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Some Comparison Results for First-Order

Hamilton-Jacobi Equations and Second-Order Fully

Nonlinear Parabolic Equations with Ventcell

Boundary Conditions

Guy Barles∗† & Emmanuel Chasseigne∗‡

Abstract. In this article, we consider fully nonlinear, possibly degenerate, parabolic equations

associated with Ventcell boundary conditions in bounded or unbounded, smooth domains. We first

analyze the exact form of such boundary conditions in general domains in order that the notion of

viscosity solutions make sense. Then we prove general comparison results under natural assumptions

on the nonlinearities, assuming only that the equation is either coercive (first-order case) or strictly

elliptic (second-order case) in the normal direction in a neighborhood of the boundary. Our method

is inspired by the “twin blow-up method” of Forcadel-Imbert-Monneau and ideas of Lions-Souganidis

which we extend to the framework of Ventcell boundary conditions.

Key-words: Second-order elliptic and parabolic equations, Ventcell boundary con-
ditions, comparison results, viscosity solutions.
MSC: 35D40, 35K10 35K20 35B51

1 Introduction

Introduced in 1981 by Crandall and Lions [11] (see also Crandall, Evans and Lions [9])
for first-order Hamilton-Jacobi Equations, the notion of viscosity solutions is known
to be the right notion of weak solution to deal with second-order, fully nonlinear,
possibly degenerate elliptic or parabolic equations. Nowadays, the basic theory can
be considered as being rather complete with very general stability results, and in
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particular the “Half-Relaxed Limits Method” which can be powerfully used if the
limit equation satisfies a strong comparison result, (SCR) for short, i.e. a comparison
result between semicontinuous sub and supersolutions.

Such (SCR) not only provide the uniqueness of solutions, they are also a key tool for
obtaining their existence via the Perron’s method of Ishii [16], and they exist in almost
all the frameworks: whether the equations are set in the whole space or in bounded or
unbounded domains, with the most classical boundary conditions (Dirichlet, State-
Constraint, nonlinear Neumann boundary conditions, etc.) or for equations involving
nonlocal terms ([6] and references therein), or equations set in a network or with
discontinuities (see [5] and references therein). The reader may have a first idea of
this theory by looking at the “User’s guide” of Crandall, Ishii and Lions [10]; we give
more references of (SCR) later in this introduction.

Roughly speaking, a (SCR) is the analog of the Maximum Principle for classical
(in other words, smooth) solutions and, with few additional technical assumptions,
a (SCR) exists for any classical situation where the equation, together with the
associated boundary condition, formally satisfy the Maximum Principle. Of course, in
the framework of viscosity solutions—which we use here—the boundary condition has
to be understood a priori in the relaxed sense given by viscosity solutions theory: either
the inside equation or the boundary condition should hold for both the subsolution
and the supersolution, see [10]. This particularity, which is, in general, a difficulty
for proving such (SCR), is now well-addressed in most classical situations. However,
coming back to Maximum Principles, in the case of Ventcell boundary conditions,
no (SCR) was available in the literature so far. We explain why such boundary
conditions create a specific difficulty later on.

The aim of this article — We provide here the very first (SCR) for Ventcell boundary
conditions in the viscosity solutions’ framework. Let us immediately point out that
we are able to do so under reasonable assumptions, both for the case of first-order and
second-order equations. We also recall that a (SCR) is actually a “global” compar-
ison result, providing comparison in all the domain—and we use below the notation
(GCR) instead of (SCR) to emphasize this global comparison—. However, as in [5],
we reduce it to a “local comparison result”, i.e. to a comparison result which holds
in a small neighborhood of each point; we denote below such local result by (LCR).
This reduction to (LCR) allows us to mainly consider the case of equations set in an
half-space and Section 4 shows that our results easily extend to the case of general
regular domains via localization arguments and a straightforward local flattening of
the boundary.

The Ventcell boundary condition — Now, in order to be more specific, we consider
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general fully nonlinear, possibly degenerate, parabolic equation of the form

ut + F (x, t,Dxu,D
2
xxu) = 0 in Ω× (0, T ), (1.1)

where Ω is a bounded or unbounded domain of RN , the solution u is a real-valued
function defined on Ω × [0, T ), ut, Dxu,D

2
xxu denote its first and second-derivatives

with respect to t and x respectively. Finally, F : Ω × [0, T )× RN × SN → R, where
SN is the space of N × N -symmetric matrices, is a real-valued, continuous function
satisfying the ellipticity assumption

F (x, t, px,M1) ≤ F (x, t, px,M2) if M1 ≥M2, (1.2)

for any x ∈ Ω, t ∈ [0, T ), px ∈ RN , M1,M2 ∈ SN , where “≥” denotes the partial
ordering on symmetric matrices.

In order to introduce the Ventcell boundary condition, we first consider the case
when Ω is an half-space of RN and, to fix ideas, we choose

Ω := {x = (x′, xN) ∈ R
N−1 × R, xN > 0}. (1.3)

In this context, a Ventcell boundary condition for Equation (1.1) has the form

−uxN
+G(x′, t, Dx′u,D2

x′x′u) = 0 on ∂Ω× (0, T ), (1.4)

where G satisfies similar assumptions as F , in particular an ellipticity property like
(1.2). We point out that −uxN

is the special form, in our context, of the normal
derivative of u on ∂Ω × (0, T ) and therefore (1.4) is nothing but a Neumann type
boundary condition. However, this comes with an unusual dependence in the second-
order tangential derivative D2

x′x′u. This particularity is, of course, the main originality
and difficulty of Ventcell boundary conditions.

The case of a general domain — If Ω is a general smooth domain(1), the exact form
of such boundary condition and the assumptions they have to satisfy are less clear,
for at least two reasons.

First, at a point x of the manifold ∂Ω, it has to depend on the Hessian matrix—
relatively to ∂Ω—of the solution u : Ω → R but it is well-known that the definition
of such Hessian matrix on a manifold is not completely straightforward: it depends
not only on D2

Tu, the N × N -symmetric matrix corresponding to the restriction of
the quadratic form h 7→ D2u(x)h · h (2) to Tx∂Ω, the tangent space of ∂Ω at x, but it
also depends on the curvatures of ∂Ω at x.

(1)We will precise later on which type of regularity we impose.
(2)Here and throughout this article, v1 · v2 stands for the standard euclidian scalar product of

v1, v2 ∈ RN .

3



For the time being, we just write the boundary condition as

G(x, t,Du,D2
Tu) = 0 on ∂Ω× (0, T ), (1.5)

where we recall that, if n(x) denotes the outward normal to ∂Ω at x and Id is the
N × N Identity matrix, D2

Tu is obtained by using the projection onto Tx∂Ω, whose
matrix is given by

(

Id−n(x)⊗ n(x)
)

; hence the formula

D2
Tu(x) :=

(

Id−n(x)⊗ n(x)
)

D2u(x)
(

Id−n(x)⊗ n(x)
)

.

We refer the reader to Section 2 where we explain in an elementary way what kind
of assumptions a general boundary condition like (1.5) should satisfy in order to be
a “good” Ventcell boundary condition.

Of course, these restrictions are of two types: the first ones are just basic compatibil-
ity conditions in order that (1.5) is actually consistent with the Maximum Principle,
and therefore that the notion of viscosity solutions makes sense. The second ones
are related to comparison results and the main assumption consists in imposing that
(1.5) can be reduced to (1.4) by (i) a suitable change of coordinates which flattens
the boundary and (ii) a suitable monotonicity property in uxN

after the change of
coordinates to be able to write down the boundary condition as (1.4). In that way, as
we explain it in Section 3, the main step in a comparison proof in a general domain
is nothing but a local comparison result for (1.4).

More generally, we want to point out a key idea in this article: all the local properties
for (1.1)-(1.5) are obtained from (1.1)-(1.4) since the mecanism (i)-(ii) we described
above allows to reduces to this case. Now, concerning global properties such as the
existence of sub and supersolutions, which are needed either for localizing the com-
parison proof or for Perron’s method, we use only basic assumptions on G. In fact,
as this description suggests, most of the results are proved for (1.1)-(1.4).

The literature on Ventcell boundary conditions — Ventcell (or Ventcel) boundary con-
ditions appear in the mathematical literature in different contexts. First, in modelling,
these boundary conditions often arise in the study of asymptotics for thin layers on
the boundary; the results in this direction are either numerical (see, for example,
Dambrine and Pierre [12] and references therein) or more theoretical, using typically
the Lax-Milgram Theorem in the elliptic case (Bonnaillie-Noël et al. [8] and references
therein). We point out that, in this direction, most of the references are concerned
with numerical issues.

Closer to our motivations, these boundary conditions are shown to be naturally
associated to Waldenfels operators, i.e. to (local or nonlocal) operators which satisfy
the Maximum Principle: we refer the reader to Taira [25] or to Priouret [24] and
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references therein. These types of works use either classical analysis methods (Sobolev
or Besov spaces, semi-groups theory, etc.) or connections with probability (Markov or
diffusion processes) as in [24]. The thesis of El Karoui [13] seems closer to our purpose
by showing that such boundary conditions are associated with diffusion processes with
a reflection on ∂Ω (see also Petit [23]).

The difficulty to handle such boundary conditions —Maybe the easiest way to explain
why getting a comparison result for (1.1)-(1.4) in the viscosity solutions framework is
difficult is to recall the method which is used to treat nonlinear Neumann boundary
conditions, i.e. the case when G does not depend on D2

x′x′u. Initiated by Lions [20] for
standard linear Neumann and oblique derivatives boundary conditions, the method
was then generalized under slightly different forms in the nonlinear setting (with
slightly different assumptions) by Ishii [18] and Barles [4].

Of course, the difficulty comes from the condition at the boundary and the com-
parison proof consists in building a test-function for which the Neumann boundary
condition cannot hold. With such a property, the F -inequalities necessarily hold true,
both for the sub and the supersolution and, if the test-function satisfies suitable
estimates, the conclusion follows.

In order to follow this strategy, a key point is that the (weak) derivatives of the sub
and supersolution are nothing but derivatives of the test-function at the maximum or
minimum point. Therefore, these derivatives can be directly read on the test-function
and put in the equation. However, for second-order terms, any comparison proof for
viscosity solutions uses the Jensen-Ishii Lemma ([19, 17]) which provides the second
derivatives for the sub and supersolution in a somewhat abstract way. In particular,
there is no way to build a test-function for which the boundary condition cannot hold.

How we turn around the difficulty — Let us describe here two main strategies that
can be used and that we expose in this article. The simplest one in the half-space
case is inspired from [5] and consist in using a “tangential regularization” in the
x′-variable, at least for the subsolution and, in some other cases, both the sub and
supersolution. This is why the study of the flat boundary case is more natural to
begin with. Depending on the type of regularization which is doable (thanks to the
properties of F andG), we can get different types of results, with different assumptions
on F and G. This regularization allows to get rid of the difficulty in the x′-direction
and use a standard doubling of variables in the xN -direction.

However, this approach comes with two main connected defects: on one hand, such
strategies do not seem to be able to prove results with general assumptions on F and
G; on the other hand, as a consequence, the extensions to general domains require
somehow unreasonnable assumptions. Anyway, we sketch in the appendix a proof
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using this regularization procedure which has, at least, the advantage of being very
simple.

In order to obtain general results with natural assumptions on F and G, we use a
combination of new arguments introduced recently by Lions and Souganidis [21, 22]
and by Forcadel, Imbert and Monneau [14]. Roughly speaking, the key idea of Lions
and Souganidis is to examine carefully the sub- and superdifferential of the sub and
supersolution respectively, at a maximum point of their difference. To do so, a blow-
up argument is a key step to focus on these differentials. Then Forcadel, Imbert
and Monneau improve this idea by first doubling the variables as in the classical
comparison proof, and then using a “twin blow-up” argument: one on each variable
(or one for the subsolution and one for the supersolution).

We extend here the strategy of Forcadel, Imbert and Monneau in order to adapt it
to a second-order framework—at least for the Ventcell boundary condition but also
to be able to treat the case of second-order equations. To do so, our scheme of proof
in the case of (1.1)-(1.4) is the following:

(i) We use an almost classical doubling of variables method but, here, in an un-
usual way: it is not the main step anymore, but some kind of “preparation”
to the “twin blow-up” argument. Indeed, the doubling of variables allows us to
reduce to the case when the maximum points are both on the boundary—hence
preparing the twin blow-up. But it also gives additionnaly some useful estimates
to perform the blow-up.

(ii) The twin blow-up is done in a different way here since it has to be adapted
to the Ventcell boundary condition: we use different scalings in the tangential
directions (x′, t) and in the normal one, i.e. for xN . We perform it not only in
the equation and boundary conditions, but also in the maximum point property
related to the doubling of variables, providing useful estimates.

(iii) Here, passing to the limit in the blow-up procedure does not allow to reduce to
a one-dimensional problem, again because of the Ventcell boundary condition
which mixes tangential and normal variables. However, with suitable adapta-
tions of the Jensen-Ishii Lemma, we are able to use either the Lions-Souganidis
arguments in the first-order case, and new ones in the second-order case.

In order to be able to apply this strategy, we use two specific assumptions in addition
to the classical hypotheses which classically appear in such comparison results: either
the equation is a first-order equation and we require a normal coercivity property,
cf. (HNC) in Section 3.1, or it is a second-order equation and we require a strong
ellipticity in the normal direction, cf. (HNSE) in Section 3.1.
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A typical example that fits into the framework of this paper is the following one,
posed in Ω× [0, T ] where Ω := {(x, y) ∈ R2 : x > 0, y ∈ R}























ut − Tr
(

A(x, y)D2u)
)

+ b(x, y)|Du| = f(x, y) in Ω× (0, T ] ,

−
∂u

∂x
+
∂2u

∂y2
= g(y) on ∂Ω × (0, T ] ,

u((x, y), 0) = u0(x, y) in Ω .

where we assume that A = σtσ (3), σ, b are bounded, Lipschitz continuous functions on
Ω and f, g are bounded and continuous on Ω and ∂Ω respectively. In order to satisfy
our additional assumptions, we need that, either A ≡ 0 and b(x, y) ≥ α > 0 on Ω, or
A(x, y) is a symmetric positive matrix and, with eN = (1, 0), A(x, y)eN · eN ≥ α > 0
on Ω.

We do not know if these additional assumptions, namely (HNC) and (HNSE), are
really necessary but (i) they really play a key role in our proofs of the comparison
results both in the first- and second-order case; (ii) N. El Karoui [13] used the prob-
abilistic analogue of (HNSE) in her work; (iii) Proposition 3.4 in Section 3.3 shows
that, if (HNSE) holds then the Ventcell boundary condition is satisfied in a strong
sense. In any case, one may think that (HNC) or (HNSE) ensures that the Ventcell
boundary condition is seen in a right way.

We conclude this introduction by a remark: the approach that we use here allows to
treat, as a special case, Neumann boundary condition—typically −uxN

+G(x, t,Du) =
0. However, some of the assumptions we use in order to obtain comparison results—
see (HNC) and (HNSE) in Section 3.1—are clearly too restrictive compared to the
ones which are used in the literature on the Neumann case. But maybe some specific
modification of our arguments allows not only to recover all the known results but
also to improve them.

Organization — In Section 2, we define what a “good” Ventcell boundary condition
is in a general, non-flat domain. Section 3 is devoted to present basic assumptions,
notations and results to prepare the three next sections which are devoted to first
state and then prove the comparison results. In particular, we recall how to reduce
the global (SCR) to a local one. The statements of these results are provided in
Section 4 and then we prove them in the case of first-order equations in Section 5 and
in the case of second-order equations in Section 6, the proofs in these two cases being
rather different even if they use similar common ingredients. Finally, in Section 7, we
provide further results, we mention some open questions and we sketch simpler proofs
under more restrictive assumptions.

(3)Here and below tσ denotes the transposed matrix of the matrix σ.
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2 The Ventcell Boundary Condition in General

Domains

As we already mentioned in the introduction, contrarily to the case of classical (Dirich-
let, Neumann, etc.) boundary conditions, the Ventcell case is particular because of
the dependence in the Hessian matrix of the solution on the boundary. For a general
boundary condition like (1.5), we have to investigate under which types of assump-
tions this boundary condition is consistent with the Maximum Principle, and therefore
for which a notion of viscosity solutions makes sense. And to do so, we would have
to use the definition of an Hessian matrix on a codimension 1 manifold—which is not
completely straightforward.

Instead of doing that, in this section, we have chosen to present in the simplest
possible way the conditions on the function G in order that it yields a “good” Ventcell
boundary condition. Then we show how (1.5) can be locally reduced to (1.4) by a
suitable flattening of the boundary.

We argue assuming that the boundary ∂Ω is as smooth as necessary—we refer the
reader to (HΩ) below for a more precise assumption concerning the regularity of the
boundary. We recall that the smoothness of ∂Ω implies that d, the distance function
to ∂Ω, is smooth on Ω in a neighborhood of ∂Ω, and that Dd(x) = −n(x) on ∂Ω; we
may keep the notation n(x) for −Dd(x) even if x is not on the boundary. Moreover,
the distance function carries other geometrical information: indeed, for any x ∈ ∂Ω,
the eigenvalues of D2d(x) are −κ1,−κ2, · · · ,−κN−1, the principal curvatures of ∂Ω
at x (See Gilbarg and Trudinger [15], Section 14.6).

2.1 Consistency with the Maximum Principle

In order to answer this first question, we adopt a viscosity solution point of view—or
a Maximum Principle one—and, at least formally, we look at maximum points of
u−φ where u is candidate to be a subsolution (that we assume to be smooth at first),
and φ is a smooth test-function.

We drop the t-variable since it plays no role in the boundary condition but the
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reader may easily check that t can be taken into account as any tangent variable, and
so is ut which is a tangent derivative on the boundary ∂Ω× (0, T ).

Proposition 2.1 Let x ∈ ∂Ω be a local maximum point on Ω of y 7→ (u − φ)(y).
Then the following first and second-order inequalities hold:

(i)
∂u

∂n
(x) ≥

∂φ

∂n
(x) and Du(x) = Dφ(x) + λn(x) for some λ ≥ 0 ,

(ii) D2u(x) +
∂u

∂n
(x)D2d(x) ≥ D2φ(x) +

∂φ

∂n
(x)D2d(x) in Tx∂Ω .

(2.1)

Proof — If x ∈ ∂Ω is a local maximum point on Ω of u − φ, let us first notice that
the first inequality in (i)—the normal direction one—is classical:

∂(u− φ)

∂n
(x) ≥ 0 .

For the tangential direction, we consider a smooth path χ : (−η,+η) → ∂Ω such that
χ(0) = x. Since 0 is a maximum point of s 7→ (u − φ)(χ(s)), by differentiating it
follows that D(u− φ)(x) · χ′(0) = 0.

Moreover, using that d(χ(s)) = 0 and differentiating this equality at s = 0 implies
that Dd(x) ·χ′(0) = 0; in other words, τ = χ′(0) belongs to Tx∂Ω. Hence, by choosing
all possible paths χ as above, we deduce that, for any τ ∈ Tx∂Ω, D(u− φ)(x) · τ = 0.
Therefore, there exists some λ ∈ R such that Du(x) = Dφ(x)+λn(x) and necessariliy
λ ≥ 0 from the normal inequality we recalled above, leading to (i).

We now turn to the second-order condition. Using that h(s) := (u− φ)(χ(s)) has a
maximum at s = 0, the second-order condition yields

h′′(0) = D2(u− φ)(x)χ′(0) · χ′(0) +D(u− φ)(x) · χ′′(0) ≤ 0 . (2.2)

Notice that D(u − φ)(x) · χ′′(0) = λn(x) · χ′′(0) = −λDd(x) · χ′′(0) and, using the
second-order derivative of d(χ(s)) = 0, we also have

D2d(x)χ′(0) · χ′(0) +Dd(x) · χ′′(0) = 0 .

Gathering these informations and denoting by τ any vector χ′(0) ∈ Tx∂Ω as above,
we arrive at

h′′(0) = D2(u− φ)(x)τ · τ + λD2d(x)τ · τ ≤ 0 .

Finally, since λ =
∂(u− φ)

∂n
(x), we arrive at

D2u(x) +
∂u

∂n
(x)D2d(x) ≥ D2φ(x) +

∂φ

∂n
(x)D2d(x) , (2.3)
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on the tangent space, which is (ii).
Q.E.D.

Consequences on G — In order to take into account Inequalities (2.1) in a proper
way, i.e. in order to have

G
(

x, t,Dφ(x), D2
Tφ(x)

)

≤ G
(

x, t,Du(x), D2
Tu(x)

)

≤ 0 ,

we have to require two properties on G: on one hand, it is natural to write G as

G(x, t, p,MT ) := G̃
(

x, t, p,MT + p · n(x)D2d(x)
)

, (2.4)

for any x ∈ ∂Ω, t ∈ [0, T ), p ∈ RN and MT , where we recall that MT is defined
for M ∈ SN by MT = (Id−n(x) ⊗ n(x))M(Id−n(x) ⊗ n(x)). Of course, we have to
assume that the function G̃ is elliptic in its last variable(4).

On the other hand, especially for (2.1)-(i), we have to assume that, for any λ ≥ 0,
x ∈ ∂Ω, t ∈ [0, T ), p ∈ RN and M ∈ SN

G̃
(

x, t, p+ λn(x),MT + p · n(x)D2d(x)
)

− G̃
(

x, t, p,MT + (p · n(x))D2d(x)
)

≥ 0 .

Of course, these basic conditions are not even sufficient to define a nonlinear Neu-
mann boundary condition—i.e. for the case where G̃(x, t, p,MT ) does not depend on
MT . They have to be reinforced in order to get a “good” Ventcell boundary condition,
in particular we will require the more restrictive assumption that there exists c̄ > 0
such that, for all x, t, p,MT , λ as above(5),

G̃
(

x, t, p+ λn(x),MT

)

− G̃
(

x, t, p,MT

)

≥ c̄λ. (2.5)

In other words, under this assumption, the boundary condition takes a form similar
to (1.4), with a constant c̄ > 0 multiplying uxN

. We refer to Section 3.1 for the exact
hypotheses and more details.

2.2 Reduction to a flat comparison result

Now we turn to the second question and to do so, we examine some special change of
coordinates which maps {yN = 0} in a neighborhood of 0 ∈ RN into ∂Ω. If ψ is such
a diffeomorphism, we change it into

Ψ(y′, yN) := ψ(y′, 0) + yNDd(ψ(y
′, 0)),

(4)This ellipticity requirement is expected since it was expected for G.
(5)In particular, λ ≥ 0.
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in that way, we have d(Ψ(y′, yN)) = yN . Then we set

v(y′, yN) = u(Ψ(y′, yN)) .

N.B. In the following, with a slight abuse of notations we identify the tangential gra-
dients of the form (pT , 0) with pT , similarly we identify Dy′v(y

′, 0) and (Dy′v(y
′, 0), 0)

and finally D2
y′y′v((y

′, 0)), identified with a N ×N -matrix with zeros at the last line
and column.

Proposition 2.2 The derivatives of v are given by

(i)
∂v

∂yN
= Du(x) ·Dd(x) , Dy′v(y

′, 0) = tDΨ(y′, 0)DTu(x) .

(ii) D2
y′y′v(y

′, 0) = tDΨ(y′, 0)
[

D2u(x) +
∂u

∂n
(x)D2d(x)

]

DΨ(y′, 0) + a(x)(DTu(x)) ,

(2.6)
for some linear map a(x) having the same regularity in x as D2Ψ.

Proof — Let us compute the y′-derivatives of v for yN = 0 in a direction h = (h′, 0) ∈
RN . Using the notation x = Ψ(y′, yN) to have simpler formulas, we get

∂v

∂yN
(y′, 0) = Du(x) ·Dd(x) , Dy′v(y

′, 0) · h′ = Du(x) ·Dψ(y′, 0)h′ ,

D2
y′y′v(y

′, 0)h′ · h′ = D2u(x)Dψ(y′, 0)h′ ·Dψ(y′, 0)h′ +Du(x) ·D(Dψ(y′, 0))(h′, h′) .

Next, applying these formulas to yN = d(Ψ(y′, yN)), in other words, taking u = d, we
obtain

0 = Dd(x) ·Dψ(y′, 0)h′ ,

0 = D2d(x)Dψ(y′, 0)h′ ·Dψ(y′, 0)h′ +Dd(x) ·D(Dψ(y′, 0))(h′, h′) .

Coming back to the first-order derivatives of v(y′, 0), since h′ is arbitrary we deduce
that Dy′v(y

′, 0) = tDψ(y′, 0)Du(x) = tDΨ(y′, 0)DTu(x) since tDψ(y′, 0)Dd(x) = 0
(we use here the aforementioned abuse of notations). This yields directly (i).

Now we decompose Du =
∂u

∂n
n(x) +DTu. Using that n(x) = −Dd(x) we see that

∂u

∂n
(x)n(x) ·D(Dψ(y′, 0)h′) = −

∂u

∂n
(x)Dd(x) ·D(Dψ(y′, 0)h′)

= +
∂u

∂n
(x)D2d(x)Dψ(y′, 0)h′ ·Dψ(y′, 0)h′ .

11



Gathering everything we obtain

D2
y′y′v(y

′, 0)h′ · h′ =

[

D2u(x) +
∂u

∂n
(x)D2d(x)

]

Dψ(y′, 0)h′ ·Dψ(y′, 0)h′+

DTu(x) ·D(Dψ(y′, 0))(h′, h′) .

Finally, since for yN = 0, we have Dψ(y′, 0)h′ = DΨ(y′, 0)h and since this vector is
arbitrary in Tx∂Ω, we deduce that

D2
y′y′v(y

′, 0) = tDΨ(y′, 0)

[

D2u(x) +
∂u

∂n
(x)D2d(x)

]

DΨ(y′, 0) + a(x)(DTu(x)),

where a(x) acts linearly on DTu and it has the same regularity in x as D2Ψ. Hence
(ii) holds.

Q.E.D.

Consequences on G— These properties show that the “flat” Hessian matrixD2
y′y′v(y

′, 0)

corresponds to D2
Tu(x) +

∂u

∂n
(x)D2d(x) through the change of coordinates modulo a

term depending only on DTu(x), the latter corresponding to Dy′v(y
′, 0). Moreover,

this formula can easily be inverted.

More precisely, if u is a subsolution [ resp. super-solution ] of (1.5), then v is a
subsolution [ resp. super-solution ] of

G̃
(

Ψ(y), t, P
(

y, t, Dyv(y, t)
)

,M
(

y, t, D′
yv(y, t), D

2
y′y′v(y, t)

)

)

= 0,

where, for y = (y′, 0) ∈ R
N close to 0, t ∈ [0, T ], q = (q′, qN ) with q

′ ∈ R
N−1 and for

any (N − 1)× (N − 1)-symmetric matrix MT

P (y, t, q) = ( tDΨ)−1(y)q′ − qNn(Ψ(y)), (2.7)

and M
(

y, t, q′,MT

)

is given by

( tDΨ)−1(y)
[

MT − a(Ψ(y))( tDΨ)−1(y)q′
]

(DΨ)−1(y),

Two remarks on this admittedly complicated formula: on one hand, in order to
recover the term −∂yN v, one can use (2.5); this is the purpose of Lemma 2.3 below.
On the other hand, the presence of the term a(Ψ(y))( tDΨ)−1(y)Dy′v(y, t) perturbs
the assumption we have to impose on G̃ to be able to use the Jensen-Ishi Lemma and
justify the unusual form of (HCont) below.

This allows to show that a “good” Ventcell boundary condition—in the sense of
Section 3.1—is locally equivalent to a “good” Ventcell boundary condition in the case
of a flat boundary. Moreover, the result below proves that the boundary condition
can be reduced to the form (1.4).
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Lemma 2.3 Let us assume that G̃ is a continuous function, which satisfies (2.5),
and that ∂Ω is smooth. Then there exists a continuous function G such that

G̃
(

Ψ(y), t, P (y, t, p′ − λeN ),M(y, t, p′,MT )
)

has the same sign as
−λ+G(y, t, p′,MT ) .

As a consequence, an equation with the boundary conditions G and G̃ have the same
subsolutions and the same supersolutions. Moreover, if G̃ satisfies the hypothesis
(HGen) and/or (HCont) which are given below, then G satisfies them too.

Proof — We first notice that we can assume that c̄ = 1 by dividing G̃ by c̄. Then, if
D := RN−1 × [0, T ]× RN−1 ×SN−1, we consider the function f : D ×R → R defined
by

f(X, λ) := G̃
(

Ψ(y), t, P (y, t, p′ − λeN),M(y, t, p′,MT )
)

where X = (y, t, p′,MT ).

The property of G̃ implies that, for all fixed X and for all λ′ ≥ λ, we have

f(X, λ′)− f(X, λ) ≤ −(λ′ − λ).

Hence, for all fixed X , the function λ 7→ f(X, λ) is a one-to-one function from R into
R and there exists a unique G(X) such that

f(X,G(X)) = 0,

and clearly f(X, λ) has the same sign as −λ+G(X).

For the properties of G, we just write that, if X,X ′ satisfy G(X ′) ≥ G(X) then,
by using the above monotonicity property of f in λ and the fact that f(X ′, G(X ′)) =
f(X,G(X)) = 0, we have

G(X ′)−G(X) ≤ f(X ′, G(X ′))− f(X ′, G(X)),

≤ f(X,G(X))− f(X ′, G(X)).

This inequality allows to transfer all the continuity properties of f in X to G and we
trust the reader to complete the proof by using this property.

Q.E.D.

A final remark concerns the distance function which is classically used to build sub-
and supersolutions. Of course, it plays this role also here; but in order to be able to
do so, the form of G, namely (2.4), is essential and we point it out in the
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Lemma 2.4 Let ψ : R → R be a smooth, increasing function. Then, the function
w := ψ(d) satisfies

D2
Tw(x) = ψ′(d(x))D2d(x) .

Moreover, if (2.4) and (2.5) hold, then

G(x, t,Dw,D2
Tw) ≤ G̃(x, t, 0, 0)− c̄ψ′(d(x)) .

Proof — A straightforward computation shows that (Dd(x) ⊗ Dd(x))T = 0 and
D2

Td(x) = D2d(x), which implies directly D2
Tw(x) = ψ′(d(x))D2d(x).

Now, if ψ′ > 0, (2.4) and (2.5) hold, then

G(x, t,Dw,D2
Tw) := G̃

(

x, t, ψ′(d(x))Dd(x), ψ′(d(x))D2d(x)+

(

ψ′(d(x))Dd(x) · n(x)
)

D2d(x)
)

,

= G̃(x, t,−ψ′(d(x))n(x), 0),

≤ G̃(x, t, 0, 0)− c̄ψ′(d(x)) .

In this computation, we used that Dd(x) = −n(x) both for the gradient term and
the D2d(x) one, which disappears since Dd(x) · n(x) = −1.

Q.E.D.

This property allows to consider suitable choices of ψ when building subsolutions.
Of course, a similar result holds for supersolutions when ψ′ < 0.

3 Preliminaries

In this section we first list the exact hypotheses we are going to use in the sequel:
on one hand, we distinguish between “basic assumptions” which, in some sense, are
the keystones of our framework and, in particular, define what a Ventcell boundary
condition is; on the other hand, we have more specific assumptions which are required
to obtain comparison results both in the cases when F is a first-order equation and
when it is a second-order one. Then we devote several subsections to preliminary
results that are used later on.

3.1 Hypotheses

We begin with the assumption on Ω which is required in order to handle a Ventcell
boundary condition in a general domain, see Section 2. Some of these assumptions
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may look a little bit strange but the reason is rather simple: we need hypotheses on
F and G ensuring that the nonlinearities obtained after the change of variables which
is described in Section 2.2 satisfy standard requirements.

(HΩ) — Regularity of the domain.

The (bounded or unbounded) domain Ω is of class W 4,∞: there exists a bounded,
W 4,∞-function d : Ω → R which agrees with the distance function in a neighborhood
of ∂Ω and such that d(x) > 0 in Ω.(6).

We point out that, for some results, the function d being C2, with bounded first and
second derivatives, is sufficient but to simplify matter, we only use (HΩ) in the paper.
The W 4,∞-regularity is justified by the change of variable we perform in Section 2:
we claim that the linear map a(x) has the same regularity as D2Ψ and has to be
Lipschitz continuous. But Ψ is built with Dd and therefore the regularity of D2Ψ
cannot be better that the one of D3d(x), hence implying the W 4,∞-regularity.

We then proceed with the standard hypotheses on the nonlinearities that are gen-
erally needed to use the viscosity solutions’ framework. To avoid repeating the same
assumptions for F and G—and to point out that they are actually the same—, we
introduce H : A× [0, T )× Rd × Sd → R having in mind two cases

(a) A = Ω, d = N and H = F ;

(b) A = ∂Ω, d = N − 1 and H = G.

We also use the notation z = (x, t) with the usual distance |z|2 = |x|2 + |t|2 and
denote by ‖·‖ a matricial norm on Sd.

The “basic assumptions” we mention above are

(HGen) — General assumptions on the Hamiltonians.
The nonlinearities F,G are continuous functions and, with the above conventions
(a)-(b), we have

(i) Lipschitz continuity.
There exists a constant C > 0 such that, for any x ∈ A, t ∈ [0, T ), p1, p2 ∈ Rd

and M1,M2 ∈ Sd

|H(x, t, p1,M1) ≤ H(x, t, p2,M2)| ≤ C
(

|p1 − p2|+ ‖M1 −M2‖
)

.

(6)Hence d(x) = 0 iff x ∈ ∂Ω and we recall that, if x ∈ ∂Ω, Dd(x) = −n(x) where n(x) is the
outward unit normal to ∂Ω at x
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(ii) Degenerate ellipticity for the second-order case.
For any x ∈ A, t ∈ [0, T ), p ∈ Rd and M1,M2 ∈ Sd

H(x, t, p,M1) ≤ H(x, t, p,M2) if M1 ≥M2,

where “≥ ” denotes the partial ordering on symmetric matrices.

Moreover, the function G = G(x, t, p,MT ) has the form (2.4) and

(iii) There exists a constant c̄ > 0 such that, for any λ ≥ 0, x ∈ ∂Ω, t ∈ [0, T ),
p ∈ R

N and M ∈ SN

G̃
(

x, t, p+ λn(x),MT

)

− G̃
(

x, t, p,MT

)

≥ c̄λ.

We immediately point out that it is equivalent to say that G or G̃ satisfies (HGen)-
(i)-(ii). Now, of course Assumption (HGen) is not sufficient to prove comparison
results and we introduce the following (almost classical) assumption in which BA(0, R)
denotes B(0, R) ∩ A. Of course, we still use the above conventions (a)-(b) and we
remind the reader that he/she has to think about the change of variables of Section 2.2
to understand the modifications that we have to make on the standard hypothesis.

(HCont) — Continuity assumption for the comparison result.

For any R,K > 0 and for any function Q : BA(0, R) × [0, T ] × Rd → Sd such that,
for any z = (x, t), z̃ = (x̃, t̃) ∈ BA(0, R)× [0, T ], p ∈ Rd

‖Q(z, p)‖ ≤ K(1 + |p|) , ‖Q(z, p)−Q(z̃, p)‖ ≤ K|z − z̃|(1 + |p|),

there exists a modulus of continuity ωR,K such that, for any |z|, |z̃| ∈ BA(0, R)×[0, T ],
p ∈ R

d and for any X, Y ∈ Sd satisfying

[

X 0
0 −Y

]

≤
1

ε2

[

Id − Id
− Id Id

]

+

[

Q(z, p) 0
0 −Q(z̃, p)

]

+ δ

[

Id 0
0 Id

]

(3.1)

for some ε, δ > 0, then we have

H(z, p, Y )−H(z̃, p, X) ≤ ωR,K

(

|z − z̃|(1 + |p|) + ε−2|z − z̃|2
)

+ ωR,K(δ). (3.2)

As a first remark, since F can be a first-order equation, we remark that, in this
case, this continuity hypothesis reduces to
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(HCont) — First-order case.

For any R > 0 there exists a modulus of continuity ωR : [0,+∞ → [0,+∞) such that,
for any z = (x, t), z̃ = (x̃, t̃) ∈ BΩ(0, R)× [0, T ], p ∈ R

d,

F (z, p)− F (z̃, p) ≤ ωR

(

|z − z̃|(1 + |p|)
)

. (3.3)

In the classical case, the Q-term in Hypothesis (HCont) does not exist; here it comes
from the change of coordinates we perform in a neighborhood of the boundary and
therefore appear only in the second-order case, cf. (3.3); therefore, this term is needed
only in such neighborhood. In order to keep things as simple as possible, we do not
try to generalize this assumption to take this remark into account.

In fact, this assumption as the classical one is satisfied by Hamilton-Jacobi-Bellman
or more generally by Isaacs Equations under standard assumptions, namely if F is
given by

sup
α

inf
β

{

− Tr(a(x, t, α, β)M)− b(x, t, α, β) · p− f(x, t, α, β)
}

,

where a = σ(x, t, α, β) tσ(x, t, α, β), the functions σ(x, t, α, β) and b(x, t, α, β) being
bounded, locally Lipschitz continuous in (x, t) uniformly w.r.t. α, β and f(x, t, α, β)
is continuous in (x, t) uniformly w.r.t. α, β. For G, we may take into account nonlin-
earities given by similar and properly adapted formulas.

Now we introduce some specific requirements on F in the normal direction to the
boundary. These are not the same according to the first or second order case. These
conditions will play a crucial role and in order to get a comparison result—we refer
to the book of the authors [5] for detailed explanations on the role of the normal
coercivity in the first-order case. In the second-order case, the ingredient that replaces
the coercivity is the normal strong ellipticity as will be clear in the comparison proof
below.

We give these two assumptions in the “flat case”, i.e. when Ω := {xN > 0}, but one
can translate them in a straightforward way for the general case.

(HNC) — Normal coercivity, first-order case.

For any (x, t) ∈ ∂Ω × [0, T ], there exists r, η̄, C̄ > 0 such that, for any (y, s) ∈ Ω
satisfying |y − x|+ |s− t| < r, p′ ∈ RN such that p′ · eN = 0, λ ∈ R,

F (y, s, p′ + λeN) ≥ η̄|λ| − C̄(1 + |p′|).
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(HNSE) — Normal strong ellipticity, second-order case.

For any (x, t) ∈ ∂Ω × (0, T ) there exists r, η̄, C̄ > 0 such that, for any (y, s) ∈ Ω
satisfying |y − x|+ |s− t| < r, p ∈ R

N , M ∈ SN and λ ∈ R,

F (y, s, p,M + λeN ⊗ eN) ≤ −η̄λ+ C̄(1 + |p|+ |M |) if λ > 0,

F (y, s, p,M + λeN ⊗ eN ) ≥ −η̄λ− C̄(1 + |p|+ |M |) if λ < 0.

Remark 3.1 Let us come back on the local Lipschitz continuity in x AND t we impose
in (HCont), cf. also (3.3). The reader may think that this requirement is not natural;
one may just expect some continuity in t. However, in order to use efficiently (HNC)
in the first-order case, we need the variable t to be considered as a tangential variable
x′, thus imposing the same regularity on both—see the proof below. In the second-order
case, though the situation is different, we still use this common regularity for some
technical reason.

We can now sum up the requirements on the equation in both the first and second
order case as well as for the boundary condition for comparison results.

(HComp-1) — Assumptions on F,G in the first-order case.

The nonlinearities F,G satisfy Assumptions (HGen), (HCont)
(7) and the normal co-

ercivity assumption (HNC) holds for F .

(HComp-2) — Assumptions on F,G in the second-order case.

The nonlinearities F,G satisfy Assumptions (HGen), (HCont) and the normal strong
ellipticity assumption (HNSE) holds for F .

These assumptions on G mean that the associated “flat boundary condition” G̃
has to satisfy first the standard second-order assumptions (ellipticity and Lipschitz
continuity), but also the Neumann or Ventcell-type boundary condition already men-
tionned in Section 2.

3.2 Global Comparison Results from Local Comparison Re-
sults

In [5], the proof of a “global” (SCR) is reduced to the simpler proof of a “local
one”, and even to the proof of a (SCR) in a small ball. Here we follow the same

(7)which reduces to (3.3) for F .

18



strategy since it is well-adapted to problems with boundary conditions and, in order to
emphasize the difference “global–local”, we denote by (GCR) a “Global Comparison
Result” while a “Local Comparison Result” is denoted by (LCR). Here are the
definitions of these two types of results.

(GCR) — Strong (global) Comparison Result for (1.1)-(1.5).

If u : Ω × [0, T ) → R is a bounded upper semicontinuous subsolution of (1.1)-(1.5),
if v : Ω × [0, T ) → R is a bounded lower semicontinuous supersolution of (1.1)-(1.5)
and if u(x, 0) ≤ v(x, 0) in Ω, then u(x, t) ≤ v(x, t) in Ω× [0, T ).

In [5], it is shown that, under suitable conditions, the proof of a (GCR) can be
reduced to the proof of a (LCR). In order to give a precise definition of a (LCR),
we introduce the notations

Qr,h
x,t := {(y, s) ∈ Ω× [0, T ) : |y − x| < r, t− h < s < t},

∂pQ
r,h
x,t := {(y, s) ∈ Qr,h

x,t : |y − x| = r} ∪ {(y, s) ∈ Qr,h
x,t : s = t− h}.

(LCR) — Local Comparison Result for (1.1)-(1.5).

For any (x, t) ∈ Ω× (0, T ), there exists r̄, h̄ > 0 such that

if u : Qr̄,h̄
x,t → R is a bounded upper semicontinuous subsolution of (1.1)-(1.5) in Qr̄,h̄

x,t ,

if v : Qr̄,h̄
x,t → R is a bounded lower semicontinuous supersolution of (1.1)-(1.5) in

Qr̄,h̄
x,t ,

then, for any 0 < r ≤ r̄ and 0 < h ≤ h̄,

max
Qr,h

x,t

(u− v)+ ≤ max
∂Qr,h

x,t

(u− v)+.

Our result is the (notice that in the result below, of course (HGen)-(ii) is automat-
ically satisfied if F is a first-order Hamiltonian)

Proposition 3.2 Assume that (HΩ) holds, and that both F and G satisfy (HGen).
Then a (LCR) implies a (GCR).

Before providing the proof of Proposition 3.2, we introduce a family of functions
which will be used in several places throughout this article, in particular to take care
of the Ventcell boundary condition: for K > 0, we select a function ϕK : [0,+∞) → R

satisfying
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1. ϕK ∈ C2([0,+∞),R), decreasing;

2. ϕK(0) = 0, ϕ′
K(0) = −1, ϕ′′

K(0) = −K;

3. ϕ′
K has a compact support, more precisely supp(ϕ′

K) = [0, 1];

4. In particular, ϕK is constant for t ≥ 1 and therefore ϕK is bounded.

Proof — We slightly modify the arguments of [5] in order to take into account the
Ventcell boundary condition. We denote by u and v the bounded sub and supersolu-
tion to be compared.

We first have to localize and to do so, we introduce the function

χ(x, t) := (|x|2 + 1)1/2 + k1ϕ(d(x)) + k2t,

where ϕ = ϕK is defined just after Proposition 3.2 with K = 1 (K is not going to
play any role here). Using (HGen)-(i) and (iii) together with Lemma 2.4, one easily
shows that, by choosing k1 large enough and then k2 large enough, then uα(x, t) =
u(x, t)−αχ(x, t) is still a subsolution for (1.1)-(1.5) for any α > 0 and uα(x, t) → −∞
when |x| → +∞ uniformly with respect to t.

The aim is to show that uα ≤ v on Ω× [0, T ) for any α > 0; indeed, if this is true,
we obtain the (GCR) by letting α tend to 0.

Because of the behavior of uα at infinity, the maximum of uα − v is achieved at
some point (x, t) and we can choose t as the minimal time for which this maximum
is achieved. Of course, we can assume without loss of generality that t > 0, otherwise
we are done, and then we face two cases: either x ∈ Ω or x ∈ ∂Ω.

If x ∈ Ω, the arguments of [5] apply: we argue in Qr,h
x,t where r, h are chosen small

enough in order that the (LCR) holds; we will also choose h > 0 small compared to
r, its size will be made precise later on. Notice that we can choose r, h such that Qr,h

x,t

does not intersect ∂Ω× (0, T ) and t− h ≥ 0.

For K > 0 large enough, uδα(y, s) := uα(y, s) − δ(|y − x|2 + K(s − t)) is still a
subsolution of (1.1) and, if 0 < h ≪ r2, the function |y − x|2 + K(s − t) is strictly
positive on the lateral boundary; indeed

|y − x|2 +K(s− t) = r2 +K(s− t) ≥ r2 −Kh > 0 if h < r2/K.

Next, for s = t− h, the maximum cannot be achieved by the minimality of t and, by
choosing δ small enough, we have

uδα(x, t)− v(x, t) > max
|y−x|≤r

(uδα(y, t− h)− v(y, t− h)).
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Applying the (LCR) to uδα and v and taking into account the above pieces of infor-
mation, we have

uα(x, t)− v(x, t) =uδα(x, t)− v(x, t)

≤ max
∂pQ

r,h
x,t

(uδα(y, s)− v(y, s)),

< max
∂pQ

r,h
x,t

(uα(y, s)− v(y, s)),

which yields a clear contradiction with the definition of (x, t) if δ > 0 is small enough,
which completes the proof in this case.

In the case when x ∈ ∂Ω, the advantage of reducing the proof to a (LCR), and
therefore to a small ball around x, is that we can argue w.l.o.g. with a flat bound-
ary, i.e. in the case of (1.4), cf. Lemma 2.3. Even if this requires a few additional
arguments—in particular, the change of coordinates does not transform balls into
balls; we trust the reader to be able to convince him/herself of this fact.

With this reduction, this second case is treated analogously adding an extra term
to take care of the Ventcell condition, namely replacing the δ-term by

δ
(

|y − x|2 + kηϕ
(

xN/η
)

+K
(

s− t)
)

)

,

where k > 0 and ϕ = ϕK (defined just after Proposition 3.2) for some K > 0 large
enough, in particular compared to k.

Using the properties of ϕK , the derivative of the ϕ-term is −k if d(x) = 0, i.e. if
x ∈ ∂Ω. Now, for η > 0 small enough, kηϕ(xN/η) = O(kη) is negative but small
compared to r2, which yields a contradiction on the lateral boundary |y − x| = r.
Next, on the boundary s = t−h, taking δ small enough gives the answer since, again,
by the minimality of t, the maximum of uα − v is strictly less than uδα(x, t)− v(x, t)
for s = t − h. Again, the contradiction is obtained for δ > 0 small enough, and the
proof is complete.

Q.E.D.

3.3 Local Properties of the Ventcell Boundary Condition

As the title indicates it, we investigate the local properties of the Ventcell boundary
condition and therefore we may assume without loss of generality that Ω = {xN > 0}
and that we are in the case of (1.1)-(1.4).

The first result concerns the “regularity” (in the sense of [5]) of sub and super-
solutions in the case of Ventcell boundary conditions. To do so, we introduce the
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assumption implying either the normal coercivity of the nonlinearity in the case of a
first-order equation or the normal strong ellipticity in the case of a second-order one.

Our result is the

Proposition 3.3 Assume that F,G satisfy (HGen) and that F satisfies either (HNC)
or (HNSE). Then subsolutions and supersolutions of (1.1)-(1.4) are regular on ∂Ω ×
(0, T ). More precisely, if u is an u.s.c. subsolution of (1.1)-(1.4) and v is a l.s.c.
supersolution of (1.1)-(1.4), then for any (x, t) ∈ ∂Ω× (0, T ),

u(x, t) = lim sup
(y,s)→(x,t)

(y,s)∈Ω×(0,T )

u(y, s) , v(x, t) = lim inf
(y,s)→(x,t)

(y,s)∈Ω×(0,T )

v(y, s).

This proposition means that the value of u and v on the boundary are, in some
sense, the limit of their interior values; there is no artificial jump on the boundary.
And, of course, the same general result holds in general domains.

Proof — The arguments being similar in the sub and supersolution cases, we just give
them in the subsolution one. We assume by contradiction that there exists an u.s.c.
subsolution u of (1.1)-(1.4) and (x, t) ∈ ∂Ω× (0, T ) such that

u(x, t) > lim sup
(y,s)→(x,t)

(y,s)∈Ω×(0,T )

u(y, s), (3.4)

and the aim is to get a contradiction.

To do so, for 0 < ε≪ 1, we introduce the function

(y, s) 7→ u(y, s)−
|y − x|2

ε2
−

|s− t|2

ε2
− LϕK(yN),

where L is a positive constant to be chosen later on and ϕ = ϕK is defined just after
Proposition 3.2. We take K large enough, the size depending only on the properties
of F , and being only necessary for dealing with second-order equations (recall that
ϕ′′
K(0) = −K).

For ε small enough and L = 0, this function has a maximum point (xε, tε) near
(x, t) and, if (3.4) holds, then this maximum point is necessarily on the boundary.
Moreover, for ε small enough, we necessarily have

u(xε, tε) > lim sup
(y,s)→(x,t)

(y,s)∈Ω×(0,T )

u(y, s),
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since, by classical arguements, u(xε, tε) → u(x, t). Therefore (xε, tε) is also a maximum
point of this function for any L > 0, so that the viscosity subsolution inequality takes
the form

min

(

o(1)

ε
+ F

(

xε, tε,
o(1)

ε
− LeN ,

o(1)

ε2
−KL

)

, L+
o(1)

ε
+G

(

x′ε, tε,
o(1)

ε
,
o(1)

ε2

)

)

≤ 0 .

But, for fixed ε, if L is large enough, neither the inequality associated to the Ventcell
boundary condition can hold, nor the one associated to the equation because of (HNC)
or (HNSE). This gives the desired contradiction and the result.

Q.E.D.

The next result concerns the boundary condition for second-order equations which
satisfy hypothesis (HNSE), i.e. which are uniformly elliptic in the normal direction; in
this case, the Ventcell boundary condition holds in a strong sense.

Proposition 3.4 Assume that F,G satisfy (HGen) and that F satisfies (HNSE). Then
the Ventcell boundary condition is satisfied in a “strong sense” for both subsolutions
and supersolutions of (1.1)-(1.4). More precisely,

(i) if u is an u.s.c. subsolution of (1.1)-(1.4) and (x, t) ∈ ∂Ω × (0, T ) is a local
maximum point of u− φ, where φ is a smooth test-function then

−
∂φ

∂xN
(x, t) +G(x, t,Dx′φ(x, t), D2

x′x′φ(x, t)) ≤ 0 .

(ii) if v is a l.s.c. supersolution of (1.1)-(1.4) and (x, t) ∈ ∂Ω × (0, T ) is a local
minimum point of v − φ, where φ is a smooth test-function then

−
∂φ

∂xN
(x, t) +G(x, t,Dx′φ(x, t), D2

x′x′φ(x, t)) ≥ 0 .

Proof — We sketch the proof for the subsolution case, the supersolution one being
analogous.

If (x, t) ∈ ∂Ω× (0, T ) is a local maximum point of u−φ, it is also a local maximum
point of the function

(y, s) 7→ u(y, s)− φ(y, s)− δ(yN − xN ) + L(yN − xN )
2,

for any δ, L > 0. Of course, the “locality” in this property depends on δ and L. The
second-derivative of the new test-function at (x, t) is now

D2φ(x, t)− LeN ⊗ eN ,
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and, using (HNSE), it is clear that, for L large enough, the F -inequality cannot hold
and therefore

−
∂φ

∂xN
(x, t) + δ +G(x, t,Dx′φ(x, t), D2

x′x′φ(x, t)) ≤ 0.

Letting δ tend to 0 gives the result.
Q.E.D.

3.4 About the initial condition

A last property concerns the initial data and more precisely the points of ∂Ω × {0}.
If (1.1)-(1.4) is associated to the initial data

u(x, 0) = u0(x) on Ω, (3.5)

where u0 ∈ C(Ω), then a priori we have to use “initial data in the viscosity solutions
sense” in the same way as we have “boundary conditions in the viscosity solutions
sense”. This is the requirement to be able to apply the half-relaxed limit method in
its full powerness. By standard methods, one can prove that, if u is a subsolution of
(1.1)-(1.4)-(3.5) and v is a supersolution of (1.1)-(1.4)-(3.5), we have

u(x, 0) ≤ u0(x) ≤ v(x, 0) for any x ∈ Ω. (3.6)

But we have to show that this inequality still holds if x ∈ ∂Ω, which is the aim of the

Proposition 3.5 Assume that F,G satisfy (HGen) and that u0 ∈ C(Ω). Then (3.6)
holds for any x ∈ Ω.

Proof — We only prove the result for a subsolution u, the proof for a supersolution
being analogous. And of course, we consider a point x ∈ ∂Ω for which we want to
show that u(x, 0) ≤ u0(x).

For ε small enough and for some large enough constant K1 > 0 to be chosen later
on, we consider the function

(y, t) 7→ u(y, t)−
|y − x|2

ε2
−K1t− εϕ(

yN
ε4

),

in the compact set (B(x, 1) ∩ Ω) × [0, T ] where ϕ = ϕ1 defined at the beginning
of Section 3.2. This function achieves its maximum at (xε, tε) and, using that the
εϕ-term tends to 0, classical arguments allow to show that

|xε − x|2

ε2
→ 0 as ε → 0.
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In particular, for ε small enough, xε ∈ B(x, 1) ∩ Ω—it is not on the boundary of
the ball—and we can write down viscosity subsolution inequalities. We claim that,
for ε small enough and for K1 > 0 large enough, we have necessarily tε = 0 and
u(xε, 0) ≤ u0(xε). Indeed

(i) On one hand, if ε is small enough, the Ventcell boundry condition cannot hold
since the εϕ-term has a derivative which is +ε−3 while all the x′-derivatives at
at most of order ε−2.

(ii) On the other hand, ifK1 is large enough (of order, say, ε−8), the equation cannot
hold either.

Hence only the inequality associated to the initial data can hold, proving our claim.
To conclude, it suffices to recall that u0 is continuous and u(xε, 0) → u(x, 0) invoking
again classical arguments.

Q.E.D.

Again, in the result above, of (HGen)-(ii) is automatically satisfied if F is a first-
order Hamiltonian.

4 Statement of the Main Comparison Results

We begin with a result in the half-space case since it is, in fact, the main result.

Theorem 4.1 Assume that Ω is given by (1.3), that either (HComp-1) or (HComp-2)
holds. Then the (LCR) holds for Problem (1.1)-(1.4), hence the (GCR) also holds.

Because of the form of Assumption (HNC) or (HNSE), this result is twofold: indeed,
the cases of first-order equations and of second-order equations are rather different,
even if their proofs—given respectively in Sections 5 and 6—contain common features.

As we pointed out above, Assumption (HCont)—which is essential in (HComp-1) and
(HComp-2)—is nothing but the classical (3.3) in the first-order case and, in the second-
order one, since Theorem 4.1 deals with a flat boundary, we can drop the Q-term in
this assumption (or assume, equivalently, that it holds only for Q ≡ 0).

The case of general domains is just a corollary of Theorem 4.1 because of Proposi-
tion 3.2: indeed the fact that a (GCR) reduces to a (LCR) allows a local flattening
of the boundary, therefore to recover the half-space case.

We formulate anyway the result.
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Theorem 4.2 Assume that (HΩ) holds, that either (HComp-1) or (HComp-2) holds.
Then the (LCR) holds for Problem (1.1)-(1.5) hence the (GCR) also holds.

5 Proof of (LCR) in the Half-Space Case in the

First-Order Case

As the title of the section indicates it, we are going to consider Problem (1.1)-(1.4)
set in Ω = {(x′, xN ) ∈ R

N : xN > 0}.

The aim of this section is to prove that a (LCR) holds for any point (x̃, t̃) ∈
Ω× (0, T ) and, of course, the only difficulty is when x̃ ∈ ∂Ω, otherwise the result just
follows by a standard comparison argument if we choose r̄, h̄ small enough in order to

have Qr̄,h̄

x̃,t̃
⊂ Ω × (0, T ). Indeed, (HCont) is a stronger assumption than the classical

hypothesis under which such a comparison result holds.

For x̃ ∈ ∂Ω, we are going to show that such a (LCR) holds in Qr̄,h̄

x̃,t̃
for any r̄ > 0

and 0 < h̄ < t̃. To do so, we argue by contradiction assuming that

max
Qr̄,h̄

x̃,t̃

(u− v)+ > max
∂pQ

r̄,h̄

x̃,t̃

(u− v)+.

Using (HGen)-(i), we can assume without loss of generality that u is a strict subsolu-
tion, i.e. all its viscosity subsolution inequalities holds with ≤ −η < 0 instead of ≤ 0;
indeed, it suffices to replace u(x, t) by

ũ(x, t) := u(x, t)− κ(Kt− xN) ,

for 0 < κ ≪ 1 and K large enough to get the strict subsolution property. We show

that the (LCR) inequality holds in Qr̄,h̄

x̃,t̃
for ũ and v, and then we let κ tend to 0. In

the sequel, we keep the notation u for the strict subsolution.

Now, in Qr̄,h̄

x̃,t̃
×Qr̄,h̄

x̃,t̃
, we introduce the function

Ψε,L(x, y, t, s) := u(x, t)− v(y, s)−
|x′ − y′|2

ε2
−

|t− s|2

ε2
− L|xN − yN |,

where the parameters ε > 0 and L > 0 are going to be chosen small enough and large
enough respectively.

This function achieves its maximum at (x̄, ȳ, t̄, s̄)—we drop the dependence of this
point in ε and L in order to simplify the notations—and with a suitable choice of ε
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and L (small enough and large enough respectively), we know that (x̄, t̄), (ȳ, s̄) ∈ Qr̄,h̄

x̃,t̃

by our contradiction hypothesis since, by classical arguments,

u(x̄, t̄)− v(ȳ, s̄) → max
Qr̄,h̄

x̃,t̃

(u− v)+ when ε→ 0, L→ +∞.

Moreover, we have
|x̄′ − ȳ′|2

ε2
+

|t̄− s̄|2

ε2
→ 0 as ε→ 0.

(a) We first prove that x̄N = ȳN = 0 for a well-chosen constant L, large enough
compared to ε.

Indeed, let us start by assuming that xN 6= yN . We then face two situations:

(i) if x̄N > 0, whether x̄N − ȳN is positive or negative we may use the inside equation

aε + F (x̄, t̄, pε ± LeN ) ≤ −η,

where

aε :=
2(t̄− s̄)

ε2
and pε :=

2(x̄′ − ȳ′)

ε2
.

(ii) If x̄N = 0, then |xN − yN | = −(xN − yN) if xN , yN are close enough to x̄N , ȳN and
the boundary condition yields

min

(

aε + F (x̄, t̄, pε + LeN ) , L+G

(

x̄′, t̄, pε,
2

ε2
Id

))

≤ −η,

Now, it is clear that, for a choice of the form L = Cε−2 with C large enough, none
of these inequalities can hold and therefore x̄N = ȳN .

Next, we again argue by contradiction, assuming that x̄N = ȳN > 0. As it is well-
known, we can add a term in the test-function in order that (x̄, ȳ, t̄, s̄) becomes a strict
maximum point. We are not going to do it here in order to simplify matter, but we
point out that (HGen)-(i) ensures that these additional terms would just produce
small perturbations in the inequalities.

Then, regularizing the term |xN − yN | by changing it into (|xN − yN |
2 + α2)1/2 for

0 < α≪ 1, at the new maximum point (x̄α, ȳα, t̄α, s̄α), we have in particular

aε,α + F
(

x̄α, t̄α, pε,α + L
((x̄α)N − (ȳα)N)

(|(x̄α)N − (ȳα)N |2 + α2)1/2
eN

)

≤ −η,
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where aε,α, pε,α are defined in the same way as aε, pε replacing x̄, ȳ, t̄, s̄ by x̄α, ȳα, t̄α, s̄α.
This inequality implies, using (HNC), that

L
((x̄α)N − (ȳα)N)

(|(x̄α)N − (ȳα)N |2 + α2)1/2
= O(|pε,α|+ |aε,α|) = o(ε−1),

this estimate being uniform w.r.t. α. Notice that, in order to have the right estimate
of aε,α, we need to double the variables in the same way for both x′ AND t: this is
where the local Lipschitz continuity in t of F,G is required, cf. Remark 3.1.

With this estimate, which is a key one since L is of order ε−2, the classical ar-
guments of the comparison proof for first-order Hamilton-Jacobi Equations yields a
contradiction for α small enough: the supersolution v satisfies a similar inequality,
just replacing x̄α by ȳα, t̄α by s̄α and ≤ −η by ≥ 0; hence we are in the same situation
as in the classical proof with a doubling of variable.

The rest of the proof consists in dealing with the case x̄N = ȳN = 0 since we have
left out the other cases.

(b) We perform a twin blow-up à la Forcadel, Imbert and Monneau [14].

To do so, we fix ε and L and for 0 < δ ≪ 1, we introduce the following functions:

uδ(x, t) :=
1

δ2
(

u(x̄′ + δx′, δ2xN , t̄+ δt)− u(x̄, t̄)− δpε · x
′ − δaεt

)

,

vδ(y, s) :=
1

δ2
(

v(ȳ′ + δy′, δ2yN , s̄+ δs)− v(ȳ, s̄)− δpε · y
′ − δaεs

)

.
(5.1)

Notice that the Ventcell boundary condition forces us to use a different scaling in the
tangent variables (x′, t, y′, s) and in the normal ones (xN , yN) and to introduce the
compensating terms aε and pε, two main differences with [14].

Using the maximum property of function Ψε,L at (x̄, t̄, ȳ, s̄), we deduce the estimate

uδ(x, t)− vδ(y, s) ≤
|x′ − y′|2

ε2
+

|t− s|2

ε2
+ L|xN − yN |, (5.2)

and uδ(0, 0) = vδ(0, 0). This inequality shows that uδ is locally bounded from above
and vδ is locally bounded from below, and both uniformly w.r.t. δ.

We set ū = limsup∗ uδ and v̄ = liminf ∗ vδ. These two functions are defined on Ω×R

and takes values in R∪{−∞} and R∪{+∞} respectively. We immediately point out
that the infinite values that ū, v̄ can take are a first difficulty that we have to solve.

These functions have three key properties: first, by taking the lim sup in (5.2), we
clearly have, for any (x, t), (y, s) ∈ Ω× R,

ū(x, t)− v̄(y, s) ≤
|x′ − y′|2

ε2
+

|t− s|2

ε2
+ L|xN − yN |. (5.3)
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Then we have ū(0, 0) = v̄(0, 0) = 0. Indeed, by definition, ū(0, 0) ≥ 0 and v̄(0, 0) ≤ 0
but (5.3) with (x, t) = (y, s) = (0, 0) gives us the opposite inequalities.

Finally, again by definition, we have the following homogeneity properties: for w =
ū, v̄ and for all µ > 0, we have, for any (x, t) = ((x′, xN), t) ∈ Ω× R

w((µx′, µ2xN), µt) = µ2w((x′, xN), t) . (5.4)

But, in order to take advantage of these properties, we have to take care of the infinite
values that ū, v̄ can have.

(c) Reduction to locally bounded functions uδ, vδ.

The functions uδ, vδ are a strict subsolution and a supersolution respectively of the
following boundary problem

{

δwt + aε + F (x̄′ + δx′, δ2xN , t̄+ δt, pε + δDx′w + wxN
eN) = 0 in {xN > 0} ,

−wxN
+G(x̄′ + δx′, δ2xN , t̄+ δt, pε + δDx′w,Dx′x′w) = 0 on {xN = 0} .

(5.5)

We are going to prove that we can assume w.l.o.g that uδ and vδ are locally bounded.
For uδ, we use that, by (5.2), (0, 0) is a maximum point of the function

(x, t) 7→ uδ(x, t)−
|x′|2

ε2
−

|t|2

ε2
− LxN ,

and, by the arguments of Proposition 2.10 in [5], there exists λ ≤ L such that, for all
λ ∈ [λ,+∞), (px, pt, X

′) = ((0, λ), 0, 2ε−2 Id) is in the second-order superdifferential
of uδ at (0, 0) and such that

aε + F (x̄′, 0, t̄, pε + λeN) ≤ −η.

Besides, the standard subsolution inequality yields

min
(

aε + F (x̄′, 0, t̄, pε + λeN),−λ +G(x̄′, 0, t̄, pε, 2ε
−2 Id)

)

≤ −η,

for any λ ∈ [λ,+∞).

We deduce from these inequalities that, for any K > 0, the functions

ψ
K
(x, t) := −K + λxN +

|x′|2

ε2
+

|t|2

ε2
,

are approximate subsolutions of the problem in a neighborhood of (0, 0). Meaning, it
is a subsolution where ≤ −η is replaced by ≤ −η + oδ(1) to take care of the terms
like δx′, δt, δwt, δDx′w in the equations.
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The consequence is that ũδ := max(ψ
K
, uδ) is an approximate subsolution as well,

which is bounded from below. A much easier but similar argument allows to bound
vδ from above by just using the coercivity of F in p (cf. (HNC)), and in particular in
the pN -direction, by building a supersolution ψK satisfying ψK(0, 0) = +K for K > 0
as above. We denote by ṽδ = min(ψK , vδ) the supersolution that we obtain in that
way.

(d) Passage to the limit in both the viscosity inequalities.
Now, since the ũδ, ṽδ are uniformly bounded w.r.t. δ, we define ũ = limsup∗ ũδ and
ṽ = liminf ∗ ṽδ. By standard stability results, the following properties hold true: if
xN , yN > 0 we have

aε + F (x̄, t̄, pε + ũxN
eN) ≤ −η < 0 ≤ aε + F (ȳ, s̄, pε + ṽxN

eN),

while, on the boundary, we have

min(aε + F (x̄, t̄, pε + ũxN
eN ),−ũxN

+G(x̄′, t̄, pε, Dx′x′ũ)) ≤ −η,

max(aε + F (ȳ, s̄, pε + v̄xN
eN),−v̄xN

+G(ȳ′, s̄, pε, Dx′x′ v̄)) ≥ 0.

Moreover we have
ũ = max(ψ

K
, ū) , ṽ = min(ψK , v̄).

The next step consists in regularizing ũ and ṽ by tangential sup and inf-convolution
respectively. To do so, we introduce the following notations: if χ is an u.s.c. (resp.
l.s.c.) function defined on Ω×R, satisfying suitable properties, we set, for 0 < α ≪ 1,

χα(x, t) := sup
(z′,τ)∈RN−1×R

(

χ((z′, xN), τ)−
|x′ − z′|2

α2
−

|t− τ |2

α2

)

, (5.6)

(resp.

χα(y, s) := inf
(z′,τ)∈RN−1×R

(

χ((z′, yN), τ) +
|y′ − z̃′|2

α2
+

|s− τ |2

α2

)

.) (5.7)

These functions are well-defined as soon as χ has a subquadratic behavior in (x′, t)
either from above or from below, which is the case for all the functions ū, v̄, ψ

K
, ψK .

And with these notations, we have, for 0 < α ≪ ε

ũα = max((ψ
K
)α, ūα) , ṽα = min((ψK)α, v̄α).

We also notice that inequality (5.3) implies that ūα(0, 0) = v̄α(0, 0) = 0 and apply-
ing the sup-inf convolution to this inequality gives

ūα(x, t)− v̄α(y, s) ≤ (1 +
α2

ε2
)

(

|x′ − y′|2

ε2
+

|t− s|2

ε2

)

+ L|xN − yN |. (5.8)
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Hence (0, 0, 0, 0) is still a maximum point of the function

ūα(x, t)− v̄α(y, s)− (1 +
α2

ε2
)

(

|x′ − y′|2

ε2
+

|t− s|2

ε2

)

− L|xN − yN |.

Now we claim that ũα, ṽα satisfy exactly the same viscosity inequalities as ũ, ṽ
respectively: proving these properties do not present any difficulty since the nonlin-
earities involved in the limiting problem do not depend neither on x nor on t; the
double blow-up has the effect to “freeze” the dependence in x and t.

We also recall that the functions ũα and ṽα are Lipschitz continuous in the tangent
variables (x′, t) uniformly w.r.t. xN or yN , ũ

α being semi-convex and ṽα semi-concave.
And because of (HNC), ũ

α is also Lipschitz continuous in xN uniformly w.r.t. the
tangent variables (x′, t) but only for xN > 0; at this point, we may still have a
discontinuity at xN = 0.

To solve this issue, we use Proposition 3.3 together with this Lipschitz continuity
in xN : this implies that ũα is necessarely continuous at any point ((x′, 0), t) in a
neighborhood of (0, 0). Hence ũα is Lipschitz continuous up to the boundary {xN = 0}
w.r.t. all variables. And concerning v̄α, it may still present discontinuities but, again
thanks to Proposition 3.3, it satisfies

ṽα((x
′, 0), t) = lim inf

(y,s)→((x′,0),t)
(y,s)∈Ω×R

ṽα(y, s),

in a neighborhood of (0, 0).

The main consequence of these properties are that ũα = ūα in a neighborhood of
(0, 0) because (ψ

K
)α(0, 0) < 0. Moreover, one easily shows that the sup-convolution

preserves (5.4) and therefore ūα also satisfies it. This implies that actually ūα is locally
bounded on Ω× R.

For ṽα, the situation is more complicated since this function may present discon-
tinuities in xN but we also have ṽα(yk, sk) = v̄α(yk, sk) for any sequence (yk, sk) →
((x′, 0), t) such that

ṽα(yk, sk) → ṽα((x
′, 0), t) .

Roughly speaking, ṽα = v̄α for all the points which plays a role in our arguments.
And, in the sequel, we are going to argue with ūα and v̄α.

(e) The Lions-Souganidis approach (revisited)

We first study the function ūα. On one hand, because of (5.4), we have

ūα((0, xN), 0) = λ1xN ,
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for some λ1 ∈ R; indeed, the function xN 7→ ūα((0, xN), 0) is homogeneous of degree 1.
Unfortunately, we do not know if λ1 is associated to an element of the second-order
superdifferential of ūα in all the variables.

To produce such an element in the xN -direction, for 0 < δ ≪ 1, we introduce the
functions

wδ(xN ) := sup
|(x′,t)|≤δ

(ūα((x′, xN), t)− ūα((x′, 0), t)) .

We remark that, if δ̄ > δ and if γ := δ̄/δ, the homogeneity property implies

wδ(xN)

xN
=
wδ̄(γ2xN )

γ2xN
. (5.9)

We deduce several properties from this equality. The first one is

lim sup
xN→0

wδ(xN)

xN
is independent of δ.

We denote this quantity by λ1.

Next, since wδ(xN ) decreases as δ → 0, we deduce that
wδ(xN )

xN
is decreasing in

xN ; in fact this property is obtained for wδ̄ using that γ is decreasing in δ but δ̄ is, of
course, arbitrary. This monotonicity property shows that

λ1 = lim
xN→0

wδ(xN )

xN
,

for any δ > 0.

Next we fix xN > 0 and we let δ tend to 0 in (5.9) to obtain

λ1 = lim
xN→+∞

wδ̄(xN )

xN
.

Now we arrive at the two main properties of λ1, λ1. We obviously have λ1 ≤ λ1 and
we have to consider two cases:
• if λ1 < λ1, then, for λ1 < λ < λ1 we consider xN 7→ wδ(xN) − λxN . Since this
function vanishes at xN = 0 and since we have

lim
xN→+∞

wδ(xN)

xN
< λ < lim

xN→0

wδ(xN )

xN
,
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this function achives its maximum at a point x̄N ∈ (0,+∞). But wδ is a strict
subsolution for the F -inequality since it is a supremum of strict subsolutions, and
therefore we have

aε + F (x̄, t̄, pε + λeN ) ≤ −η ,

and, of course, this inequality holds for all λ ∈ [λ1, λ1] by the continuity of F .
• If λ1 = λ1, the situation is even simpler since wδ(xN) = λ1xN = λ1xN for any xN

because
wδ(xN )

xN
is decreasing in xN from λ1 to λ1. And the same result holds for

λ = λ1 = λ1.

Now we look at the consequences in terms of superdifferential: if (px′, pt, X
′) is in

the superdifferential of the function (x′, t) 7→ ū((x′, 0), t) at a point ((x̄′, 0), t̄) close to
(0, 0), then ((px′ , λ1), pt, X

′) is in the superdifferential of the function (x, t) 7→ ū(x, t)
at the same point. Indeed, if δ is chosen large enough, we have

ū((x′, xN), t)− ū((x̄′, 0), t̄) = ū((x′, xN ), t)− ū((x′, 0), t) + ū((x′, 0), t)− ū((x̄′, 0), t̄)

≤ wδ(xN ) + ū((x′, 0), t)− ū((x̄′, 0), t̄)

≤ λ1xN + o(xN ) + pt(t− t̄) + px′(x′ − x̄′)+

1

2
(X(x′ − x̄′), (x′ − x̄′)) + o(|(x′ − x̄′)|2)

For v̄α, we have to be a little bit more careful since v̄α is not Lipschitz continuous
w.r.t. xN . We first remark that v((0, xN), 0)−v(0, 0) = v((0, xN), 0) ≥ u((0, xN), 0) =
u((0, xN), 0)− u(0, 0) = λ1xN . Moreover we know that

v̄α((x
′, 0), t) = lim inf

(y,s)→((x′,0),t)
(y,s)∈Ω×R

v̄α(y, s),

and therefore, by the uniform Lipschitz continuity of v̄α in x′ and t, we necessarely
have

v̄α(0, 0) = lim inf
xN→0

v̄α((0, xN), 0).

And finally, again because the inf-convolution preserves (5.4), v̄α((0, xN), 0) is homo-
geneous of degree 1. These two properties together show that v̄α((0, xN), 0) is nec-
essarely bounded for bounded xN —and so is v̄α((x

′, xN), t) for bounded x′, t—and
there exists λ2 ≥ λ1 such that

v((0, xN), 0) = λ2xN .

Next we argue as above, introducing

w̃δ(xN ) := inf
|(x′,t)|≤δ

(v̄α((x
′, xN), t)− v̄α((x

′, 0), t)) .
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Using similar arguments, we can show that

(i)
w̃δ(xN)

xN
is increasing in xN and it tends to λ2 as xN → +∞.

(ii) lim
xN→0

w̃δ(xN)

xN
is independent of δ.

Then we have two cases:

• If lim
xN→0

w̃δ(xN )

xN
= −∞, then applying exactly the same arguments as above shows

that
F (ȳ, s̄, pε + λeN) ≥ 0 for all λ ∈ (−∞, λ2).

But we can take λ = λ1 and we have both

F (ȳ, s̄, pε + λ1eN ) ≥ 0,

F (x̄, t̄, pε + λ1eN) ≤ −η.

This last inequality together with (HNC) implies that |λ1| ≤ C̄(1 + |pε|) and (HCont)
implies that

|F (ȳ, s̄, pε + λ1eN)− F (x̄, t̄, pε + λ1eN)| ≤ oε(1),

a contradiction if ε is chosen small enough.

• Or lim
xN→0

w̃δ(xN )

xN
= λ2 > −∞ and we can use exactly the same arguments as for ūα

to show that, on one hand,

F (ȳ, s̄, pε + λeN) ≥ 0 for all λ ∈ (λ2, λ2),

and, on the other hand, if (qx′ , Y ′, qt) is in the subdifferential of the function (x′, t) 7→
v̄α((x

′, 0), t) at a point ((x̄′, 0), t̄) close to (0, 0), then ((qx′ , λ2), Y
′, qt) is in the subd-

ifferential of the function (x, t) 7→ v̄α(x, t) at the same point.

(e) To the conclusion

In the sequel, we consider only the parts of the sub and superdifferentials of ūα, v̄α
which are really useful, i.e. the couples corresponding to (DxN

, D2
x′x′).

Applying the Jensen-Ishii Lemma in the tangent variables (x′, t) together with all
the informations of the previous step, we deduce that there exist (N − 1)× (N − 1)
symmetric matrices X ′, Y ′ such that

[

X ′ 0
0 −Y ′

]

≤
2

ε2
(1 +

α2

ε2
)

[

I −I
−I I

]

; (5.10)

and
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(i) (λ,X ′) ∈ D̄2,+ūα(0, 0) if λ ≥ λ1,

(ii) (λ, Y ′) ∈ D̄2,−v̄α(0, 0) if λ ≤ λ2,

(iii) In addition, we have

aε + F (x̄, t̄, pε + λeN) ≤ −η if λ1 ≤ λ ≤ λ1,

aε + F (ȳ, s̄, pε + λeN ) ≥ 0 if λ2 ≤ λ ≤ λ2.

(iv) λ1 ≤ λ2.

The new point in the twin blow-up argument is that the two properties in (iii) do not
hold at the same point for F but we point out that, as long as λ1 ≤ λ ≤ λ1, then the
coercivity assumption on F implies that λ = o(ε−1) and therefore F (x̄, t̄, pε+λeN ) =
F (ȳ, s̄, pε + λeN) + oε(1), which means that, for ε small enough, we can assume that
we are at the same point.

– If [λ1, λ1]∩ [λ2, λ2] 6= ∅ then the above remark on the estimate of λ and (iii) give
an easy contradiction.

– Otherwise λ1 < λ2 and we can choose λ ∈ [λ1, λ2] such that

aε + F (x̄, t̄, pε + λeN) = −η/2 (8).

This implies that, in the boundary inequalities, only the G-condition has to be dealt
with. In this situation, since we have both (λ,X ′) ∈ D̄2,+ūα(0, 0) and (λ, Y ′) ∈
D̄2,−v̄α(0, 0), we can apply the viscosity inequality for the boundary condition which
leads to

−λ+G(x̄′, t̄, pε, X
′) ≤ −η < 0 ≤ −λ+G(ȳ′, s̄, pε, Y

′).

Therefore, by (HCont) and using that |x′ − y′| = o(ε), there exists c > 0 such that for
ε > 0 small enough and α≪ ε

−ωR(|x
′ − y′|+ cε−2|x′ − y′|2) ≤ −η,

which yields a contradiction for small ε.

6 Proof of (LCR) in the Half-Space Case in the

Second-Order Case

For second-order equations, the strategy is exactly the same and we are not going
to repeat all details here. Again u, v denotes an u.s.c. strict subsolution and a l.s.c.

supersolution of (1.1)-(1.4) in Qr̄,h̄

x̃,t̃
respectively.

(8)Notice that, here again, we have λ = o(ε−1) by the coercivity assumption on F .
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But the first step has to be done differently since, in the first-order case, we reduce
to the case when the maximum point satisfies xN = yN = 0 by a combination of
normal coercivity and use of Ventcell boundary condition. Here, on the contrary, we
only use the normal ellipticity of F .

We start by assuming that

M := max
Qr̄,h̄

x̃,t̃

(u− v)+ > max
∂pQ

r̄,h̄

x̃,t̃

(u− v)+ ,

and we denote by (x̄, t̄) ∈ Qr̄,h̄

x̃,t̃
a point where M is attained.

(a) Building a test-function to reduce to the case x̄N = ȳN = 0.

For τ ∈ R, we set

ϕ(τ) := τ −
τ 2

2
,

and, in Eε := Qr̄,h̄

x̃,t̃
×Qr̄,h̄

x̃,t̃
∩ {|xN − yN | ≤ ε}, we introduce the function

Ψε,L(x, y, t, s) := u(x, t)− v(y, s)−
|x′ − y′|2

ε2
−

|t− s|2

ε2
− Lϕ

(

|xN − yN |

ε

)

,

where the parameters ε > 0 and L > 0 are going to be chosen small enough and
large enough respectively. We denote by (x̄, t̄, ȳ, s̄) a point of maximum of Ψε,L in Eε,
dropping the dependence in ε and L for simplicity of notations.

Notice that this penalization procedure is not as standard as usual and the following
result replaces Step (a) from the first-order case

Lemma 6.1 For ε > 0 small enough and L > 0 large enough (but independent of ε),
the maximum point (x̄, t̄, ȳ, s̄) satisfies x̄N = ȳN = 0.

Proof — We proceed in three steps as follows.

1. Notice first if L is chosen large enough—with a size depending only on u and v—,
the maximum of function Ψε,L cannot be achieved on the boundary |xN − yN | =
ε. Indeed, if |x̄N − ȳN | = ε, the value of the Lϕ-term is L/2, which implies that
max(Ψε,L) → −∞ as L→ +∞.

2. A second remark is that, if x̄N 6= ȳN , the ϕ-term becomes smooth at these points.
Hence, for instance if x̄N > 0, we can use

(x, t) 7→ v(ȳ, s̄) +
|x′ − ȳ′|2

ε2
+

|t− s̄|2

ε2
+ Lϕ

(

|xN − ȳN |

ε

)
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as a test-function in the inside equation for u at (x̄, t̄), which yields

aε + F
(

x̄, t̄, pε ±
L

ε
eN ,

2

ε2
Id−

L

ε2
eN ⊗ eN

)

≤ 0 .

But this contradicts the ellipticity of F for L large enough, its size depending only
on the properties of F . Similarly, we also reach a contradiction if ȳN > 0 by using the
supersolution inequality for v, involving the +Lε−2 eN ⊗ eN term in F .

3. At this stage, we are left with proving that x̄N = ȳN > 0 cannot occur which is
not as simple as in the first-order case. We first notice that, by usual arguments, we
can assume w.l.o.g that (x̄, t̄, ȳ, s̄) is a strict maximum point by subtracting |x− x̄|4+
|y − ȳ|4 + |t− t̄|4 + |s− s̄|4 to the function Ψε,L—we keep the same notation for this
new function.

Then, we denote by Ψε,L,α the function which is the same as Ψε,L except that we
replace ε by α in the ϕ-term, more precisely

Ψε,L(x, y, t, s) := u(x, t)− v(y, s)−
|x′ − y′|2

ε2
−

|t− s|2

ε2
− Lϕ

(

|xN − yN |

α

)

.

We first remark that, for α > ε, as long as the maximum point of Ψε,L,α in Eε satisfies
xN = yN , then this point is necessarily (x̄, ȳ, t̄, s̄). Indeed, this derives from the fact
that Ψε,L,α(x, t, y, s) = Ψε,L(x, t, y, s) if xN = yN .

Next, we define ᾱ as the supremum of all α ≥ ε such that the maximum of Ψε,L,α

in Eε is still achieved for xN = yN > 0, i.e. for which (x̄, ȳ, t̄, s̄) is still a maximum
point. We face several cases:

(i) If ᾱ = +∞, we can drop the ϕ-term: (x̄, t̄, ȳ, s̄) is a maximum point of Ψε,0 and
the usual comparison arguments, leading to a contradiction, can be performed.

(ii) If ᾱ < +∞ we distinguish two sub-cases:

(ii)-(a) If (x̄, ȳ, t̄, s̄) is a strict maximum point of Ψε,L,ᾱ, then, for any α > ᾱ,
there is a maximum point (x̄α, ȳα, t̄α, s̄α) such that (xα)N 6= (yα)N and the
sequence (x̄α, ȳα, t̄α, s̄α) converges to the strict maximum point (x̄, ȳ, t̄, s̄)
as α → ᾱ. In this case, the usual comparison argument allows to conclude
since the ϕ-term is smooth if xN 6= yN , see step 2. above.

(ii)-(b) If (x̄, ȳ, t̄, s̄) is NOT a strictmaximum point of Ψε,L,ᾱ, this means that there
exists a sequence (x̄k, ȳk, t̄k, s̄k) of maximum points of Ψε,L,ᾱ which con-
verges to (x̄ᾱ, ȳᾱ, t̄ᾱ, s̄ᾱ) and such that (xk)N 6= (yk)N . Indeed, we cannot
have (xk)N = (yk)N (as k → ∞) since (x̄ᾱ, ȳᾱ, t̄ᾱ, s̄ᾱ) is a strict maximum
point of Ψε,L,ᾱ = Ψε,L with the constraint xN = yN . And we conclude as
in the previous case, by using the comparison arguments on (x̄k, t̄k, ȳk, s̄k).
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In any case, we reach a contradiction when the maximum point (x̄, t̄, ȳ, s̄) satisfies
x̄N = ȳN > 0, so that we can assume w.l.o.g. that Ψε,L has a maximum point such
that xN = yN = 0

Q.E.D.

Remark 6.2 In the proof of Lemma 6.1, even if this may not be completely crucial,
we benefit from the same doubling of variables in x′ and t since it simplifies matter,
at least. This is where the local Lipschitz continuity in t plays a role, cf. Remark 3.1.

(b) The twin blow-up argument.

After this first step, we perform the twin blow-up argument as in the first-order case,
see (5.1). Of course, since F now depends on the second-derivatives, the equation
inside the domain involves more terms than in (5.5), but we are not going to write
them here since passing to the limit yields a simple formulation in the end—see below.

In order to reduce to the case when uδ and vδ are bounded as in the first-order case,
we use sub- and supersolutions of the form

ψ±(x, t) := ±K1(1− xN −K2x
2
N ),

ψ− being the subsolution and ψ+ the supersolution. The K1-constant is used to take
care of the Ventcell boundary condition, while the K2-one is used for the equation,
using the ellipticity of F in the normal direction. Both constants depend on ε (but
not on δ) and we consider these sub and supersolutions only in a small neighborhood
of the boundary, i.e. for xN small.

As in the first-order case, we define uδ, vδ and

ũδ := max(uδ, ψ
−) and ṽδ := min(vδ, ψ

+) ,

which are now bounded sub and supersolutions. And in the same way we set ũ =
limsup∗ ũδ, ū = limsup∗ uδ, ṽ = liminf ∗ ṽδ, v̄ = liminf ∗ vδ and we have

ũ := max(ū, ψ−) and ṽδ := min(v̄, ψ+) .

(c) The limit problem.

Using (HNSE), the limit problem for ũ and ṽ is now

−ũxNxN
≤ 0 ≤ −ṽxNxN

if xN > 0 and yN > 0 respectively . (6.1)
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Notice that the strict subsolution property is lost in the limit here. On the boundary,
we get

min(−ũxNxN
,−ũxN

+G(x̄′, t̄, pε, Dx′x′ũ) + η) ≤ 0,

max(−ṽxNxN
,−ṽxN

+G(ȳ′, s̄, pε, Dx′x′ ṽ)) ≥ 0,

but using the uniform ellipticity in the normal direction of the equation inside the
domain together with Proposition 3.4, these relaxed boundary conditions reduce to

−ũxN
+G(x̄′, t̄, pε, Dx′x′ũ) + η ≤ 0,

−ṽxN
+G(ȳ′, s̄, pε, Dx′x′ ṽ) ≥ 0.

Moreover, ū, v̄ satisfy ū(0, 0) = v̄(0, 0) = 0 and

ū(x, t)− v̄(y, s)−
|x′ − y′|2

ε2
−

|t− s|2

ε2
−
L

ε
|xN − yN | ≤ 0. (6.2)

The difference in the second-order case is that the Lipschitz continuity of the sub-
solution in a neighborhood of the boundary is not given for free and we are not sure
that complete super and subdifferentials do exist when tangential ones exist.

(d) Adapting the Ishii-Jensen Lemma.

As in the first-order case, we perform a sup-convolution in (x′, t) to ũ and an inf-
convolution in (y′, s) to ṽ, keeping the same notations (cf. (5.6)-(5.7)). For 0 < α≪ ε,
we have the following
(i) ũα = max(ūα, (ψ−)α), ṽα = min(v̄α, (ψ

+)α).
(ii) Since (ψ−)α = −K1 and (ψ+)α = +K1 if xN = 0, we have ũα(0, 0) = ṽα(0, 0) = 0
and ũα = ūα, ṽα = v̄α if xN = 0 in a neighborhood of (0, 0).
(iii) ũα, ṽα satisfy the same viscosity sub and supersolution inequalities as ũ, ṽ respec-
tively: in fact, these sup- and inf-convolution procedures do not present any technical
difficulty since the nonlinearities involved in the limiting problem do not depend nei-
ther on x′ nor on t.
(iv) Because ũα, ṽα satisfy (6.1), the functions xN 7→ ũα((x′, xN), t) and xN 7→
ṽα((x

′, xN ), t) are respectively convex and concave for all x′, t in a neighborhood of
(0, 0).

At this point, we apply Proposition 3.3 to ũα, ṽα together with the uniform tangen-
tial Lipschitz continuity of these sub and supersolution, it implies:

ũα(0, 0) = lim sup
xN→0
xN>0

ũα((0, xN), 0), ṽα(0, 0) = lim sup
xN→0
xN>0

ṽα((0, xN), 0).

39



Then, using this property with the convexity of ũα and the concavity of ṽα, we easily
deduce that there exists C > 0 such that

ũα((0, xN), 0) ≥ −CxN , ṽα((0, xN), 0) ≤ CxN ,

which, by using the uniform tangential Lipschitz continuity of ũα, ṽα, implies that
they are both continuous at (0, 0).

Hence ũα = ūα, ṽα = v̄α in a neighborhood of (0, 0) and the homogeneity property
(5.4) shows that they are locally bounded on Ω× R.

Moreover

ūα(x, t)− v̄α(y, s) ≤ (1 +
α2

ε2
)

(

|x′ − y′|2

ε2
+

|t− s|2

ε2

)

+
L

ε
|xN − yN |. (6.3)

Hence (0, 0, 0, 0) is still a maximum point of

ūα(x, t)− v̄α(y, s)− (1 +
α2

ε2
)

(

|x′ − y′|2

ε2
+

|t− s|2

ε2

)

−
L

ε
|xN − yN |.

As usual, we may even assume that (0, 0, 0, 0) is a strict maximum point of this
function by adding suitable (small) terms.

Now, for q ∈ R2N close to 0, we consider the functions

ūα(x, t)−v̄α(y, s)−(1+
α2

ε2
)

(

|x′ − y′|2

ε2
+

|t− s|2

ε2

)

−Lϕ

(

|xN − yN |

ε

)

−q ·(x′, t, y′, s).

Arguing as in the first step—this is even easier here—, all these functions achieve
their maximum at points such that xN = yN = 0. Then, by combining Theorem A.2
and Lemma A.5 in [10] in the tangent variables, there exists a sequence (qk)k of points
in R2N such that each function

ūα(x, t)−v̄α(y, s)−(1+
α2

ε2
)

(

|x′ − y′|2

ε2
+

|t− s|2

ε2

)

−Lϕ

(

|xN − yN |

ε

)

−qk ·(x
′, t, y′, s)

has a maximum point at ((x′k, 0), tk, (y
′
k, 0), sk) where ū

α, v̄α are twice differentiable.
At these points, we have full super and subdifferentials for ūα, v̄α respectively, because
of this maximum point property.

We denote by X ′
k = D2

x′x′ūα((x′k, 0), tk) and Y
′
k = D2

x′x′ v̄α((y
′
k, 0), sk); they satisfy

[

X ′
k 0
0 −Y ′

k

]

≤
2

ε2
(1 +

α2

ε2
)

[

I −I
−I I

]

. (6.4)

Using again the result of Proposition 2.10 in [5], there exists λ
k

1, λ
k
2 such that
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(i) (X ′
k, λ) ∈ D2,+ūα((x′k, 0), tk) if λ ≥ λ

k

1,

(ii) (Y ′
k, λ) ∈ D2,−v̄α((y

′
k, 0), sk) if λ ≤ λk2,

and λ
k

1, λ
k
2 are the minimal and maximal values in the super and subdifferential at

these points respectively.

Because of the uniform ellipticity in xN of the equation in the domain, the boundary
condition is satisfied in a strong sense—see Proposition 3.4—and we have

{

−λ1 +G
(

x′k, tk, pε, X
′
k

)

≤ −η for any λ1 ≥ λ
k

1 ,

−λ2 +G
(

y′k, sk, pε, Y
′
k

)

≥ 0 for any λ2 ≤ λk2 .
(6.5)

Now we use several estimates: on one hand, we know that

|x̄′ − ȳ′|2

ε2
+

|t̄− s̄|2

ε2
→ 0 as ε→ 0.

and, on the other hand,

(x′k, tk)− (x̄′, t̄), (y′k, sk)− (ȳ′, s̄) = oα(1) + ok(1) .

Using (HCont), this yields

G
(

x′k, tk, pε, X
′
k

)

−G
(

y′k, sk, pε, Y
′
k

)

≥ oε(1) + o(ε)α (1) + o
(ε)
k (1) ,

where o
(ε)
α (1)+o

(ε)
k (1) → 0 if α→ 0, k → ∞ with a fixed ε and oε(1) → 0 when ε→ 0.

The above inequalities leads to

oε(1) + o(ε)α (1) + o
(ε)
k (1) ≤ λ

k

1 − λk2.

At this point, we want to make precise our use of the parameters ε, α and k: we first
choose ε in order to have the above oε(1) to be less that, say, η/4, then we have to
choose α small enough and k large enough compared to ε.

With this choice of the parameters, we can assume without loss of generality that

λ
k

1 − λk2 ≥ η/2.

(e) Getting a contradiction.

Let us first notice that, after examining carefully the sub and superdifferential in the

normal direction around (0, 0), λ = λ
k

1 is a minimal element such that (X ′
k, λ) is in

the superdifferential of ūα while λk2 is a maximal element such that (Y ′
k, λ) in the

subdifferential of v̄α. We will use this information below.
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Then, we notice that the functions xN 7→ ūα(x′, xN , t) are convex for any x′, t close
to (0, 0) and, in the same way, the functions xN 7→ v̄α(x

′, xN , t) are concave for any
x′, t close to (0, 0)—hence close to ((x′k, 0), tk) and ((y′k, 0), sk) respectively—. There-
fore, since these functions are bounded, they are locally Lipschitz continuous. and
their derivatives (defined almost everywhere) are non-decreasing and non-increasing
respectively.

Moreover, the functions xN 7→ ūα(x′, xN , t) are necessarily continuous at xN = 0.
Indeed, if ūα(x′, xN , t) → γ(x′, t) < ūα(x′, 0, t) for some x′, t, then the same property
holds in a small neighborhood of (x′, 0, t) and this implies that, in this neighborhood,
any λ ∈ R is in the superdifferential of ūα when it is not empty. This is clearly in
contradiction with the Ventcell boundary condition because (1.4) cannot hold for
any λ ∈ R. A slightly different argument consists in using Proposition 3.3. The same
remark also holds for v̄α and therefore both functions are continuous w.r.t. all variables
in a neighborhood of ((x′k, 0), tk) and ((y′k, 0), sk) respectively.

Now we claim that there does not exists a neighborhood V of ((x′k, 0), tk) such that

∂ūα((x′, xN ), t)

∂xN
≤ λ

k

1 − η/8 for all (x′, t), a.e. in xN ,

if ((x′, xN), t) ∈ V ∩ (Ω× R).

Indeed otherwise we would have a contradiction with the definition of λ
k

1 and its
minimality. In the same way, the property

∂v̄α((x
′, xN), t)

∂xN
≥ λ

k

2 + η/8 for all (x′, t), a.e. in xN ,

cannot hold for ((x′, xN ), t) ∈ V ∩ (Ω× R), where V a neighborhood of ((y′k, 0), sk).

Hence, there exists a sequence (x(p), t(p))p converging to ((x′k, 0), tk) such that

∂ūα(x(p), t(p))

∂xN
≥ λ

k

1 − η/8

and using the convexity of xN 7→ ūα(x′, xN , t), we have, for all xN ≥ x
(p)
N

ūα(((x(p))′, xN ), t
(p)) ≥ ūα(x(p), t(p)) + (λ

k

1 − η/8)(xN − (x(p))N) .

And, of course, we have a similar inequality for v̄α by using its concavity.

We can pass to the limit in these inequalities by using the continuity of ūα, v̄α at
((x′k, 0), tk) and the tangential continuity of both functions; we finally obtain

{

ūα((x′k, xN ), tk)− ūα((x′k, 0), tk) ≥ (λ
k

1 − η/8)xN ,

v̄α((y
′
k, xN ), sk)− v̄α((y

′
k, 0), sk) ≤ (λ

k

2 + η/8)xN ,
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leading to
[

ūα((x′k, xN), tk)− v̄α((y
′
k, xN ), sk)

]

−
[

ūα((x′k, 0), tk)− v̄α((y
′
k, 0), sk)

]

≥
(

λ
k

1 − λ
k

2 −
η

4

)

xN ≥
η

4
xN .

Letting k → ∞, this yields

ūα(0, xN , 0)− v̄α(0, xN , 0) ≥
η

4
xN ,

but (5.3) implies ūα(0, xN , 0)− v̄α(0, xN , 0) ≤ 0, and we reach a contradiction which
ends the proof.

7 Further Results and Open Questions

In this last section we gather some comments, open questions and other results con-
cerning Problem (1.1)-(1.5).

Existence via Perron’s method

We first provide an existence result for Problem (1.1)-(1.5) associated to the initial
condition (3.5) and to do so we use the assumption

(HB-Ex) — Boundedness assumption for existence.

The functions x 7→ u0(x), (x, t) 7→ F (x, t, 0, 0) and (x, t) 7→ G(x, t, 0, 0) are bounded
and continuous on Ω, Ω× [0, T ] and ∂Ω × [0, T ] respectively.

The result is the

Proposition 7.1 Under the assumptions of Theorem 4.2, if (HB-Ex) holds, there
exists a unique, bounded continuous solution to Problem (1.1)-(1.5)-(3.5).

Proof — We just give the main arguments since the proof is based on the classical
Perron’s method (cf. Ishii [16], see also [10]).

The key point is to build sub and supersolutions of the problem and they have the
form

u±(x, t) := ±k1t± k2ϕ(d(x)) + k3,
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where ϕ is ϕ1 defined at the beginning of Section 3.2 and k1, k2, k3 are constant which
are chosen in the following way:

(i) k2 is chosen in order to have u± satisfying the Ventcell boundary condition,
cf. Lemma 2.4.

(ii) Then k1 is chosen in order to ensure that u± are sub and supersolution of (1.1).

(iii) Finally k3 is chosen in order to have

u−(x, 0) ≤ u0(x) ≤ u+(x) on Ω.

With all these properties, one can apply Perron’s method—with an initial data being
understood in the viscosity sense. And the result is proved.

Q.E.D..

Including some ut-dependence in G

It is clear that boundary conditions like

G(x, t, ut, Du,D
2u) = 0 on ∂Ω× (0, T ),

where G(x, t, pt, p,MT ) is an increasing function in pt can be treated analogously,
typically

ut −
∂u

∂xN
+G(x′, t, Dx′u,D2

x′x′u) = 0 on {xN = 0} × (0, T ).

The assumptions on the dependence in pt are analogous to those made on the tangen-
tial part of p since, as it is already the case in this article, t can be seen as a tangent
variable to the boundary ∂Ω × (0, T ).

The stationary case

We point out that the stationary case can be treated analogously provided that the
nonlinearity of the equation is proper in the sense of [10]. We are not going to give
any detail here but both the existence and comparison result hold in this framework,
as the reader will certainly be able to check.
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A few open questions

Via (HCont), we assume the same regularity for F (x, t, p,X), G(x′, t, p′, X ′) in x or x′

and t. We have no idea if this assumption is really necessary or if one can replace it
by some weaker continuity requirement for the t-variable.

In the same way, the Lipschitz continuity assumption in (HGen)-(i) may be seen
as natural for G or G as part of the requirement for a “good Ventcell boundary
condition”, the linear growth in p and MT ensuring—in some sense—that the normal
derivative can control them. However, this assumption seems less natural for F which,
for example, may have some superlinear gradient growth, which is incompatible with
(HGen)-(i). We do not address this question here but it is clearly a problem to be
considered.

The C0,α-regularity of solutions for α ∈ (0, 1] is an interesting question which is
also a prerequisite to address other problems like the large time behavior of solutions
via the study of the ergodic problem.

Considering the methods we used to get the comparison result suggests that these
regularity results should follow from similar ideas.

Two particular cases with simpler proofs

Finally, we provide some remarks on how to derive more direct proofs in some partic-
ular cases where the comparison proof can be substantially simplified. Unfortunately
those cases all suppose that the problem is set in an half-space and with too strong
assumptions to have any hope of extending them to general domains. In all these
cases, we just sketch the simplified proof, insisting on the main points.

(a) The first particular case is when

(i) Equation (1.1) is of first-order type, satisfying (HNC).

(ii) F (x, t, p) and G(x′, t, p′,M ′) are convex in p and (p′,M ′) respectively, and G
does not depend on x′, t.

Under these assumptions, the “tangential regularization procedure” of [5] works with-
out any difficulty: we first regularize the subsolution u by a sup-convolution in the
tangent variables—i.e. in (x′, t)—, then by a standard convolution. This allows to
reduce to the case when u is Lipschitz continuous w.r.t. all variables and smooth in
x′, t (even C∞) with all tangent derivatives being continuous w.r.t. all variables.
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Because of this last property, u is “almost a test-function”, we have just to handle
the xN -variable. Assuming that, after the standard localization procedure, u−v has a
strict maximum point at (x̄, t̄) satisfying x̄N = 0, it is enough to look at the function

u((x′, xN), t)− v((x′, yN), t) +G
(

Dx′u
(

(x̄′, 0), t̄
)

, D2
x′x′u

(

(x̄′, 0), t̄)
)

)

(xN − yN)

−
(xN − yN)

2

ε2
+ δ(xN + yN),

i.e. with just a doubling of variables in the normal direction, following a philosophy
which is very close to the usual Neumann comparison proof.

Of course, here the conclusion follows very easily but unfortunately the Assump-
tions (i)-(ii) above are very restrictive.

(b) The second particular case is when F has a “separated variables” structure,
i.e. when

F (x, t,Du,D2u) := F1(x
′, t, Dx′u,D2

x′x′u) + F2(xN , DxN
u,D2

xNxN
u).

The main point here is that we can still regularize the subsolution u by a sup-
convolution in the tangent variables but we can also do it on the supersolution v
by inf-convolution. The advantage is that we begin the proof with sub and supersolu-
tion which are already Lipschitz continuous and semi-convex or semi-concave in the
tangent variables, which simplifies slightly the arguments. But again, if we have in
mind to treat a problem set in a general domain, we face very restrictive assumptions.
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