N
N

N

HAL

open science

Some Comparison Results for First-Order
Hamilton-Jacobi Equations and Second-Order Fully
Nonlinear Parabolic Equations with Ventcell Boundary
Conditions

Guy Barles, Emmanuel Chasseigne

» To cite this version:

Guy Barles, Emmanuel Chasseigne. Some Comparison Results for First-Order Hamilton-Jacobi Equa-
tions and Second-Order Fully Nonlinear Parabolic Equations with Ventcell Boundary Conditions.

2024. hal-04565750

HAL Id: hal-04565750
https://hal.science/hal-04565750

Preprint submitted on 2 May 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépot et a la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche francais ou étrangers, des laboratoires
publics ou privés.


https://hal.science/hal-04565750
https://hal.archives-ouvertes.fr

Some Comparison Results for First-Order
Hamilton-Jacobi Equations and Second-Order Fully
Nonlinear Parabolic Equations with Ventcell
Boundary Conditions

G. Barles & E. Chasseigne

Abstract. In this article, we consider fully nonlinear, possibly degenerate, parabolic equations
associated with Ventcell boundary conditions in bounded or unbounded, smooth domains. We first
analyze the exact form of such boundary conditions in general domains in order that the notion of
viscosity solutions make sense. Then we prove general comparison results under natural assumptions
on the nonlinearities, assuming only that the equation is either coercive (first-order case) or strictly
elliptic (second-order case) in the normal direction in a neighborhood of the boundary. Our method
is inspired by the “twin blow-up method” of Forcadel-Imbert-Monneau and ideas of Lions-Souganidis

which we extend to the framework of Ventcell boundary conditions.

Key-words: Second-order elliptic and parabolic equations, Ventcell boundary con-

ditions, comparison results, viscosity solutions.
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1 Introduction

Introduced in 1981 by Crandall and Lions [1 1] (see also Crandall, Evans and Lions [9])
for first-order Hamilton-Jacobi Equations, the notion of viscosity solutions is known
to be the right notion of weak solution to deal with second-order, fully nonlinear,
possibly degenerate elliptic or parabolic equations. Nowadays, the basic theory can
be considered as being rather complete with very general stability results, and in
particular the “Half-Relaxed Limits Method” which can be powerfully used if the
limit equation satisfies a strong comparison result, (SCR) for short, i.e. a comparison
result between semicontinuous sub and supersolutions.

Such (SCR) not only provide the uniqueness of solutions, they are also a key tool for



obtaining their existence via the Perron’s method of Ishii [15], and they exist in almost
all the frameworks: whether the equations are set in the whole space or in bounded or
unbounded domains, with the most classical boundary conditions (Dirichlet, State-
Constraint, nonlinear Neumann boundary conditions, etc.) or for equations involving
nonlocal terms ([0] and references therein), or equations set in a network or with
discontinuities (see [5] and references therein). The reader may have a first idea of
this theory by looking at the “User’s guide” of Crandall, Ishii and Lions [10]; we give
more references of (SCR) later in this introduction.

Roughly speaking, a (SCR) is the analog of the Maximum Principle for classical
(smooth) solutions and, with few additional technical assumptions, (SCR) exist for
any classical situation where the equation, together with the associated boundary
condition formally satisfy the Maximum Principle. This last sentence is (almost)
true, except for the case of Ventcell boundary conditions, for which no (SCR) was
available in the literature so far; we explain why these boundary conditions create a
specific difficulty later on.

The aim of this article — We provide here the very first (SCR) for Ventcell boundary
conditions. We immediately point out that we are able to do so under reasonnable
assumptions, both for the case of first-order and second-order equations. In addi-
tion, even if we consider mainly the case of equations set in an half-space, Section 4
shows that our results easily extend to the case of general regular domains via easy
localization arguments and a straightforward flattening of the boundary.

The Ventcell boundary condition — Now, in order to be more specific, we consider
general fully nonlinear, possibly degenerate, parabolic equation of the form

uy + F(z,t, Dyu, D2 u) =0 in Q x (0,7), (1.1)

where 2 is a bounded or unbounded domain of R, the solution u is a real-valued
function defined on Q x [0,7), us, Dyu, D2, u denote its first and second-derivatives
with respect to t and x respectively. Finally, F': Q x [0,T) x RY x ¥ — R, where
SV is the space of N x N-symmetric matrices, is a real-valued, continuous function
satisfying the ellipticity assumption

F([L’,t,px, Ml) S F([L’,t,px, Mg) if Ml Z MQ, (12)

for any x € Q, t € [0,T), p, € RY, My, My € SV, where “>” denotes the partial
ordering on symmetric matrices.

In order to introduce the Ventcell boundary condition, we first consider the case
when € is an half-space of RY, and to fix idea we choose

Q:={r= (2" 2y) ER" ' xR, 2y > 0}. (1.3)
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In this context, a Ventcell boundary condition for Equation (1.1) has the form
—Uyy + G(2',t, Dyu, D2, u) =0 on 99 x (0,7T), (1.4)

where GG satisfies similar assumptions as F', in particular an ellipticity property like
(1.2). We point out that —u,, is the special form, in our context, of the normal
derivative of u on 02 x (0,7) and therefore (1.4) is nothing but a Neumann type
boundary condition. However, this comes with an unusual dependence in the second-
order tangential derivative D?, ,u. This particularity is, of course, the main originality
and difficulty of Ventcell boundary conditions.

The case of a general domain — If Q is a general smooth domain, the exact form
of such boundary condition and the assumptions they have to satisfy are less clear,
for at least two reasons.

First, at a point x of the manifold 0f2, it has to depend on the Hessian matrix—
relatively to 92—of the solution u :  — R but it is well-known that the definition
of such Hessian matrix on a manifold is not completely straightforward: it depends
not only on D2u, the N x N-symmetric matrix corresponding to the restriction of
the quadratic form h + D?u(z)h-h @ to T,0, the tangent space of 9 at x, but it
also depends on the curvatures of 02 at .

For the time being, we just write the boundary condition as
G(z,t, Du, D3u) =0 on 98 x (0,T), (1.5)

where we recall that, if n(x) denotes the outward normal to 02 at x and Id is the
N x N Identity matrix, D2u is obtained by using the projection onto 7,0, whose
matrix is given by (Id —n(z) ® n(z)); hence the formula

Diu(z) := (Id —n(z) ® n(z)) D*u(z) (1d —n(z) @ n(z)) .

We refer the reader to Section 2 where we explain in an elementary way what kind
of assumptions a general boundary condition like (1.5) should satisfy in order to be
a “good” Ventcell boundary condition.

Of course, these restrictions are of two types: the first ones are just basic compatibil-
ity conditions in order that (1.5) is actually consistent with the Maximum Principle,
and therefore that the notion of viscosity solutions makes sense. The second ones
are related to comparison results and the main assumption consists in imposing that

(WWe will precise later on which type of regularity we impose.
(2)Here and throughout this article, v; - vo stands for the standard euclidian scalar product of
V1,02 € RV,



(1.5) can be reduced to (1.4) by (i) a suitable change of coordinates which flattens
the boundary and (i) a suitable monotonicity property in u,, after the change of
coordinates to be able to write down the boundary condition as (1.4). In that way, as
we explain it in Section 3, the main step in a comparison proof in a general domain
is nothing but a local comparison result for (1.4).

More generally, we want to point out a key idea in this article: all the local properties
for (1.1)-(1.5) are obtained from (1.1)-(1.4) since the mecanism (7)-(i7) we described
above allows to reduces to this case. Now, concerning global properties such as the
existence of sub and supersolutions, which are needed either for localizing the com-
parison proof or for Perron’s method, we use only basic assumptions on G. In fact,
as this description suggests, most of the results are proved for (1.1)-(1.4).

Before coming back to the difficulties to handle such Ventcell boundary conditions
and the results we are able to prove, we want to point out that, in the linear case,
such boundary conditions are associated with diffusion processes with a reflection on
09 as explained in N. El Karoui [13]. In modelling, these boundary conditions arise in
the study of asymptotics for thin layers on the boundary; the results in this direction
are either numerical ([12] and references therein) or via the Lax-Milgram Theorem
([8] and references therein).

The difficulty to handle such boundary conditions — Maybe the easiest way to explain
why getting a comparison result for (1.1)-(1.4) in the viscosity solutions framework is
difficult is to recall the method which is used to treat nonlinear Neumann boundary
conditions, i.e. the case when G does not depend on D?,_,u. Initiated by Lions [19] for
standard linear Neumann and oblique derivatives boundary conditions, the method
was then generalized under slightly different forms in the nonlinear setting (with
slightly different assumptions) by Ishii [17] and Barles [1].

Of course, the difficulty comes from the condition at the boundary and the com-
parison proof consists in building a test-function for which the Neumann boundary
condition cannot hold. With such a property, the F-inequalities necessarily hold true,
both for the sub and the supersolution and, if the test-function satisfies suitable
estimates, the conclusion follows.

In order to follow this strategy, a key point is that the (weak) derivatives of the sub
and supersolution are nothing but derivatives of the test-function at the maximum or
minimum point. Therefore, these derivatives can be directly read on the test-function
and put in the equation. However, for second-order terms, any comparison proof for
viscosity solutions uses the Jensen-Ishii Lemma ([18, 16]) which provides the second
derivatives for the sub and supersolution in a somewhat abstract way. In particular,
there is no way to build a test-function for which the boundary condition cannot hold.



How we turn around the difficulty — Let us describe here two main strategies that
can be used and that we expose in this article. The simplest one in the half-space
case is inspired from [5] and consist in using a “tangential regularization” in the
a’/-variable, at least for the subsolution and, in some other cases, both the sub and
supersolution. This is why the study of the flat boundary case is more natural to
begin with. Depending on the type of regularization which is doable (thanks to the
properties of F' and GG), we can get different types of results, with different assumptions
on I’ and G. This regularization allows to get rid of the difficulty in the a’-direction
and use a standard doubling of variables in the zy-direction.

However, this approach comes with two main connected defects: on one hand, such
strategies do not seem to be able to prove results with general assumptions on F' and
G; on the other hand, as a consequence, the extensions to general domains require
somehow unreasonnable assumptions. Anyway, we sketch in the appendix a proof
using this regularization procedure which has, at least, the advantage of being very
simple.

In order to obtain general results with natural assumptions on F' and G, we use a
combination of new arguments introduced recently by Lions and Souganidis [20, 21]
and by Forcadel, Imbert and Monneau [I1]. Roughly speaking, the key idea of Lions
and Souganidis is to examine carefully the sub- and super-differential of the sub
and supersolution respectively, at a maximum point of their difference. To do so, a
blow-up argument is a key step to focus on these differentials. Then Forcadel, Imbert
and Monneau improve this idea by first doubling the variables as in the classical
comparison proof, and then using a “twin blow-up” argument: one on each variable
(or one for the subsolution and one for the supersolution).

We extend here the strategy of Forcadel, Imbert and Monneau in order to adapt it
to a second-order framework—at least for the Ventcell boundary condition but also
to be able to treat the case of second-order equations. To do so, our scheme of proof
in the case of (1.1)-(1.4) is the following:

(1) We use an almost classical doubling of variables method but, here, in an un-
usual way: it is not the main step anymore, but some kind of “preparation”
to the “twin blow-up” argument. Indeed, the doubling of variables allows us to
reduce to the case when the maximum points are both on the boundary—hence
preparing the twin blow-up. But it also gives additionnaly some useful estimates
to perform the blow-up.

(7i) The twin blow-up is done in a different way here since it has to be adapted
to the Ventcell boundary condition: we use different scalings in the tangential
directions (2’,t) and in the normal one, i.e. for . We perform it not only in



the equation and boundary conditions, but also in the maximum point property
related to the doubling of variables, providing useful estimates.

(7ii) Here, passing to the limit in the blow-up procedure does not allow to reduce to
a one-dimensional problem, again because of the Ventcell boundary condition
which mixes tangential and normal variables. However, with suitable adapta-
tions of the Jensen-Ishii Lemma, we are able to use either the Lions-Souganidis
arguments in the first-order case, and new ones in the second-order case.

In order to be able to apply this strategy, we use two specific assumptions in addition
to the classical hypotheses which classically appear in such comparison results: either
the equation is a first-order equation and we require a normal coercivity property,
cf. (Hnc) in Section 3.1, or it is a second-order equation and we require a strong
ellipticity in the normal direction, c¢f. (Hysg) in Section 3.1.

A typical example that fits into the framework of this paper is the following one,
posed in Q x [0,T] where Q := {(z,y) € R* : 2 > 0, y € R}

s — Tr (A(g:, y)D2u)) 4 b(z,y)|Dul = fz,y) in Qx(0,7],

ou  Pu
_%+8—y2_ (y) onﬁQX(O,T]a

u((z,y),0) = up(z,y) in Q.

where we assume that A = oo ), o, b are bounded, Lipschitz continuous functions on
Q and f, g are bounded and continuous on  and 95 respectively. In order to satisfy
our additional assumptions, we need that, either A =0 and b(z,y) > a > 0 on Q, or
A(x,y) is a symmetric positive matrix and, with ey = (1,0), A(z,y)ey -exy > a >0
on ).

We do not know if these additional assumptions, namely (Hxc) and (Hygsg), are
really necessary but (i) they really play a key role in our proofs of the comparison
results both in the first- and second-order case; (i4) N. El Karoui [13] used the prob-
abilistic analogue of (Hygg) in her work; (i7i) Proposition 3.4 in Section 3.3 shows
that, if (Hygg) holds then the Ventcell boundary condition is satisfied in a strong
sense. In any case, one may think that (Hxc) or (Hxsg) ensures that the Ventcell
boundary condition is seen in a right way.

We conclude this introduction by a remark: the approach that we use here allows to
treat, as a special case, Neumann boundary condition—typically —u,, +G(x,t, Du) =
0. However, some of the assumptions we use in order to obtain comparison results—
see (Hyc) and (Hysg) in Section 3.1—are clearly too restrictive compared to the

(3)Here and below o denotes the transposed matrix of the matrix o.



ones which are used in the literature on the Neumann case. But maybe some specific
modification of our arguments allows not only to recover all the known results but
also to improve them.

Organization — In Section 2, we define what is a “good” Ventcell boundary condi-
tion in a general, non-flat domain. Section 3 is devoted to present basic assumptions,
notations and results to prepare the three next sections which are devoted to first
state and then prove the comparison results. In particular, we recall how to reduce
the global (SCR) to a local one. The statements of these results are provided in
Section 4 and then we prove them in the case of first-order equations in Section 5 and
in the case of second-order equations in Section 6, the proofs in these two cases being
rather different even if they use similar common ingredients. Finally, in Section 7, we
provide further results, we mention some open questions and we sketch simpler proofs
under more restrictive assumptions.

Acknowledgements. This research was partially funded by 1’Agence Nationale de
la Recherche (ANR), project ANR-22-CE40-0010 COSS.

2 The Ventcell Boundary Condition in (General
Domains

As we already mentioned in the introduction, contrarily to the case of classical (Dirich-
let, Neumann, etc.) boundary conditions, the Ventcell case is particular because of
the dependence in the Hessian matrix of the solution on the boundary. For a general
boundary condition like (1.5), we have to investigate under which type of assumptions
this boundary condition is consistent with the Maximum Principle, and for which a
notion of viscosity solutions can exist. And to do so, we have to use the definition of
an Hessian matrix on a codimension 1 manifold—which is not completely straight-
forward.

In this section, we have chosen to present in the simplest possible way the conditions
on the function G in order that it yields a “good” Ventcell boundary condition. Then
we show how (1.5) can be locally reduced to (1.4) by a suitable flattening of the
boundary.

We argue assuming that the boundary 0f) is as smooth as necessary—we refer
the reader to (Hg) below for a more precise assumption concerning the regularity of
the boundary. We also recall that the smoothness of 9) implies that d, the distance
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function to 0€2, is smooth in a neighborhood of 99, and that Dd(z) = —n(x) on 0€;
we may keep the notation n(z) for —Dd(z) even if x is not on the boundary.

2.1 Consistency with the maximum principle

In order to answer this first question, we adopt a viscosity solution point of view—or
a Maximum Principle one—and, at least formally, we look at maximum points of
u— ¢ where u is candidate to be a subsolution (that we assume to be smooth at first),
and ¢ is a smooth test-function.

We drop the t-variable since it plays no role in the boundary condition but the
reader may easily chech that ¢ can be taken into account as any tangent variable, and
so is u; which is a tangent derivative on the boundary 0 x (0,7).

Proposition 2.1 Let x € 9Q be a local mazimum point on Q of y — (u — ¢)(y).
Then the following first and second-order inequalities hold:

ou 0¢

(1) 8—(93) > a—(x) and Du(x) = Do(z) + An(x) for some X >0,
n 1 2.1)
g 2 du 2 2 ¢ 2 : (
(i1) D u(z)+ 8—n(:€)D d(z) > D*¢(x) + %(I)D d(z) in T,00Q.

Proof —1If x € 09 is a local maximum point on Q of u — ¢, let us first notice that
the first inequality in (i)—the normal direction one—is classical:

(u — ¢)
on

For the tangential direction, we consider a smooth path y : (—n, +n) — 09 such that
x(0) = z. Since 0 is a maximum point of s — (u — ¢)(x(s)), by differentiating it
follows that D(u — ¢)(z) - xX’(0) = 0.

On the other hand, using that d(x(s)) = 0 and differentiating this equality at s = 0
implies that Dd(z) - x’(0) = 0; in other words, 7 = x’(0) belongs to 7,.0€). Hence,
by choosing all possible paths x as above, we deduce that, for any 7 € T,,0Q, D(u —
®)(z) - 7 = 0. Therefore, there exists some A € R such that Du(z) = D¢(x) + An(z)
and necessariliy A > 0 from the normal inequality we recalled above, leading to (i).

() > 0.

We now turn to the second-order condition. Using that h(s) := (u— ¢)(x(s)) has a
maximum at s = 0, the second-order condition yields

R'(0) = D*(u = ¢)(2)x'(0) - X'(0) + D(u — ¢)(x) - X"(0) < 0. (2.2)
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Notice that D(u — ¢)(z) - X"(0) = An(z) - X"(0) = —ADd(x) - x"(0) and, using the
second-order derivative of d(x(s)) = 0, we also have

D*d(x)x'(0) - x/'(0) + Dd(x) - X"(0) = 0.

Gathering these informations and denoting by 7 any vector x'(0) € 7,00 as above,
we arrive at

R"(0) = D*(u — ¢)(x)7 - 7+ AD*d(x)7 -7 < 0.

Finally, since \ = a(gﬁ)’ we arrive at
2 du 2 2 d¢ 2
D*u(zx) + %(x)D d(z) > D*¢(x) + %(SL’)D d(zx), (2.3)

on the tangent space, which is (i).
Q.E.D.

Consequences on G — In order to take into account Inequalities (2.1) in a proper
way, i.e. in order to have

G(z,t, Do(x), D3¢(x)) < G(=,t, Du(x), Diu(z)) <0,
we have to require two properties on G: on one hand, it is natural to write G as
G(x,t,p, Mr) := G(z,t,p, My + p - n(x)D%d(z)), (2.4)

for any z € 99, t € [0,T), p € RY and My, where we recall that My is defined
for M € SV by My = (Id —n(x) ® n(x))M(Id —n(z) ® n(z)). Of course, we have to
assume that the function G is elliptic in its last variable®.

On the other hand, especially for (2.1)-(i), we have to assume that, for any A > 0,
red, te0,T),peRY and M € SV

G(z,t,p+ An(x), My + p - n(z)D*d(z)) — G(z,t,p, My + (p - n(x))D*d(z)) > 0.

Of course, these basic conditions are not even sufficient to define a nonlinear Neu-
mann boundary condition—i.e. for the case where é(m, t,p, Mr) does not depend on
M. They have to be reinforced in order to get a “good” Ventcell boundary condition,
in particular we will require the more restrictive assumption that for some ¢ > 0, and
for x,t,p, Mr, \ as above,

G(z,t,p+An(z), My +p-n(zx)D*d(z)) — G (2,t,p, My +p-n(z)D*d(x)) > e\. (2.5)

In other words, under this assumption the boundary condition takes a form similar to
(1.4), with constant ¢ multiplying u,, . We refer to Section 3.1 for the exact hypotheses
and more details.

(“This ellipticity requirement is expected since it was expected for G.

9



2.2 Reduction to a flat comparison result

Now we turn to the second question and to do so, we examine some special change of
coordinates which maps {yy = 0} in a neighborhood of 0 € R into 9. If v is such
a diffeomorphism, we change it into

U(y',yn) = (Y. 0) + ynDd(¥(y', 0)),
in that way, we have d(¥ (v, yn)) = yn. Then we set
U(ylayN) = u(\ll(y,’ yN)) :

In the following we use the abuse of notation consisting in identifying the tangential
gradients (pr, 0) with pr, similarly we identify D,v(y’,0) and (D, v(y’,0),0).

Proposition 2.2 The derivatives of v are given by

(7) 8(1—1; = Du(z) - Dd(z), Dyv(y',0) ="'DU(y’,0)Dru(zx) .
(i1) Di,y,v(y/, 0) ='DU(y,0) [D2u(x) + g—Z(z)D2d(1’) DY (y',0) + a(x)(Dru(x)),

(2.6)

for some linear map a(x) having the same regularity in x as D*V.

Proof — Let us compute the y'-derivatives of v for yy = 0 in a direction h = (h',0) €
RY. Using the notation z = ¥(y', yy) to have simpler formulas, we get

S (y/:0) = Dule) - Di(a) , Dyol/,0) - = D) Dy O},
N

2 _ 2
D, o(y', 000 - ' = D*u(x) Dy (y',0)h" - Dy (y',0)h' + Du(x) - D(D(y',0)) (R, ') .
Next, applying these formulas to yy = d(V(y', yn))—i.e. taking u = d—we obtain

0= Dd(z) - Dy(y', 0)1’,
0= D%d(x)Dy(y',0)h" - D(y', 0)h' + Dd(x) - D(Dy(y',0))(h', ') .
Coming back to the first-order derivatives of v(y’,0), since A’ is arbitrary we deduce

that Dyv(y',0) = Dy(y’,0)Du(x) = 'DU(y’,0)Dru(x) since ‘Dy(y’,0)Dd(z) = 0
(we use here the aforementioned abuse of notations). This yields directly (i).

10



0
Now we decompose Du = a—un(x) + Dyu. Using that n(z) = —Dd(x) we see that
n

O () - DIDU(, )W) = 9 (x) Di(x) - D(DY(y/, O}

=+ () D%d(x) Dy O - Di(y' 0)1'.

Gathering everything we obtain

Di,y,v(y', 0)h' - h' = lD2u(x) + g—Z(x)D2d(x)} Dy(y',0)h" - Dyp(y', 0)h'+

Dru(z) - D(Dy(y",0))(h', h') .

Finally, since for yy = 0, we have Dy (y’,0)h’ = DW¥(y’,0)h and since this vector is
arbitrary in 7,052, we deduce that

D2, oy, 0) ="D¥(y,0) {DQu(:L") + g—Z(:ﬁ)DQd(m)] DY(y',0) + a(x)(Dru(z)),

where a(z) acts linearly on Dpu and it has the same regularity in x as D?W. Hence
(1) holds.
Q.E.D.

Consequences on G — These properties show that the “flat” Hessian matrix Dg,y,v(y’ ,0)

corresponds to D3u(x) + 9%(z)D*d(x) through the change of coordinates modulo a
term depending only on Dpu(x), the latter corresponding to D, v(y’,0). Moreover,
this formula can easily be inverted.

More precisely, if u is a subsolution [resp. super-solution] of (1.5), then v is a
subsolution [resp. super-solution | of

é(‘lf(y), t,P(y,t, Dyv(y,t)), M(y,t, D,o(y,t), D2, v(y, t))) =0,

where
P (y,t, Dyo(y,t)) = (‘DY) (y) Dyo(y, t) — ai—zjv(y,t)n(‘l’(y)), (2.7)

and /\/l(y, t, Dyv(y,t), Dg,y,v(y, t)) is given by

(DY)~ (y) [Dyyv(y. 1) — a(®(y)(DY) " (y) Dyv(y,1)] (DV) " (y),

with, again, the abuse of notation to identify DZ,y,v(y, t) with a N x N-matrix with
zeros at the last line and column.
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Two remarks on this admittedly complicated formula: on one hand, in order to

recover the term —d,, v, one can use (2.5); this is the purpose of Lemma 2.3 below.

On the other hand, the presence of the term a(¥(y))('D¥) ™" (y)Dyv(y,t) perturbs
the assumption we have to impose on G to be able to use the Jensen-Ishi Lemma and
justify the unusual form of (Hcoxr) below.

This allows to show show that a “good” Ventcell boundary condition—in the sense
of Section 3.1—is locally equivalent to a “good” Ventcell boundary condition in the
case of a flat boundary. Moreover, the result below proves that the boundary condition
can be reduced to the form (1.4).

Lemma 2.3 Let us assume that G satisfies (2.5) and that 9Q is smooth. Then there
exists a function G satisfying the same assumptions as G such that

G(\P(y)> l P(y> tap/ - )\6N)a M(ya t>p,> MT))
has the same sign as
—A+ G(y> tap/> MT) :

As a consequence, an equation with the boundary conditions G and G have the same
subsolutions and the same supersolutions.

Proof — We first notice that we can assume that é = 1 by dividing G by & Then, if
D :=RN"1 x[0,T] x R¥=! x SN~ we consider the function f: D x R — R defined
by

FOIXN) = G(U(y). ¢, Py, t,p — Aew), M(y, t,p/, Mr)).

where X = (y,t,p’, Mr).
The property of G implies that, for all fixed X and for all X > X, we have

f(Xa )‘/) - f(X> )‘) < _()‘/ - )‘)

Hence, for all fixed X, the function A — f(X, ) is a one-to-one function from R into
R and there exists a unique G(X) such that

f(X,G(X)) =0,
and clearly f(X,\) has the same sign as —\ + G(X).

For the properties of G, we just write that, if X, X’ satisfy G(X’) > G(X) then,
by using the above monotonicity property of f in A and the fact that f(X’, G(X")) =
f(X,G(X)) =0, we have

G(X') - G(X) < f(X',G(X) — (X', G(X)),

<f
< (X, G(X)) - f(X, G(X)).
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This inequality allows to transfer all the continuity properties of f in X to G and we
trust the reader to complete the proof by using this property.
Q.E.D.

A final remark concerns the distance function which is classically used to build sub-
and supersolutions. Of course, it plays this role also here; but in order to be able to
do so, the form of G, namely (2.4), is essential and we point it out in the

Lemma 2.4 Let ¢ : R — R be a smooth, increasing function. Then, the function
w :=(d) satisfies

Diw(z) = ¢'(d(x))D%d(x) .
Moreover, if (2.4) and (2.5) hold, then

G(x,t, Dw, Dyw) < G(x,1,0,0) — &' (d(x)) .

Proof — A straightforward computation shows that (Dd(z) ® Dd(x))r = 0 and
DZd(x) = D?d(z), which implies directly DZw(x) = ¢'(d(z))D?*d(x).

Now, if ¢/ > 0, (2.4) and (2.5) hold, then
G(z,t, Dw, Diw) :zé(z,t,w'(d(x))l) (z),'(d(z))D*d(x)+
(¢/(d(2)) Dd(x) - n(x)) D*d(x) ).
= G(,t,—¢/'(d(x))n(x), 0),
< G(x,t,0,0) — &' (d(x)).

In this computation, we used that Dd(x) = —n(z) both for the gradient term and
the D?d(x) one, which disappears since Dd(x ) n(x) = —1.
Q.E.D.

This property allows to consider suitable choices of ¢ when building subsolutions.
Of course, a similar result holds for supersolutions when ' < 0.

3 Preliminaries

In this section we first list the exact hypotheses we are going to use in the sequel:
we distinguish between “basic assumptions” which, in some sense, are the keystones
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of our framework and, in particular, define what is a Ventcell boundary condition;
on the other hand, we have more specific assumptions which are required to obtain
comparison results both in the cases when F' is a first-order equation and when it is a
second-order one. Then we devote several subsections to preliminary results that are
used later on.

3.1 Hypotheses

We begin with the assumption on 2 which is required in order to handle a Ventcell
boundary condition in a general domain, see Section 2.

(Hq) — Regularity of the domain.

The (bounded or unbounded) domain  is of class W4: there exists a bounded,
W4>_function d :  — R which agrees with the distance function in a neighborhood
of 9Q and such that d(x) > 0 in Q..

We point out that, for some results, the function d being C?, with bounded first and
second derivatives, is sufficient but to simplify matter, we only use (Hg) in the paper.
The W**-regularity is justified by the change of variable we perform in Section 2:
we claim that the linear map a(z) has the same regularity as D?*¥ and has to be
Lipschitz continuous. But ¥ is built with Dd and therefore the regularity of D?W¥
cannot be better that the one of D3d(z), hence implying the W*>-regularity.

We then proceed with the standard hypotheses on the nonlinearities that are gen-
erally needed to use the viscosity solutions’ framework. To avoid repeating the same
assumptions for F' and G—and to point out that they are actually the same—, we
introduce H : A x [0,T) x R? x 8§ — R having in mind two cases

(a) A=Q,d= N and H = F;

(b) A=090,d=N—1and H =G.

We also use the notation z = (z,t) with the usual distance |z|*> = |z|*> + |t|* and
denote by ||| - ||| a matricial norm on S

The “basic assumptions” we mention above are

(Hgey) — General assumptions on the Hamiltonians.

®)Hence d(x) = 0 iff x € 9Q and we recall that, if € 9Q, Dd(z) = —n(x) where n(z) is the
outward unit normal to 92 at x

14



The nonlinearities F,G are continuous functions and, with the above conventions
(a)-(b), we have

(1) Lipschitz continuity.
There exists a constant C' > 0 such that, for any z € A,t € [0,T),p;, p2 € R?
and My, My € 8¢

|H(z,t,p1, M1) < H(x,t,pp, My)| < C<|p1 — pa| + | My — Mz\)
(i) Degenerate ellipticity for the second-order case.
For any z € A,t € [0,T),p € R? and M, M, € S¢
H(zat>paMl) SH(Iat>paM2) if Ml 2M2a

where “>" denotes the partial ordering on symmetric matrices.
Moreover, the function G = G(z, t, p, Mr) has the form (2.4) and

(7ii) There exists a constant ¢ > 0 such that, for any A > 0, z € 9, t € [0,7T),
peRY and M € SN

é((a:, t,p+ An(z), My +p-n(z)D*d(z)) — G~Y(:)3, t,p, My +p-n(z)D*d(z)) > eA.

We immediately point out that it is equivalent to say that G or G satisfies (Hgey)-
(7)-(27). Now, of course Assumption (Hggy) is not sufficient to prove comparison
results and we introduce the following (almost classical) assumption in which B4 (0, R)
denotes B(0, R) N A. Of course, we still use the above conventions (a)-(b).

(Heonr) — Continuity assumption for the comparison result.

For any R, K > 0 and for any function Q : BA(0, R) x [0,T] x R? — &% such that,
for any z = (z,t),% = (#,1) € Ba(0,R) x [0,T], p € R?

Rz p)lll < K1+ pl), [1Q(z,p) = QEZ Pl < Kz — Z[(1 + |p]),

there exists a modulus of continuity wg g such that, for any |z|, |2'| € Ba(0, R) %[0, T7,
p € R% and for any X,Y € 8¢ satisfying

LS E RN R

15



for some €, > 0, then we have
H(zp,Y) =~ H(z,p X) S wnge(lo = A0+ ) + 6722 = 52) +wni(d). (32)

As a first remark, since F' can be a first-order equation, we remark that, in this
case, (Hconr) reduces to

For any R > 0 there exists a modulus of continuity wg such that, for any z =

(z,1),% = (2,1) € By(0, R) x [0, 7], p € RY,

F(zp) ~ F(2,0) < wr (|2 = 21+ 1)) (3.3)

In the classical case, the Q-term in Hypothesis (Hconr) does not exist; here it comes
from the change of coordinates we perform in a neighborhood of the boundary and
therefore appear only in the second-order case, cf. (3.3); therefore, this term is needed
only in such neighborhood. In order to keep things as simple as possible, we do not
try to generalize this assumption to take this remark into account.

In fact, this assumption as the classical one is satisfied by Hamilton-Jacobi-Bellman
or more generally by Isaacs Equations under standard assumption, namely if F' is
given by

supinf { — Tr(a(z.t, @, B)M) — b(e,t,0. ) -p — f(z,t,0,8) },
where a = o(x,t,a, 8) 'o(x,t,a, 8), the functions o(x,t, «, 3) and b(z,t, «, 3) being
bounded, locally Lipschitz continuous in (z,¢) uniformly w.r.t. a, 8 and f(z,t,«, 5)
is continuous in (x,t) uniformly w.r.t. a, §. For G, we may take into account nonlin-
earities given by similar and properly adapted formulas.

Now we introduce some specific requirements on F' in the normal direction to the
boundary. These are not the same according to the first or second order case. These
conditions will play a crucial role and in order to get a comparison result—we refer
to the book of the authors [5] for detailed explanations on the role of the normal
coercivity in the first-order case. In the second-order case, the ingredient that replaces
the coercivity is the normal strong ellipticity as will be clear in the comparison proof
below.

(Hxe) — Normal coercivity, first-order case.

For any (z,t) € 0Q x [0,T] there exists r,7,C" > 0 such that, for any (y,s) € Q
satisfying |y — x|+ |s —t| <r, p € RV, A € R,

F(y,s,p+ Aey) > 7|A| = C(1 + |p|).
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(Hxsg) — Normal strong ellipticity, second-order case.

For any (z,t) € 99 x (0,T) there exists 7,7, C > 0 such that, for any (y,s) € Q
satisfying |y — x| +|s —t| <r,p e RN, M € 8V and )\ € R,

F(y,s,p,M+)\eN®eN)S—ﬁ)\—l—C_’(l—l—|p|—l—|M|) if)\>0,

F(y,s,p, M + dey @ ey) > —igA — C(1 + |p| +|M]|) if X <O0.

Remark 3.1 Let us come back on the local Lipschitz continuity in x AND t we impose
in (Heonr), ¢f. also (3.3). The reader may think that this requirement is not natural;
one may just expect some continuity in t. However, in order to use efficiently (Hxc)
in the first-order case, we need the variable t to be considered as a tangential variable
x', thus imposing the same reqularity on both—see the proof below. In the second-order
case, though the situation is different, we still use this common regularity for some
technical reason.

We can now sum up the requirements on the equation in both the first and second
order case as well as for the boundary condition for comparison results.

(Heomp-1) — Assumptions on F, G in the first-order case.

The nonlinearities F, G satisfy Assumptions (Hgpy), (Hconr)® and the normal coer-
civity assumption (Hyc¢) holds for F.

(Heomp2) — Assumptions on F, G in the second-order case.

The nonlinearities F, G satisfy Assumptions (Hggy), (Heonr) and the normal strong
ellipticity assumption (Hysg) holds for F'.

These assumptions on G mean that the associated “flat boundary condition” G
has to satisfy first the standard second-order assumptions (ellipticity and Lipschitz
continuity), but also the Neumann or Ventcell-type boundary condition already men-
tionned in Section 2.

®)which reduces to (3.3) for F.
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3.2 Global Comparison Results from Local Comparison Re-
sults

Let first us introduce a family of functions which will be used in several places, in
particular to take care of the Ventcell boundary condition: for K > 0, we select a
function ¢k : [0, +00) — R satisfying

1. ox € C*([0,4+00),R), decreasing;

3. ¢ has a compact support, more precisely supp(¢) = [0, 1].

4. In particular, ¢ is constant for ¢ > 1 and therefore px is bounded.

Now let us recall what we mean by (SCR) and we also define the notion of “Local
Comparison Result”, (LCR) for short.

(SCR) — Strong (global) Comparison Result for (1.1)-(1.5).

If u:Qx[0,7) = R is a bounded upper semicontinuous subsolution of (1.1)-(1.5),
if v:Qx[0,7)— R is abounded lower semicontinuous supersolution of (1.1)-(1.5)
and if u(x,0) < v(x,0) in Q, then u(x,t) < wv(z,t) in Q x [0,7).

In [5], it is shown that, under suitable conditions, the proof of a (SCR) can be
reduced to the proof of a (LCR). In order to give a precise definition of a (LCR),
we introduce the notations

Q;’f;:: (y,8) €QAX[0,T): ly—x|<r, t—h<s<t}

0,Qi = {(y.s) € Qi ly —al =r}U{(y,s) € Q7 s =t — h}.

(LCR) — Local Comparison Result for (1.1)-(1.5).
For any (z,t) € Q x (0,T), there exists 7, h > 0 such that

if w : Q;? — R is a bounded upper semicontinuous subsolution of (1.1)-(1.5) in Q;’fz,

ifv: QZ? — R is a bounded lower semicontinuous supersolution of (1.1)-(1.5) in QZ’;’,

then,forany0<r§fand0<h§ﬁ,

max(u — v); < max(u — v),.
Quh oQ"
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Our result is the (notice that in the result below, of course (Hggy)-(i7) is automat-
ically satisfied if F'is a first-order Hamiltonian)

Proposition 3.2 Assume that (Hq) holds and that F, G satisfies (Hggx). Then (LCR)
implies (SCR).

Proof — We slightly modify the arguments of [5] in order to take into account the
Ventcell boundary condition. We denote by v and v the bounded sub and supersolu-
tion to be compared.

We first have to localize and to do so, we introduce the function
X(@,t) = (|2[> + 1)'? + kip(d(x)) + kat,

where ¢ = @k is defined at the beginning of Section 3.2 with K = 1 (K is not
going to play any role here). Using (Hgey)-(7) and (ii7) together with Lemma 2.4,
one easily shows that, by choosing k; large enough and then k5 large enough, then
Uz, t) = u(z,t) — ax(z,t) is still a subsolution for (1.1)-(1.5) for any o > 0 and
uq(x,t) = —oo0 when |z| — 400 uniformly with respect to ¢.

The aim is to show that u, < v on Q x [0,T) for any « > 0; indeed, if this is true,
we obtain the (SCR) by letting « tend to 0.

Because of the behavior of u, at infinity, the maximum of u, — v is achieved at
some point (z,t) and we can choose t as the minimal time for which this maximum
is achieved. Of course, we can assume without loss of generality that ¢ > 0, otherwise
we are done, and then we face two cases: either z €  or x € 9f).

If x € Q, the arguments of [5] apply: we argue in Q;}Z where r, h are chosen small

enough in order that the (LCR) holds; we will also choose h > 0 small compared to
r, its size will be precised later on. Notice that we can choose r, h such that Q;}z does
not intersect dQ2 x (0,7) and t —h > 0.

For K > 0 large enough, u’(y,s) = ua(y,s) — 6(Jly — z|®> + K(s — t) is still a
subsolution of (1.1) and, if 0 < h < r?, the function |y — z|*> + K (s — t) is strictly
positive on the lateral boundary; indeed

ly —xP +K(s—t)=rm*+K(s—t)>r*~Kh>0 ifh>7r*/K.

On the other hand, for s = t — h, the maximum cannot be achieved by the minimality
of t and, by choosing ¢ small enough, we have

ul (z,t) —v(x,t) > max (ul(y,t —h) —v(y,t —h)).

ly—z|<r
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Applying the (LCR) to u® and v and taking into account the above informations,
we have

U (2, 1) =v(2,t) = ug (x,t)—v(w,t) < max (u(y, s)—v(y, 5)) < max (ua(y, s)—v(y, s)),
apQ;',}tL Op Q;}Z

which yields a clear contradiction with the definition of (z,t) if § > 0 is small enough,

which completes the proof in this case.

In the case when x € 09, the advantage of reducing the proof to a (LCR), and
therefore to a small ball around z, is that we can argue w.l.o.g. with a flat bound-
ary, i.e. in the case of (1.4), ¢f. Lemma 2.3. Even if this requires a few additional
arguments—in particular, the change of coordinates does not transform balls into
balls; we trust the reader to be able to convince him/herself of this fact .

With this reduction, this second case is treated analogously adding an extra term
to take care of the Ventcell condition, namely replacing the d-term by

5<|y — x> + k‘mp(:BN/n) + K(s — t))),

where k£ > 0 and ¢ = ¢ (defined at the beginning of Section 3.2) for some K > 0
large enough, in particular compared to k.

Using the properties of ¢k, the derivative of the ¢-term is —k if d(z) = 0, i.e. if
x € JQ. Now, for n > 0 small enough, knp(xy/n) = O(kn) is negative but small
compared to 72, which yields a contradiction on the lateral boundary |y — z| = r.
On the other hand, on the boundary s = t — h, taking § small enough gives the
answer since, again, by the minimality of ¢, the maximum of u, — v is strictly less
than u®(z,t) — v(z,t) for s = t — h. Again, the contradiction is obtained for § > 0
small enough, and the proof is complete.

Q.E.D.

3.3 Local Properties of the Ventcell Boundary Condition

As the title indicates it, we investigate the local properties of the Ventcell boundary
condition and therefore we may assume without loss of generality that Q = {zx > 0}
and that we are in the case of (1.1)-(1.4).

The first result concerns the “regularity” (in the sense of [5]) of sub and super-
solutions in the case of Ventcell boundary conditions. To do so, we introduce the
assumption implying either the normal coercivity of the nonlinearity in the case of a
first-order equation or the normal strong ellipticity in the case of a second-order one.

Our result is the
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Proposition 3.3 Assume that F, G satisfy (Hgex) and that F satisfies either (Hyc)
or (Hxsg). Then subsolutions and supersolutions of (1.1)-(1.4) are regular on 02 X
(0,T). More precisely, if u is an u.s.c. subsolution of (1.1)-(1.4) and v is a Ls.c.
supersolution of (1.1)-(1.4), then for any (z,t) € 0Q x (0,7,

u(z,t) = limsup wu(y,s), wv(x,t)= liminf o(y,s).
(y,8)—=(,t) (y,8) = (=,t)
(y,8)€Qx(0,T) (y,5)€Qx(0,T)

This proposition means that the value of v and v on the boundary are, in some
sense, the limit of their interior values; there is no artificial jump on the boundary.
And, of course, the same general result holds in general domains.

Proof — The arguments being similar in the sub and supersolution cases, we just give
them in the subsolution one. We assume by contradiction that there exists an u.s.c.
subsolution u of (1.1)-(1.4) and (z,t) € 9Q x (0,T') such that

u(z,t) > limsup wu(y,s), (3.4)
(y,8)—= (1)
(y,8)e2x(0,T")
and the aim is to get a contradiction.
To do so, for 0 < ¢ < 1, we introduce the function

Cly =P st

(y7 8) = u(y7 8) - LQPK(:CN%

g2 g?
where L is a positive constant to be chosen later on and ¢ = @k is defined at the
beginning of Section 3.2. We take K large enough, the size depending only on the
properties of F', and being only necessary for dealing with second-order equations
(recall that ¢ (0) = —K).

For ¢ small enough and L = 0, this function has a maximum point near (z,t) and
if (3.4) holds, then this maximum point is necessarily on the boundary. Moreover
a property like (3.4) also holds at this maximum point and therefore it is also a
maximum point of this function for any L > 0.

But, for fixed ¢, if L is large enough, neither the inequality associated to the Ventcell
boundary condition can hold, neither the one associated to the equation because of
(Hxc) or (Hxsg). This gives the desired contradiction and the result.

Q.E.D.

The next result concerns the boundary condition for second-order equations which
satisfy hypothesis (Hxsg), i.e. which are uniformly elliptic in the normal direction;
in this case, the Ventcell boundary condition holds in a strong sense.
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Proposition 3.4 Assume that F, G satisfy (Hgey) and that F satisfies (Hysg). Then
the Ventcell boundary condition is satisfied in a “strong sense” for both subsolutions
and supersolutions of (1.1)-(1.4). More precisely,

(2) if u is an u.s.c. subsolution of (1.1)-(1.4) and (z,t) € 9Q x (0,T) is a local
mazimum point of u — ¢, where ¢ is a smooth test-function then

_9¢
aSL’N

(1) if v is a l.s.c. supersolution of (1.1)-(1.4) and (x,t) € 0Q x (0,T) is a local
minimum point of v — ¢, where ¢ is a smooth test-function then
d¢

———(z,t) + G(z,t, Dpo(x, 1), Di,m,gb(:)s, t)) >0.
0:):N

(z,t) + G(z,t, Dpo(x,t), D2, ¢(x,1)) < 0.

Proof — We sketch the proof for the subsolution case, the supersolution one being
analogous.

If (z,t) € 02 x (0,T) is a local maximum point of u — ¢, it is also a local maximum
point of the function

(ya S) = U(y, S) - ¢(ya S) - 5$N + L[zN]2>

for any 9§, L > 0. Of course, the “locality” in this property depends on ¢ and L. The
second-derivative of the new test-function at (z,t) is now

D2¢(SL’, t) — L€N & en,

and, using (Hysg), it is clear that, for L large enough, the F-inequality cannot hold
and therefore

—%(l’, t)+ 0+ G(x,t, Dpp(x,t), ch,x,qﬁ(m, t)) <0.
8LL’N

Letting 0 tend to 0 gives the result.
Q.E.D.

3.4 About the initial condition

A last property concerns the initial data and more precisely the points of 92 x {0}.
If (1.1)-(1.4) is associated to the initial data

u(z,0) = up(x) on €, (3.5)
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where ug € C(£2), then a priori we have to use “initial data in the viscosity solutions
sense” in the same way as we have “boundary conditions in the viscosity solutions
sense”. This is the requirement to be able to apply the half-relaxed limit method in
its full powerness. It is well-known that, if u is a subsolution of (1.1)-(1.4)-(3.5) and
v is a supersolution of (1.1)-(1.4)-(3.5), we have

u(x,0) <ug(z) <wv(x,0) for any z € Q. (3.6)

But we have to show that this inequality still holds if = € 02, which is the aim of the

Proposition 3.5 Assume that F,G satisfy (Hagy) and that ug € C(Q). Then (3.6)
holds for any x € Q.

Proof — We only prove the result for a subsolution u, the proof for a supersolution
being analogous. And of course, we consider a point x € 90€) for which we want to
show that u(z,0) < ug(x).

For € small enough and for some large enough constant K; > 0 to be chosen later
on , we consider the function

ly — 95|2 TN
(yv t) = u(y7 t) - £2 - Klt - 6@(5_4)7

in the compact set (B(z,1) N Q) x [0,T] where ¢ = ; defined at the beginning
of Section 3.2. This function achieves its maximum at (z.,t.) and, using that the
ep-term tends to 0, classical arguments allow to show that

2

M —0 ase—0.

€
In particular, for ¢ small enough, z. € B(x,1) N Q—it is not on the boundary of
the ball—and we can write down viscosity subsolution inequalities. We claim that,

for € small enough and for K; > 0 large enough, we have necessarily t. = 0 and
u(xe, 0) < ug(z.). Indeed

(7) If € is small enough, the Ventcell boundry condition cannot hold since the e¢-
term has a derivative which is +e73 while all the 2/-derivatives at at most of
order £72.

(it) On the other hand, if K is large enough (of order, say, €8), the equation cannot
hold either.
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Hence only the inequality associated to the initial data can hold, proving our claim.
To conclude, it suffices to recall that ug is continuous and u(z.,0) — u(z,0) invoking
again classical arguments.

Q.E.D.

Again, in the result above, of (Hggy)-(47) is automatically satisfied if F' is a first-
order Hamiltonian.

4 Statement of the Main Comparison Results

We begin with a result in the half-space case since it is, in fact, the main result.

Theorem 4.1 Assume that Q is given by (1.3), that either (Hoowp-1) o7 (Hcoomp-2)
holds. Then the (LCR) holds for Problem (1.1)-(1.4), hence the (GCR.) also holds.

Because of the form of Assumption (Hxc) or (Hysg), this result is twofold: indeed,
the cases of first-order equations and of second-order equations are rather different,
even if their proofs—given respectively in Sections 5 and 6—contain common features.

As we pointed out above, Assumption (Hcoxr)—which is essential in (Hgoyp.1) and
(Hcomp-2)— is nothing but the classical (3.3) in the first-order case and, in the second-
order one, since Theorem 4.1 deals with a flat boundary, we can drop the @)-term in
this assumption (or assume, equivalently, that it holds only for @) = 0).

The case of general domains is just a corollary of Theorem 4.1 because of Proposi-
tion 3.2: indeed the fact that a (GCR) reduces to a (LCR) allows a local flattening
of the boundary, therefore to recover the half-space case.

We formulate anyway the result.

Theorem 4.2 Assume that (Hg) holds, that either (Hcowp.1) or (Heoup-2) holds.
Then the (LCR) holds for Problem (1.1)-(1.5) hence the (GCR) also holds.

5 Proof of (LCR) in the Half-Space Case in the
First-Order Case

The aim of this section is to prove that a (LCR) holds for any point (%,%) € Qx (0,T)
and, of course, the only difficulty is when & € 02, otherwise the result just follows

24



by a standard comparison argument if we choose 7, h small enough in order to have
7.k

Q:i,f C Qx(0,7).
For z € 092, we are going to show that such a (LCR) holds in QZL for any 7 > 0

and 0 < h < t. To do so, we argue by contradiction assuming that

max(u — v)4 > max (u — v)4.
Qo 0937

In QF’B X QF’?, we introduce the function

e L

\IIE,L(xuyutv S) = u(:c,t) —’U(y,S) - 2 £2 _L|xN _yN|7

where the parameters € > 0 and L > 0 are going to be chosen small enough and large

enough respectively.
This function achieves its maximum at (7,7, ¢, 5)—we drop the dependence of this
point in € and L for the simplicity of notations—and with a suitable choice of ¢ and

L (small enough and large enough respectively), we know that (z,?), (7, 5) € QZ? by
our contradiction hypothesis since, by classical arguments,

u(z,t) —v(y,t) = max(u —v); when € — 0, L — 4o0.
orr

&3

(a) We first prove that Ty = yn = 0 for a well-chosen constant L with respect to €.

Indeed, let us start by assuming that xy # yy. We then face two situations:

(1) if Zy > 0, whether Ty — gy is positive or negative we may use the inside equation

as + F(z,1,p: + Ley) < -,

where 2 — 3 2T — )
-5 -y
a.:=——— and p.:=—7F"—.
€ €
(17) If zy = 0, then |xy —yn| = —(xy —yn) if zn, yn are close enough to Zy, yy and

the boundary condition yields

~ _ 1
min (aa + F(z,t,p- + Len), L+ G(Z', ¢, pe, 5_2> < -,
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Now, it is clear that, for a choice of the form L = Ce=2

of these inequalities can hold and therefore Ty = yy.

with C' large enough, none

Next, let us also argue by contradiction, assuming that zy = yy > 0. As is well-
known, we can add a term in the test-function in order that (Z,7,¢,5) becomes a
strict maximum point.

Then, regularizing the term |2y — yy| by changing it into (|zy — yn|? + o?)¥/2 for
0 < a < 1, at the new maximum point (Z, Ja, ta, 5«), Wwe have in particular

((ja)N - (ga)N) .
(1(@a)n — (Fa)v]2 +a2)t2 7

where a. o, p- o are defined in the same way as a., p. replacing 7, 4, t, 5 by Za, Jas tas Sa-
This inequality implies, using (Hxc), that

Qe+ F (oo pe + 1 ) <o,

7 (@a)v — (Fa)n)
(I(@Za)n = (Fa)n[* + 0?)
this estimate being uniform w.r.t. a. Notice that, in order to have the right estimate

of a. ., we need to double the variables in the same way for both  AND ¢: this is
where the local Lipschitz continuity in ¢ of F, G is required, c¢f. Remark 3.1.

5 = Olpoal + laa)) = o(=™).

With this estimate, which is a key one since L is of order €72, the classical ar-
guments of the comparison proof for first-order Hamilton-Jacobi Equations yields a
contradiction for o small enough.

The rest of the proof consists in dealing with the case Ty = yny = 0 since we have
left out the other cases.
(b) We perform a twin blow-up a la Forcadel, Imbert and Monneau [1/].
Let us introduce the following functions:
1 _
us(z,t) == ) (u(Z' + 62’ 8%z, t + 0t) — u(Z,t) — 6p. - 2’ — da.t),
5.1)
1 i o (
vs(y, s) == 5 (v(§ + 6y, 0°yn, 5+ 6s) — v(y, 5) — Op. -y — ba.s) .
Notice that the Ventcell boundary condition forces us to use a different scaling in the

tangent variables (z/,t,%/, s) and in the normal ones (zy,yx) and to introduce the
compensating terms a. and p., two main differences with [11].

Using the maximum property of function V. ;, at (Z,¢,7, §), we deduce the estimate

LU,— /12 t—82
s t) v s) < T EE g, (5.2
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and us(0,0) = vs(0,0). This inequality shows that us is bounded from above and v
is bounded from below.

On the other hand, they are a strict subsolution and a supersolution respectively
of the following boundary problem

dwy + a. + F(Z' + 02/, xy,t + 6t, p- + dDpw + wypen) =0 in {zy > 0},
—Wgpy + G(j’ + 0/, 52:6]\“ t+ot,p. + 0D w, Dm/m,w) =0 on {(L’N = O} .
(5.3)

To continue, we are going to prove that we can assume w.l.o.g that us and vs are
bounded. For wug, we use that, by (5.2), (0,0) is a maximum point of the function

(r,t) — us(z,t) — — — — — Lxy,
and, by the arguments of Proposition 2.10 in [5], there exists A < L such that
a. + F(Z',0,t,p. + den) < —n.
On the other hand, the standard subsolution inequality yields

min (ae +F(&,0,T,p. + Lew), —L + G(#, 0,7, p., e 2 Id)) <.

By standard properties of the super-differential of us at (0,0) (c¢f. again Proposi-
tion 2.10 in [5]) we also have

min <a€ + F(z',0,t,p. + Xen), —A + G(Z,0,1, pe, e 2 Id)) < -7,

for any A € [\, +00) and therefore there exists A < L such that we have both

Qe + F(jlv 07 Eape + 5\6]\[) S -1,
and — A+ G(@,0,f,p., e 21d) < —n.

We deduce from these inequalities that the function

EIaC;

@D(I,t) = -1+ S\Z'N + 8—2 -2

(where —1 is arbitrary),
is an approximate subsolution of the problem in a neighborhood of (0,0). Meaning,

it is a subsolution where < —n is replaced by < —n + 0s(1) to take care of the terms
like 62’, 6t, dw;, 6 Dpw in the equations.
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The consequence is that max(1, us) is an approximate subsolution as well, which
is bounded from below. A much easier but similar argument allows to bound vs from
above by just using the coercivity of F' in the w, ,-direction.

(c) Passage to the limit in both the wviscosity inequalities and the mazximum point
property.
Now, since the ug, vs are uniformly bounded w.r.t. , we define u = limsup* us and

v = liminf, vs, which satisfy, on one hand, the inequality
7" — /|
g2 g2

2 |t _ S|2
+

?_L(LU,T,) —’(_J(y,S) < +L|xN _yN‘u (54)

and u(0,0) = ©(0,0).
On the other hand, if xy,yxy > 0 we get
ae + F(i’,{,pe + ﬂxNeN) < —-n < 0< e + F(g7 S, pe + /l_JZUNeN)7
while, on the boundary, we have

IIlil’l(CLe + F(i” t_vps + amNeN>7 _axN + G(jlv f,pg, Dw’x’ﬂ>>
max(as + F(g, §7p€ + T_JmNeN% _T_JmN + G(g/, §7p€7 Dm’x’r(_]»

S =1,
> 0.

(d) We regularize u and v to conclude via the Lions-Souganidis approach.

By making a tangential sup-convolution on 4—i.e. in variables (2/,¢)—and a tangen-
tial inf-convolution on v, applying Lemma A.5 in [10], we can assume without loss
of generality that @,v are twice differentiable at (0,0) and Lipschitz continuous in
variables (z/,t), uniformly in zx. To be more precise, both are twice differentiable,
not necessarily at (0,0), but at least at arbitrary near points, which generates only
small perturbations in the inequalities, which allows us to pass to the limit.

Moreover the coercivity assumption on F' implies that « is Lipschitz continuous in
xn and, as a consequence, if there exists a superdifferential for # in the tangential
direction, there exists also a global one, i.e. in variable (z/,zy,t). And, using the
Lipschitz continuity of #, the same is true for v by the maximum point property.

In the sequel, we consider only the parts of the sub and super-differentials of u, v
which are really useful, i.e. the couples corresponding to (D? ,, D, ). Mixing the
above properties with the result of Lemma 15.2 in [5], there exists (N —1) x (N —1)

matrices X', Y’ satisfying
X 0 11 1 I

and \; < \; for i = 1,2 such that
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(i) (X', \) € D>*u(0,0) if A > Ay,
(i5) (Y',\) € D>5(0,0) if A < A,
(7ii) The Lions-Souganidis argument yields

a5+F(ja£>pa+A€N)§_n lfA1§A§X1’
af—'_F(g?gupe‘i‘)\eN)ZO 1fA2§>\§X2

(iv) AL < Ay, X1 < X2-

The new point in the twin blow-up argument is that the two properties in (i7i) do not
hold at the same point for F' but we point out that, as long as A\; < A < A1, then the
coercivity assumption on F' implies that A = o(e™!) and therefore F(Z,t, p. + Aey) =
F(y,3,p: + Aen) + 0-(1), which means that, for € small enough, we can assume that
we are at the same point.

—If [\, M] N [Ag, Ao] # 0 then the above remark on the estimate of A and (iii) give
an easy contradiction.

— Otherwise A\; < )\, and we can choose A € [\, A,] such that
ae + F(jafapa + )\eN) = —77/2 @,

This implies that, in the boundary inequalities, only the G-condition has to be dealt
with. In this situation, since we have both (X', \) € D?%u(0,0) and (Y’,)\) €
D?*~9(0,0), we can apply the viscosity inequality for the boundary condition which
leads to

A+ G@ tp, X)) < —n<0< -AN+G(,5p.,Y").

Therefore, by (Heonr) and using that |2" — | = O(e), there exists ¢ > 0 such that
for € > 0 small enough

—wr(lt' —y| + ce 7o' —y')?) < —n,

which yields a contradiction for small e.

6 Proof of (LCR) in the Half-Space Case in the
Second-Order Case

For second-order equations, the strategy is exactly the same and we are not going to
repeat all details here.

(M Notice that, here again, we have \ = o(e™1) by the coercivity assumption on F.
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But the first step has to be done differently since, in the first-order case, we reduce
to the case when the maximum point satisfies xy = yy = 0 by a combination of
normal coercivity and use of Ventcell boundary condition. Here, on the contrary, we
only use the normal ellipticity of F'.

We start by assuming that

M := max(u —v); > max (u —v),,
Qh 0Q5 7

z,t

and we denote by (Z,1) € QZ}Z a point where M is attained.

(a) Building a test-function to reduce to the case Ty = gy = 0.

For 7 € R, we set

and, in &, := QZL X QZ? N{lzny — yn| < €}, we introduce the function

xl_y/2 t—S2 TN — YN
\DE,L(zayat>s) = u(x,t)—v(y,s)— | 2 | - ‘ ) | _LSO g )

€ € €
where the parameters ¢ > 0 and L > 0 are going to be chosen small enough and
large enough respectively. We denote by (z,%, 7, 5) a point of maximum of ¥, 1, in &,
dropping the dependence in ¢ and L for simplicity of notations.

Notice that this penalization procedure is not as standard as usual and the following
result replaces Step (a) from the first-order case

Lemma 6.1 Fore > 0 small enough and L > 0 large enough (but independent of €),
the mazimum point (T,t,7,3) satisfies Ty = yn = 0.

Proof — We proceed in three steps as follows.

1. Notice first if L is chosen large enough—with a size depending only on u and v—,
the maximum of function W, ; cannot be achieved on the boundary |zy — yn| =
e. Indeed, if |Ty — yn| = &, the value of the Lp-term is L/2, which implies that
max(¥. ) - —oo as L — +o0.

2. A second remark is that, if Ty # gy, the -term becomes smooth at these points.
Hence, for instance if zy > 0, we can use

I e T 1 2§ — IN]|
1) — (7, Ly [ 2NN
(z,t) = v(y,5) + o T tle .
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as a test-function in the inside equation for u at (z,t), which yields

_ L 1 L

a. + F(i’, t,p€ + —€EnN, ) Id ——26]\[ ® €N) <0.

€ € €

But this contradicts the ellipticity of F' for L large enough, its size depending only
on the properties of F'. Similarly, we also reach a contradiction if gy > 0 by using the

supersolution inequality for v, involving the +Le 2 ey ® ey term in F.

3. At this stage, we are left with proving that zy = yy > 0 cannot occur which is
not as simple as in the first-order case. We first notice that, by usual arguments, we
can assume w.l.o.g that (Z,, 7, 5) is a strict maximum point by subtracting |z — z|* +
ly — y|* + |t — t|* + |s — 5]* to the function W, ;—we keep the same notation for this
new function.

Then, we denote by V¥, 1, the function which is the same as V. j, except that we
replace € by « in the ¢-term, more precisely

. 2 —y' P Jt—s]? [Zn — yn]
\IIE,L(xv Y, tv S) = U(SL’, t) - U(yv S) - c2 - 2 - LSO T .
We first remark that, for a > ¢, as long as the maximum point of ¥,  , in &, satisfies
TN = yn, then this point is necessarily (Z,7,t,5). Indeed, this derives from the fact
that \Ila,L,a(za t> Y, S) = \I]E,L(x> ta Y, S) lf IN = YN-

Next, we define & as the supremum of all & > ¢ such that the maximum of ¥, ;.
in & is still achieved for x5 = yy > 0, i.e. for which (z,7,,3) is still a maximum
point. We face several cases:

(i) If @ = +o0, we can drop the ¢-term: (Z,%,7, §) is a maximum point of U, o and
the usual comparison arguments, leading to a contradiction, can be performed.

(17) If @ < 400 we distinguish two sub-cases:

(i1)-(a) If (Z,9,t,5) is a strict maximum point of U, 1 5, then, for any a > a,
there is a maximum point (Za, Yo, ta, So) such that (x,)n # (Yo)n and the
sequence (Tq, Yo, ta, Sa) converges to the strict maximum point (7,7, t, 5)
as o — a. In this case, the usual comparison argument allows to conclude
since the p-term is smooth if xy # yy, see step 2. above.

(i1)-(b) If (z,79,t,5)is NOT a strict maximum point of U, ; 5, this means that there
exists a sequence (T, Yk, tk, Sx) of maximum points of W, 1 5 which con-
verges to (T, Ja, ta, Sa) and such that (x)y # (yx)n. Indeed, we cannot
have (zx)ny = (yx)n (as k — 00) since (T, Ja, ta, Sa) 1S a strict maximum
point of ¥, 1 5 = U, ;, with the constraint xy = yy. And we conclude as
in the previous case, by using the comparison arguments on (Zg, tx, Yk, Sk)-
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In any case, we reach a contradiction when the maximum point (Z,,7,5) satisfies
Iy = yn > 0, so that we can assume w.l.o.g. that ¥, ; has a maximum point such
that xty =ynv =0

Q.E.D.

Remark 6.2 In the proof of Lemma 6.1, even if this may not be completely crucial,
we benefit from the same doubling of variables in x' and t since it simplifies matter,
at least. This is where the local Lipschitz continuity in t plays a role, cf. Remark 3.1.

(b) The twin blow-up argument.

After this first step, we perform the twin blow-up argument as in the first-order case,
see (5.1). Of course, since F' now depends on the second-derivatives, the equation
inside the domain involves more terms than in (5.3), but we are not going to write
them here since passing to the limit yields a simple formulation in the end—see below.

In order to reduce to the case when us and vs are bounded as in the first-order case,
we use sub- and supersolutions of the form

VE(x,t) = 2K (1 — oy — Kyrk),

1~ being the subsolution and 1" the supersolution. The Ki-constant is used to take
care of the Ventcell boundary condition, while the Ks-one is used for the equation,
using the ellipticity of F' in the normal direction. Both constants depends on & (but
not on §) and we consider these sub and supersolutions only in a small neignborhood
of the boundary, i.e. for x) small.

(c) The limit problem.

Using (Hnsg), the limit problem for % and v is now

<0< —Upyey if zy >0 and yxy > 0 respectively .

“Uznzn

Notice that the strict subsolution property is lost in the limit here. On the boundary,
we get
min(—iy ey, —Uey + G(Z, €, pe, Dprwt) + 1) <0,

max(_z_]wNwNv —Uzy + G(]j/, 8, ey Darer0)) 2 0,

but using the uniform ellipticity in the normal direction of the equation inside the
domain together with Proposition 3.4, these relaxed boudary conditions reduce to

_axN + G(jlafa De, D:c’:c"a) + n S Oa
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—Uyy + G(¥, 8, pe, Dy r0) > 0
On the other hand, u, v satisfy @(0,0) = v(0,0) = 0 and

LU/— /12 t_SQ L
| Yl —‘ |—g|93N—yN|§0-

a(e.t) = oy 5) — -

The difference in the second-order case is that the Lipschitz continuity of the sub-
solution in a neighborhood of the boundary is not given for free and we are not sure
that complete super and subdifferentials do exist when tangential ones exist.

(d) Adapting the Ishii-Jensen Lemma.

We argue by following closely the proof of the Ishii-Jensen Lemma on the boundary:
we perform a sup-convolution in (z/,¢) to @ and an inf-convolution in (3, s) to ©

I 2 t— 2
oz, 1) :zsup<u((z',xN),7')—|x | T'),

o o

_ _ ly =2 |s—7?

)= sup o0 ) = P EE ,

for 0 < a < e. It is worth pointing out that these sup- and inf-convolutions do not
present any difficulty since the nonlinearities involved in the limit problem do not
depend neither on x nor on t. Moreover, the equation/boundary condition satisfied

by ., v, are exactly the same.

Inequality (5.4) implies that u,(0,0) = 0,(0,0) = 0 and applying the sup-inf con-
volution to this inequality gives

_ _ a? [l —y)*  |t—s]? L
ua(:z,t)—va(y,s)g(1+§)(| > | +| - | )+E|IN_yN|. (6.1)

Hence (0,0,0,0) is still a maximum point of

o 0t (W —yP - sPY L
) = 2als) = (14 5 (P ) - B,

We may even assume that (0,0,0,0) is a strict maximum point of this function by
adding suitable (small) terms.
Now, for ¢ € RY close to 0, we consider the functions

- - OK2 :L,/_yIQ t—82 TN — YN
] e ) R4 ) EVRCRN )
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Arguing as in the first step—this is even easier here—, all these functions achieve
their maximum at points such that zx = yy = 0. Then, by applying Lemma A.5 in
[10] in the tangent variables, there exists a sequence (qz)x of points in (RV=! x R)?
such that each function

a2 [l =y |t —s|? TN —
o) =l o) - (104 %) (EEE L L) g (2l g

g2 g2 €

has a maximum point at ((z},0), tx, (¥, 0), sx) where 4,, 0, are twice differentiable.
At these points, we have full super and subdifferentials for t,, v,.

Because of the uniform ellipticity in x5 of the equation in the domain, the boundary
condition is satisfied in a strong sense—see Proposition 3.4—and thanks to the struc-
ture of the super- and sub-differential of u, and v, respectively, there exists le, X;
such that

z'x!

Ao + G(gj’, 5, e, D%, 04((y}, 0), sk)) >0 for any Ay < A5,

x'x!

o _ ~k
{ _)‘1 + G(xlu tvpev D2’ ua((x;cv 0)7 tk)) < ) for any >\1 > )‘1 ) (62)

On the other hand, the matrices D?, i, ((2},0),t), D2,
usual matrix inequality. Hence

G(Z',1,p., D} pia((2},0), t)) — G(¥, 8, pe, D30y 0a (Y1, 0), 5)) > 0-(1) + og(1).
Using (Hconr), this yields

T)a((y,;,()), sk) satisfy the

~k
0= 0:(1) = ox(1) <Xy = Ay

At this point, we want to make precise our use of the parameters €, a and k: a is chosen
in order that a;/e < 1 and then we can choose ¢ in order to have the above o.(1) to
be less that, say, /4. Finally we choose k large enough (this choice is independent of
the preceeding ones).

Using this inequality for £ small enough and £ large enough, we can assume without
loss of generality that X’f — M >n/2.

(e) Getting a contradiction.

Let us first notice that, after examining carefully the sub and superdifferential in the

. . ~Fk . - . . . _
normal direction around (0,0), A; is a minimal element in the superdifferential of u,,
while A} is a maximal element in the subdifferential of 7,. We will use this information
below.

Then, we notice that the functions zy — @, (2, 2y, t) are convex for any 2/, ¢ close
to (0,0) and, in the same way, the functions xy +— 0, (2, zx,t) are concave for any
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2, t close to (0,0). Hence, since these functions are bounded, they are locally Lipschitz
continuous and their derivatives (defined almost everywhere) are non-decreasing and
non-increasing respectively.

On the other hand, the functions zx + U, (2, xy,t) are necessarily continuous
at xy = 0. Indeed, if (2, xy,t) = (2, t) < Un(2’,0,t) for some 2/, ¢, then the
same property holds in a small neighborhood of (2’,0,¢) and this implies that, in this
neighborhood, any A € R is in the superdifferential of %, when it is not empty. This
is clearly in contradiction with the Ventcell boundary condition. An other argument
consists in using Proposition 3.3.

Now we claim that we the following inequality cannot hold for any 2/, ¢ in a neigh-
borhood of ((z},0), tx):

Ot (2, N, t)

lim <X — /8,

rN—0 a[[’N

Indeed otherwise we would have a contradiction with the definition of X]f and its
minimality. In the same way,

perd !
lim 0V (2, 2N, t)

~k
> A 8
znN—0 a[[’N =72 _l_/r//

cannot hold in a neighborhood of ((y;,0), sk).

Hence, by using suitable sequences converging to ((x},0),tx) and ((y},0), sx) re-
spectively, we have

{ua«x;,m),m — ta((}, 0),t) = O
Ea((yllcva)v Sk) - z_]Ot((yl,ch)v Sk) < (Xz + 77/8)$N,

leading to

(@ 2, ) = Bal(ho o), 50)| = (24, 0), 1) = Ta((y, 0), 58)
~k ~k n n
2 (12 DJow Do
Letting k — oo, this yields

aa(oa TN, O) - @a(oa TN, O) Z

>3

TN,

but (5.4) implies 4, (0, zxn,0) — 0,(0, 2x5,0) < 0, and we reach a contradiction which
ends the proof.
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7 Further Results and Open Questions

In this last section we gather some comments, open questions and other results con-
cerning Problem (1.1)-(1.5).

Existence via Perron’s method

We first provide an existence result for Problem (1.1)-(1.5) associated to the initial
condition (3.5) and to do so we use the assumption

(Hp.gx) — Boundedness assumption for ezistence.

The functions x — ug(z), (z,t) = F(z,t,0,0) and (z,t) — G(z,t,0,0) are bounded
and continuous on €, 2 x [0,7] and 0 x [0, T] respectively.

The result is the

Proposition 7.1 Under the assumptions of Theorem 4.2, if (Hp.gx) holds, there
exists a unique, bounded continuous solution to Problem (1.1)-(1.5)-(3.5).

Proof — We just give the main arguments since the proof is based on the classical
Perron’s method (cf. Ishii [15], see also [10]).

The key point is to build sub and supersolutions of the problem and they have the
form

uwF(x,t) = kit £ koo(d(z)) + ks,

where @ is ¢, defined at the beginning of Section 3.2 and ky, ko, k3 are constant which
are chosen in the following way:

(i) ko is chosen in order to have u* satisfying the Ventcell boundary condition, cf.
Lemma 2.4.

(ii) Then k; is chosen in order to ensure that u* are sub and supersolution of (1.1).
(737) Finally k3 is chosen in order to have

u (z,0) < up(z) <u'(z) on Q.

With all these properties, one can apply Perron’s method—with an initial data being
understood in the viscosity sense. And the result is proved.
Q.E.D..
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Including some u;~-dependence in G

It is clear that boundary conditions like
G(z,t,us, Du, D*u) =0 on 09 x (0,7),

where G(x,t,ps, p, M7) is an increasing function in p; can be treated analogously,
typically

ou , 9

u — =— + G’ t, Dyu, Dy u) =0 on {zy =0} x (0,7).

aSL’ N
The assumptions on the dependence in p; are analogous to those made on the tangen-
tial part of p since, as it is already the case in this article, ¢ can be seen as a tangent
variable to the boundary 92 x (0,7).

The stationary case

We point out that the stationary case can be treated analogously provided that the
nonlinearity of the equation is proper in the sense of [10]. We are not going to give
any detail here but both the existence and comparison result hold in this framework,
as the reader will certainly be able to check.

A few open questions

Via (Hcoxr), we assume the same regularity for F(z,t,p, X),G(2/,t,p/, X') in z or 2’
and t. We have no idea if this assumption is really necessary or if one can replace it
by some weaker continuity requirement for the t-variable.

In the same way, the Lipschitz continuity assumption in (Hggy)-(7) may be seen
as natural for G or G as part of the requirement for a “good Ventcell boundary
condition”, the linear growth in p and My ensuring—in some sense—that the normal
derivative can control them. However, this assumption seems less natural for ' which,
for example, may have some superlinear gradient growth, which is incompatible with
(Hgex)-(7). We do not address this question here but it is clearly a problem to be
considered.

The C%®-regularity of solutions for a € (0,1] is an interesting question which is
also a prerequisite to address other problems like the large time behavior of solutions
via the study of the ergodic problem.

Considering the methods we used to get the comparison result suggests that these
regularity results should follow from similar ideas.

37



Two particular cases with simpler proofs

Finally, we provide some remarks on how to derive more direct proofs in some partic-
ular cases where the comparison proof can be substantially simplified. Unfortunately
those cases all suppose that the problem is set in an half-space and with too strong
assumptions to have any hope of extending them to general domains. In all these
cases, we just sketch the simplified proof, insisting on the main points.

(a) The first particular case is when

(1) Equation (1.1) is of first-order type, satisfying (Hyc).

(13) F(x,t,p) and G(2/,t,p’, M) are convex in p and (p’, M') respectively, and G
does not depend on ', t.

Under these assumptions, the “tangential regularization procedure” of [5] works with-
out any difficulty: we first regularize the subsolution u by a sup-convolution in the
tangent variables—i.e. in (2’,t)—, then by a standard convolution. This allows to
reduce to the case when u is Lipschitz continuous w.r.t. all variables and smooth in
', t (even C*°) with all tangent derivatives being continuous w.r.t. all variables.

Because of this last property, u is “almost a test-function”, we have just to handle
the x-variable. Assuming that, after the standard localization procedure, u — v has a
strict maximum point at (Z,t) satisfying T, = 0, it is enough to look at the function

u((@',on). 1) = v((@, yn), 1) + G(Doru((,0),8), D2,u((@,0),D) ) (ax = )

2
IN — YN
—(572) +0(zn + yn),
i.e. with just a doubling of variables in the normal direction, following a philosophy
which is very close to the usual Neumann comparison proof.

Of course, here the conclusion follows very easily but unfortunately the Assump-
tions (i)-(i7) above are very restrictive.

(b) The second particular case is when F' has a “separated variables” structure, i.e.
when

F(z,t, Du, D*u) := Fy(2',t, Dyu, D2, u) + Fy(xn, Dyyu, D2 . ).

ITNTN

The main point here is that we can still regularize the subsolution w by a sup-
convolution in the tangent variables but we can also do it on the supersolution v
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by inf-convolution. The advantage is that we begin the proof with sub and supersolu-
tion which are already Lipschitz continuous and semi-convex or semi-concave in the
tangent variables, which simplifies slightly the arguments. But again, if we have in
mind to treat a problem set in a general domain, we face very restrictive assumptions.
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