of both meth-
ods to propose a closed-loop control of the anesthesia process.
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Figure 10: Maximum of the metrics at different time steps for the two methods
on clinical data.

Moreover, the approach could be applied to other applications,
where a fast and robust estimation of system parameters is re-
quired.
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