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Topological insulators are described by topological invariants that can be computed by integrals over
momentum space but also as traces over local, real-space topological markers. These markers are useful to
detect topological insulating phases in disordered crystals, quasicrystals, and amorphous systems. Among these
markers, only the spectral localizer operator can be used to distinguish topological metals that show zero-modes
of the localizer spectrum. However, it remains unclear whether trivial metals also display zero-modes and if their
localizer spectrum is distinguishable from topological ones. Here we show that trivial metals generically display
zero-modes of the localizer spectrum. The localizer zero-modes are determined by the zero-mode solutions of a
Dirac equation with a varying mass parameter. We use this observation, valid in any dimension, to determine the
difference between the localizer spectrum of trivial and topological metals and study the spectrum of the localizer
for fractional quantum Hall edges. Because the localizer is a local, real-space operator, it may be used as a tool to
differentiate between noncrystalline topological and trivial metals, and characterize strongly correlated systems,
for which local topological markers are scarce.

DOI: 10.1103/PhysRevB.109.195107

I. INTRODUCTION

Topological phases of matter are identified by nonzero bulk
topological invariants that guarantee their protection against
disorder [1–3]. For crystals, calculating invariants is greatly
simplified by the presence of translational symmetry that
allows the use of momentum space. In contrast, topologi-
cal phases in strongly disordered systems, predicted [4–9]
and observed [5,10,11] in, e.g., amorphous systems, require
formulating topological invariants in real space. For topo-
logical insulators, multiple options exist. These are based,
for instance, on scattering theory [12,13], noncommutative
geometry [14,15], K-theory [16–24], supercells [25], Fourier
transformation of momentum space formulas [26–33], den-
sity matrices [34,35], symmetry indicators [36,37], flattened
Hamiltonians [38], and effective Hamiltonians in momentum
space [36,39,40]. The wide choice of real-space topological
invariants for insulators contrasts the limited possibilities for
diagnosis of topological. metals in real space. The local Chern
marker [27] and the spectral localizer [17,18,21,22,41–46]
have been used even when topological insulator properties
coexist with trivial metallic bands [23] or when the Fermi
energy crosses a topological band [47]. However, real-space
topological invariants capable of detecting unique signatures
of topological metallic bands, such as Weyl crossings, are
scarce. Topological semimetals that break time-reversal sym-
metry can be characterized by a nonzero Hall conductivity
σxy �= 0 [48]. However, σxy �= 0 can also be a signature of
time-reversal broken trivial metals that are, e.g., subjected
to magnetic fields [49]. In the presence of time-reversal
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symmetry, σxy = 0, rendering the diagnosis even more precar-
ious. An important step forward to characterize topological
metals in real space was provided in Refs. [50,51]. They sug-
gested that the spectral localizer L(X, H ) [17,18,41] can also
diagnose metallic topology. The spectral localizer L(X, H )
is a real-space operator that quantifies whether the Hamil-
tonian H and the position operator X can be continuously
deformed to commute without closing the band gap or break-
ing a symmetry. References [50,51] showed that the number
of zero-modes of L counts the number of Weyl nodes in
topological metals. Recently this approach was successfully
adapted to higher-spin generalizations of Weyl semimet-
als [52], known as multifold fermions [53–56].

This body of work shows that the localizer is
not only successful in identifying topological insula-
tors [17,18,23,24,42,57] in all Altland-Zirnbauer classes [58]
but also Weyl semimetals. Crucially, the spectral localizer
succeeds in detecting Weyl semimetals even in the presence
of time-reversal symmetry. However, its properties have not
been discussed for trivial metals, and it therefore remains
unclear if or how topological and trivial metals differ in what
concerns the spectral localizer.

In this work we find that the low-lying spectrum of the
localizer of trivial metals can be inferred from the spectrum
of an auxiliary topological insulator defined in the continuum.
This remarkable connection becomes transparent once we
show that finding the zero-modes of the localizer amounts
to finding the zero-modes of a Dirac equation with a vary-
ing mass term. Such rebranding is advantageous because the
localizer spectrum is typically computed numerically in a
case-to-case basis [17,18,21,22,41–45], while the Dirac equa-
tion with varying mass is a recurring problem across physics.
The analytical solutions to this equation link very distinct phe-
nomena including solitons in polyacetyline [59,60], boundary
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states of topological insulators [61–65], quantum Hall [66]
and Anderson transitions [67], domain walls in high-energy
physics [68,69], or cosmic string cosmology [70], to name a
few. Here we take advantage of this vast literature to predict
the spectral differences of L that characterize different types
of metals, including trivial and topological metals, and gapless
chiral edge states. Such understanding allows us even to go
beyond the single-particle picture and conjecture signatures
of many-body fractional quantum Hall edge states.

II. EXISTENCE OF ZERO-MODES OF THE SPECTRAL
LOCALIZER OF METALS

In this section we discuss the motivation and origin of the
topological properties of the space of zero-modes of the local-
izer in both real and momentum space. Through the examples
we discuss in the next section we showcase how this mapping
has a main practical advantage: The existence and structure
of the localizer low-lying states can be calculated without
resorting to numerical diagonalization.

A. Motivation

The spectral localizer L(X0, E0) is a local operator
defined for a reference energy E0 and position X0 =
(x(0)

1 , x(0)
2 , . . . , x(0)

d ) in d spatial dimensions [17,18,21,22,41],

L(X0, E0) = κ
(
Xj − x(0)

j

)
� j + (H − E0)�d+1. (1)

Here we assume the Einstein summation convention over the
spatial index j = 1, 2, . . . , d , H is the Hamiltonian in real
space and Xj are the position operators. The scalar param-
eter κ fixes the units and the relative weight between the
two terms. � j are a set of anticommuting Clifford matrices
(e.g., the Pauli matrices in d = 2). For each strong topolog-
ical insulator class in dimension d , the operator L(X0, E0)
encodes whether Xj and H can be continued to commuting
while preserving the necessary symmetries and local gap. For
example, the Chern number is given by the signature of the
localizer, the difference between positive and negative eigen-
values [18,23,24,42,57]. For topological metals, the number
of Dirac or Weyl points is equal to the kernel, or number of
zero-modes, of the localizer spectrum σ [L] [50,51].

The motivating observation that triggers this work is the
so-far overlooked resemblance between Eq. (1) and a Dirac
Hamiltonian,

HDirac(Aj, m0) = vF
( − i∂x j − Aj (x)

)
� j + δm(x)�d+1, (2)

defined by a Fermi velocity vF , a gauge field Aj (x), and
space-dependent mass δm(x) = m(x) − m0. It can be made
more explicit by a Fourier transform of Eq. (1), which can
diagonalize the Hamiltonian [H → ε(k)] and result in the
replacement Xj → i∂k j , leading to

Lk (X0, E0) = κ
(
i∂k j − x(0)

j

)
� j + (

ε(k) − E0
)
�d+1. (3)

This operator has now the same form as the Dirac operator
Eq. (2) if we identify vF with κ , Aj with x(0)

j and ε(k) − E0

with δm(x). In doing so we think of the momentum variable
k j in Eq. (3) playing the role of a space variable x j in the Dirac
picture Eq. (2).

This observation is appealing but not rigorous. Hence, in
the reminder of this section we offer a more rigorous discus-
sion both in the finite Hilbert space where Eq. (1) is typically
defined and in momentum space of a tight-binding Hamilto-
nian. In practice, the Dirac picture turns out to be sufficient to
predict the low-lying spectrum of the localizer.

B. Zero-modes of the localizer in real and momentum space

The matrix elements of the localizer, written in the basis
that diagonalizes the Hamiltonian, read

Lmn(X0, E0) = κ
(
X mn

j − x(0)
j δnm

)
� j + (En − E0)δnm�d+1,

(4)
where H |n〉 = En |n〉, X mn

j = 〈m| Xj |n〉. For an insulator, i.e.,
E0 chosen inside the gap, the second term is always of the
same sign. However, when the spectrum is dense spectrum,
as in a metal, one can always choose E0 such that the second
term vanishes for a given En. The first term has a zero-mode
when x(0) coincides with a site in the system. These two
facts combined show that for a metallic spectrum, we should
be able to find a zero-mode of the localizer no matter the
topological properties of the metal.

We are thus interested in the space of zero-modes of the
localizer, M, defined as

M = { w ∈ Rd+1 | σ [L(w)] = 0 } . (5)

Here w is a d + 1-dimensional vector w = (x(0)
j , E0) and

σ (w) are the eigenvalues of the localizer for a particular
choice of w. Ishiki et al. [71] observed that it is possible to
associate a Berry connection and a finite Chern number to M,
which is in this mathematical sense, topologically nontrivial.

In this work we wish to take a different, more physical
route to bring up the topological content of M, leaving the
exact relation between the two approaches for subsequent
work. To do so, we find the representation of the localizer in
the Bloch basis that diagonalizes the Hamiltonian. This basis
is spanned by the eigenstates |nk〉 of band n and momentum
k. We will make use of a result by Blount [72], who expressed
the position operator in this basis:

〈mk′| Xj |nk〉= δ̄nmδkk′A j
nm(k) + δnm

(
δkk′A j

nm(k) + i∂k j δkk′
)
,

(6)

where δ̄nm = (1 − δnm), δkk′ = δ(k − k′), and A j
nm(k) =

〈mk| i∂k j |nk〉 is the Berry connection. The position operator
has both diagonal (δnm) and off-diagonal (δ̄nm) contributions
which we can use to separate the localizer contributions
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as well:

〈mk′|L(X0, E0) |nk〉 =
{

κ
(
δkk′A j

nn(k) + i∂k j δkk′ − δkk′x(0)
j

)
� j + (

εn(k) − E0
)
δkk′�d+1 m = n

κδkk′A j
nm(k)� j n �= m.

(7a)

(7b)

The intraband term n = m expresses the fact that the posi-
tion operator is highly singular in momentum space. However,
observables are well defined, which can be shown by express-
ing them in terms of density matrices. This has thoroughly
been discussed in the context of nonlinear optics; see for
example Refs. [73–75].

We are interested in trivial metals, which we define by
assuming that E0 intersects a single band n. Hence we focus
on the contribution of Eq. (7a), which allows us to write the
localizer as

〈nk|L(X0, E0) |nk〉 = κ
(
i∂k j − x(0)

j + A j
nn(k)

)
� j

+ (
εn(k) − E0

)
�d+1. (8)

Equation (8) has the form of a Dirac particle coupled to a
vector potential and a mass term:

HDirac(Aj, m0) = vF
( − i∂x j − Aj (x)

)
� j

+ (
m(x) − m0

)
�d+1, (9)

if we identify i∂k j ↔ −i∂x j , vF ↔ κ , Aj (x) ↔ x(0)
j − A j

nn(k),
and ε(k) − E0 ↔ m(x) − m0 = δm(x). There is an emergent
gauge degree of freedom carried by the Berry connection
A j

nn(k). However, since the low-lying spectrum of the lo-
calizer is only sensitive to a local region in k space, close
to where ε(k) − E0 = 0, the gauge connection A j

nn(k) can
be gauged away [76]. With this simplification, we arrive to
Eq. (3).

When reasoning with the Dirac equation, we will be as-
suming the continuum limit approximation, while numerical
calculations in real space require a finite Hilbert space. As we
will see, both will lead to consistent results, showcasing the
usefulness of the long-wavelength Dirac picture.

In the momentum space picture, zero-modes of the local-
izer amount to zero-modes of a Dirac equation. While this is
a mere recasting of the localizer, this viewpoint turns out to
be advantageous. One can now take advantage of literature on
the physical consequences and topological properties of zero-
modes of the Dirac equation to infer properties of the localizer
zero-mode space without the need of exactly diagonalizing the
operator.

We now present a set of benchmarks that compare the
predictions made using this momentum space construction to
exact diagonalization of the localizer in real space.

III. BENCHMARKS

Here we give numerical and analytical support to the gen-
eral considerations above by studying several examples. We
focus specifically on showing the differences between trivial
and topological metals. We conclude with the example of a
fractional quantum Hall edge.

A. d = 1 wire

As a warm up exercise we wish to find how the
localizer spectrum changes as we interpolate between a one-
dimensional (1D) trivial parabolic dispersion and a 1D Weyl
Hamiltonian. This can be achieved by studying the 1D tight-
binding lattice Hamiltonian,

H = −t
L∑

n=1

c†
ncn+1 + H.c., (10)

where we assume the lattice constant equals a = 1, c†
n (cn)

is the creation (annihilation) operator of a particle at site n
and L is the length of the chain. This chain has a bulk energy
spectrum ε(k) = −2t cos(k); see the inset of Fig. 1(a). Close
to the bottom of the band, at k = 0, the dispersion relation
is ε(k) ≈ −2t + tk2 + · · · . We take this as a definition of a
1D trivial metal: a single-band, parabolic dispersion at mo-
mentum k ∼ 0 and energy ε(k) ∼ −2t with effective mass
m = 1

2t . For energies E0 ≈ 0, we expand around k = ±π/2
and obtain ε(k)± ≈ −2t (±k + π

2 ) to linear order. The left and
right moving dispersion relation can be compactly encoded in
a 1D Weyl Hamiltonian of the form HW = −2t (kτz + π

2 τ0),
where τz and τ0 are the third Pauli matrix and the 2 × 2
identity matrix, respectively.

As we will see the number of zero-energy modes of the
spectral localizer [50,51] is not enough to distinguish the 1D
parabolic and Weyl limits of Eq. (10). Mapping to a Dirac
Hamiltonian we will be able to predict the differences in the
localizer spectrum between these two limits.

At energies close to E0 = 0, ε(k) is linear, and we may
write the localizer in momentum space as

Lk (0, E0)± = iκ∂kσx − 2t

(
± k + π

2

)
σz, (11)

where we chose �1 = σx and �2 = σz. Interpreting k as a
coordinate, as discussed below Eq. (3), we recognize this
operator as the 1D Dirac Hamiltonian,

H±
Dirac = −ivF ∂xσx + δm±(x)σz, (12)

with vF = κ and a linearly varying mass δm(x) = −2t (±x +
π
2 ), of which the solutions are well known (see, e.g., Ref. [62])
For each chirality (±), finding its spectrum and eigenfunctions
analytically amounts to finding that of a particle in a har-
monic oscillator [62], with a characteristic length scale losc =√

κ/2t . The localizer has thus a spectrum σn = sgn(n)2
√

tκn.
We notice that not only the zero-mode is doubly degenerate,
as found in Ref. [50], but also that all states show this degen-
eracy, provided that ε(k) can be approximated to be linear.
The spectrum displays (σ,−σ ) doublets because of the chiral
symmetry C = σy of the localizer that imposes CLC† = −L.

Numerically diagonalizing the 1D localizer Eq. (1) with
�1 = σx and �2 = σz confirms our analytical expectations.
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(a) (b)

(c) (d)

FIG. 1. Localizer spectrum σ [L] of bulk and edge metals.
(a) σ [L] (circles) for a 1D finite chain of length L = 100 at E0 = 0 in
units of 2

√
tκ as a function of eigenvalue index n for κ = 0.05 and

t = 1/2. The low-lying spectrum is doubly degenerate and follows
a sgn(n)

√
n/2 law (dashed line). This is the characteristic

√
n law

for relativistic fermions, with the 1/2 accounting for the double de-
generacy. Inset: One-dimensional dispersion relation ε(k). (b) Same
spectrum as in (a) now as a function of E0. As E0 increases, the
twofold degeneracy is lifted where the dashed vertical lines E0 ≈
2t − losc

√
2n + 1, with |n| = 0, 1, 2, . . . , meeting the localizer levels

(black circles). Horizontal gray lines indicate the pseudorelativistic√
n law. (c) σ [L] [in units of vF /R = κ/

√
(6t + E0)/t] for a 3D finite

cube of linear length L = 10 at E0 = −2.5, with κ = 0.1, t = 1/2.
The low-lying states are spaced in multiples of vF /R (dashed lines)
and their degeneracy, given by the sequence 2, 4, 6, 8, 10, . . . , is
equal to that of a finite spherical topological insulator of radius R;
see Eq. (16). (d) σ [L] as a function of X0 = (x(0), 0.) for a square
Chern insulator of linear dimension L = 30, with κ = 0.01 and
M/t = −1. In the Dirac picture, we expect a zero at the boundary,
|x0| = L/2 = 15, as observed numerically. The shaded region indi-
cates the system’s interior, where the localizer signature and Chern
number equal −1 [17,18,57].

Choosing x(0) at the center of the system and H to be Eq. (10),
we obtain the spectrum shown in Fig. 1, shown as a function
of eigenvalue index N in (a) and E0 in (b). For E0 = 0, the
low energy spectrum consists of doubly degenerate (σ,−σ )
pairs. As predicted, the low-lying spectrum σ follows a

√
n

dependence up to an energy determined by the breakdown
of the linear approximation to ε(k) leading to Eq. (12); see
Fig. 1(a).

As |E0| approaches 2t , i.e., the trivial metal limit, we ob-
serve in Fig. 1(b) that the localizer spectrum loses its double
degeneracy. Higher-energy states lose their degeneracy farther
away from |E0| = 2t , compared to the zero-mode, which loses
its degeneracy close to |E0| ≈ 2t . The fact that the zero-mode

remains doubly degenerate can be predicted by writing the
localizer in momentum space close to E0 ≈ −2t :

Lk (0, E0) = iκ∂kσx + (−2t + tk2 − E0)σz. (13)

Interpreting k as a coordinate we recognize once more
the 1D Dirac Hamiltonian with vF = κ . The mass varies
parabolically δm(x) = tx2 − (E0 + 2t ) and not linearly as in
Eq. (11). If |E0| < 2t such mass profile crosses zero twice,
at ±√

(2t + E0)/t , and thus we expect two degenerate zero-
modes, as confirmed numerically.

We still need to explain the difference between the localizer
spectrum at |E0| ≈ 2t (trivial metal) and at E0 ≈ 0 (Weyl
metal), in particular that higher energy levels start dispersing
and are no longer doubly degenerate as E0 is increased. These
two properties are understood by drawing a parallelism to
Dirac Landau levels, which start dispersing and lose their
degeneracy as they approach an edge [77,78]. Here reaching
the bandwidth as we increase E0 acts like a sample edge;
the point where the Landau levels start dispersing and lose
their degeneracy is determined by their average extent, 〈rn〉 =
losc

√
2n + 1 [78]. This prediction matches well with the nu-

merical diagonalization, as marked by the vertical dashed
lines in Fig. 1(b). In the Dirac equation language, the two
zero-mode solutions begin to hybridize when |E0| ≈ 2t .

The eigenstates of the localizer also confirm the Dirac
interpretation. For a single-band Hamiltonian with band
dispersion ε(k) − E0, the wave function of the localizer zero-
modes is of the form:

ψzm(k) = Nexp

{
± 1

κ

∫ k

dk′[ε(k′) − E0]

}
ψ±

0 , (14)

where ψ±
0 = (1,±1)T are two chiral eigenstates and N is a

normalization constant. These are the well-known (Jackiw-
Rebbi) solutions of the Dirac Hamiltonian with a varying
mass term [59,61,66], provided we interpret k as a coordinate
variable. There are two normalizable solutions, localized close
to where the mass crosses E0. We have confirmed this ex-
pectation numerically by projecting the localizer zero-energy
modes at E0 = 0, obtained by exact diagonalization, onto
plane waves exp(ikx). The zero-modes have the spinor struc-
ture set by Eq. (14) and are localized at k = ±π/2, where
the dispersion relation crosses E0, i.e., where the Dirac mass
changes sign.

Last, for energies E0 > 2t , the localizer spectrum is gapped
[see Fig. 1(b)]. This is expected in the Dirac picture be-
cause the Dirac mass is always positive if E0 > 2t , implying
no sign change and no zero-modes. From Eq. (13) we see
that the mass δm takes its most negative value at k = 0,
δm(0) = −(2t + E0). This value constrains how much the
mass can vary as we change k in Eq. (14) and thus how
localized the eigenmodes are. At E0 � 2t the zero-modes
hybridize and Eq. (14) is no longer a solution, resulting in a
gapped spectrum. We reach an analogous conclusion for E0 <

−2t , provided we expand the localizer around E0 ≈ 2t and
momentum k = π .

In short, mapping the localizer to a Dirac Hamiltonian al-
lows us to map the problem of finding its spectrum to solving
a Dirac Hamiltonian with a varying mass. One may ask if and
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how these considerations carry over to three dimensions (3D).
We address this point next.

B. d = 3 Trivial metal

The distinction between a trivial and a topological metal
becomes explicit in 3D. Let us first predict, using the Dirac
picture, the localizer spectrum of a trivial metal. To define a
trivial metal in 3D we generalize the 1D Hamiltonian Eq. (10)
to

H = −t
∑

x

3∑
j=1

c†
xcx+x̂ j

+ H.c., (15)

where c†
x (cx) is the creation (annihilation) operator of a par-

ticle at site x and x̂ j is a unit vector in the jth direction. The
Hamiltonian Eq. (15) is defined in a cubic lattice and has a
bulk energy spectrum ε(k) = −2t

∑
j cos(k j ). The parabolic

dispersion near the band minimum is well captured by the
expansion close to k = 0 such that ε(k) ≈ −6t + t |k|2 + · · · .
For low fillings, this dispersion relation produces a nearly
spherical Fermi surface found in good metals [79]. We there-
fore study the spectral localizer at low fillings, i.e., we set E0

close to the band edge.
According to our Dirac Hamiltonian picture the varying

mass is determined by the parabolic dispersion relation close
to |E0| ≈ −6t . Hence, the Dirac mass is negative close to
|k| = 0 and grows parabolically to be positive at large |k|. The
Dirac mass hence vanishes at the sphere defined by ε(k) =
E0 = −6t + t |k|2, which defines the boundary between two
3D time-reversal invariant insulators with masses of opposite
signs. Hence at such boundary, we expect a gapless boundary
state that has a low-lying spectrum determined by a two-
dimensional (2D) spherical Dirac equation. Such low-lying
spectrum was found in Ref. [80] and is given by

εl,m = ±vF

R
|l + |m| + 1/2| = ±(1, 2, 3, 4, . . . )

vF

R
, (16)

where R is the radius of the topological insulator or, equiv-
alently, the Fermi surface sphere in our case. The indices
l = 0, 1, 2, . . . and m = ± 1

2 ,± 3
2 , . . . determine degeneracies

of the energy levels to be 2, 4, 6, 8, 10, . . . . As before vF = κ

is the velocity of the effective Dirac Hamiltonian. When R →
∞ the spectrum becomes gapless, as expected for a topo-
logical insulator in the thermodynamic limit. In our case, we
need to keep the radius of the effective topological insulator
finite, since it is given by the equation R2 = (6t + E0)/t . With
t = 1/2 we can set R = 1 by choosing E0 = −2.5. Solving for
the spectral localizer in 3D with κ = 0.1, � j = σ j ⊗ σz, and
�4 = σ0 ⊗ σx and plotting the energies in units of vF /R results
in Fig. 1(c). The degeneracies of states, the spacing between
them, and their energies match perfectly with the expectation
for a surface state of a spherical topological insulator; see
Eq. (16).

Once more the knowledge of the solution to the Dirac
Hamiltonian allowed us to predict the low-lying spectrum
of the localizer. For both 1D and 3D, finding the localizer
spectrum of a trivial metal amounts to finding the surface state
spectrum of a finite topological insulator in the continuum
limit. In the following, we show the results of Refs. [50,51]

(a) (b)

(c) (d)

FIG. 2. Localizer spectrum σ [L] of a Weyl semimetal model in
different limits. (a) Band structure of HWSM for M/t = 2.4 displaying
Weyl nodes at ε/t = 0. The shaded area spans the energy region
where the Weyl bands are defined. (b) Corresponding localizer spec-
trum for E0/t = −0.4 [dashed line in (a)] with κ = 0.1 for a 3D finite
cube of linear length L = 10. The two midgap modes are present
whenever E0/t lies within the shaded region in (a). (c) Band struc-
ture in the trivial insulator limit separated Weyl nodes (M/t = 4).
(d) Corresponding localizer spectrum for E0/t = −2.5 [dashed line
in (c)] for κ = 0.1, for a 3D finite cube of linear length L = 10. The
spectrum and degeneracy equal those of trivial metal, i.e., those of a
finite spherical topological insulator, given respectively by Eq. (16)
(dashed lines) and the sequence 2, 4, 6, 8, . . . .

and the results here can be used to distinguish trivial and
topological semimetals using the spectrum of the localizer.

C. d = 3 Weyl semimetal

To interpolate between a trivial metal and a Weyl
semimetal we use the two-band Hamiltonian,

HWSM = HCI − t cos(kz )τz, (17)

HCI = −t[sin(kx )τx + sin(ky)τy

+ cos(kx )τz + cos(ky)τz] + Mτz, (18)

written in momentum space in terms of a Chern insulator
Hamiltonian HCI [81]. For 1 < |M/t | < 3, HWSM displays
two Weyl points at zero energy and k = (0, 0,±kW ) with
kW = arccos(M/t − 2); see Fig. 2(a). For |M/t | > 3, HWSM

has two trivial parabolic bands separated by a gap; see
Fig. 2(c).

In the Weyl phase, solving numerically for the spectrum
of the localizer at E0 = 0 in the bulk of the system (with
� j = σ j ⊗ σz, �4 = σ0 ⊗ σx) we observe two midgap states,
predicted in Refs. [50,51]. For E0/t �= 0, we observe that the
midgap states remain [see Fig. 2(b)] so long as E0/t crosses
the two bands forming the Weyl cones [shaded region in
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Fig. 2(a)]. Additionally, the states are not exactly degenerate;
their separation increases as the Weyl nodes come closer in
momentum space.

Both of these features are explained with our interpretation
of the localizer as a Dirac Hamiltonian with a varying mass.
First, because the Weyl nodes map to zero-modes of the Dirac
Hamiltonian, the closer they are in momentum space, the
larger their overlap and finite-size gap. Second, when E0/t
crosses one single band, either because it goes well beyond
the shaded area or because the Weyl cones are absent [as
in Fig. 2(c)], we recover the localizer spectrum of a trivial
3D metal [Fig. 2(d)]. This is confirmed by the degeneracy
counting of the low-lying localizer spectrum and the low-lying
states being approximately equally spaced of order κ/t , which
coincide with Eq. (16); see Fig. 2(d). Further supporting
evidence based on how the localizer spectrum evolves for
different parameters is presented in Appendix A.

With the above analysis, we have learned how to dis-
tinguish a Weyl semimetal from a trivial metal using the
localizer. In 1D the Weyl and a parabolic dispersion differ in
the degeneracy of the localizer spectrum. In 3D the spectral
differences between the trivial and topological metal show
both in degeneracy and energetics of the low-lying states.
These properties of the localizer are tied to those of the Dirac
Hamiltonian with a varying mass.

D. Spectral localizer of 1D chiral Luttinger liquids

To finish, we rephrase a known result for the localizer of
a Chern insulator using our Dirac picture. This will allow us
to conjecture how many-body fractional quantum Hall edges
might emerge in the spectrum of the localizer, which remains
an open problem [23].

Chiral gapless states occur at the boundaries of the quan-
tum Hall effect and Chern insulators. The signature of the
localizer, the difference between the number of positive and
negative eigenvalues, can distinguish between 2D Chern and
trivial insulator phases [17,18,23,24,57]. The difference be-
tween the two are eigenstates that cross as we move x(0)

j from
far outside the system [x(0) → ∞], where the spectrum is
particle hole symmetric, to inside the system [x(0) = 0]. We
reproduce this expectation in Fig. 1(d) for HCI in Eq. (18). The
lowest-lying state crosses zero as a function of x(0)

j , changing
the localizer’s signature from zero outside to one inside of the
Chern insulator (shaded region); see Fig. 1(d).

The zero-mode can be predicted using the varying mass
Dirac picture. Recall that the dispersion of a chiral edge state
is εk = +vF k, where k is the momentum parallel to the edge.
Hence, when x(0)

j is close to the edge and such a dispersion
is a good description of the otherwise gapped Hamiltonian,
the localizer takes once more the form Eq. (11). From our
previous discussion, we expect a zero-mode at each edge, in
agreement with Fig. 1(d).

The advantage of the Dirac picture is that we can now
conjecture what would be the spectral localizer signature of an
edge mode of a fractional quantum Hall edge state, which has
not been previously discussed to our knowledge. For example,
close to the edge of a Laughlin fractional quantum Hall state
at filling fraction ν = 1/m, the edge Hamiltonian is that of
a chiral boson, dispersing as εk = +vF k. The Fermi veloc-

ity is a nonuniversal factor that depends on ν and residual
interactions [82]. Using our Dirac picture, we predict one
zero-mode of the localizer at each edge, as in the noninter-
acting case. This prediction may be confirmed numerically in
lattice models, using for example finite density matrix renor-
malization group calculations (see, e.g., Ref. [83]).

IV. RELEVANCE TO EXPERIMENTS

The localizer is especially valuable to describe pho-
tonic crystals [23,24], where the tight-binding approximation
breaks down at large wavelengths. These works put forward
tools to establish topology in photonic topological gaps. The
localizer succeeds in detecting topology even when topo-
logical surface or edge states hybridize with trivial metallic
bands [23].

Our results make it possible to distinguish topological and
trivial gapless photonic systems, as those realized recently in
Ref. [84], by comparing their localizer spectrum. We foresee
the ideas we discuss here can be useful to determine the
manifold of zero-modes of the spectral localizer that describe
metals defined in nonorientable manifolds, as recently real-
ized in experiment [85]. We leave this avenue for future work.

Last, we have applied the localizer to detect amorphous
topological metals in Ref. [52]. A tight-binding model of
crystalline cobalt silicide shows zero-modes of the localizer
separated by a gap from a continuum of states, as in Fig. 2(b).
These are due to the existence of multifold fermions [53–56],
higher-spin generalizations of Weyl fermions. Adding disor-
der lifts the zero-modes closing the gap and eventually leading
to a trivial Anderson insulator.

V. CONCLUSIONS

In this work we have characterized the low-lying spectrum
of the spectral localizer for trivial and topological metals. We
have shown that it is always possible to choose a reference en-
ergy E0 of the spectral localizer that results in zero-modes of
the localizer. We have also shown that, although zero-modes
of the spectral localizer are not unique to Weyl semimetals,
the spectral localizer spectrum is different for trivial and
topological metals. Our approach is based on the similarity
between the spectral localizer in momentum space and the
Dirac Hamiltonian with a varying mass. This resemblance
allows us to infer analytically the low-energy spectrum of the
spectral localizer.

Numerical and analytical results coincided in showcasing
the difference between localizer’s zero-modes for topological
and trivial metals. Our results confirm that topological metals
have a number of zero-modes that equals the number of Weyl
nodes, separated by a gap to a continuum of states [22,51].
This signature contrasts that of trivial metals which have a
low-lying spectrum that coincides with that of the boundary
states of an auxiliary topological insulator, defined by the
band dispersion of the metallic band. For these systems, the
localizer spectrum becomes continuous in the limit of large
Fermi momentum, in contrast to the spectral localizer spec-
trum for Weyl semimetals that retains a gap between the
zero-modes and a continuum of states. As shown in Ref. [52],
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this gap encodes the topological robustness of Weyl semimet-
als and higher-spin generalizations to disorder.

As an outlook, the understanding of the localizer for metal-
lic bands that we put forward hinges on the spectrum of
topological insulators surface states. This connection suggests
that the localizer could be leveraged as a tool to classify
different types of metals, a subject we leave for future work.
Moreover, the localizer is suitable to study disorder systems,
including amorphous [9,11,52], polycrystals, or quasicrys-
tals [86], as it is defined in real space. The Dirac Hamiltonian
picture we presented can be particularly useful to map the
disordered topological metal, a system posing fundamental
open questions [87], to a disordered Dirac equation, which
has been thoroughly studied in the literature [66].

Last, the localizer is well defined for interacting systems.
Here we used the Dirac picture to conjecture the edge finger-
print of a fractional quantum Hall edge. We expect that the
localizer will be also useful to distinguish other interesting
ground states such spin-liquids in real space, even in situations
where disorder is dominant [88,89].

The code used to generate our results is freely accessible
through Zenodo in Ref. [90].
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APPENDIX: FURTHER DISCUSSION OF THE SPECTRAL
LOCALIZER OF A 3D TWO-BAND WEYL SEMIMETAL

MODEL

In the main text we showed that localizer spectra of the
Hamiltonian,

HWSM =−t sin(kx )τx − t sin(ky)τy + [M − t
∑

j=x,y,z

cos(k j )]τz,

(A1)
can interpolate between the signatures of Weyl and trivial
metals. Here we are interested in exploring how the localizer
spectra, σ [L], changes as we vary the Weyl node separation
and E0.

First, in Fig. 3 we represent the band structure and localizer
spectrum as a function of E0/t for the phase discussed in the
main text in Figs. 2(a) and 2(b). As advertised in the main
text, the two midgap states signaling the two Weyl cones exist
so long as E0/t is smaller than the van Hove energy which
connects the two nodes [blue-shaded area in Figs. 3(a) and
3(b)].

(a) (b)

FIG. 3. Evolution of the spectral localizer as a function of E0/t .
(a) Band structure of the 3D two-band WSM phase with M/t = 2.4,
as in Fig. 2(a). (b) Corresponding localizer spectrum as a function
of E0/t . The twofold midgap states are pinned close to zero energy
only when E0/t lies within the blue-shaded region where the Weyl
spectrum is defined.

To gain more insight on the evolution of the localizer
spectrum as a function of M/t and E0/t we now focus on
three particular cases, displayed in Fig. 4. Focusing on the
first row, Fig. 4(a) shows a Weyl semimetal with maximum
Weyl node separation KW = π , obtained by setting M/t =
2. For E0/t = 0, we recover a gapped spectrum with two zero-
modes, see Fig. 4(b), as predicted by Refs. [50,51]. As seen
from Fig. 4(c), we observe that lowering E0/t does not change
this fact, so long as E0/t crosses the two bands composing the
Weyl cones.

For the second row, we choose M/t = 2.7 and the resulting
band structure is shown in Fig. 4(d). Here the Weyl node
separation is smaller than in Fig. 4(a). At E0/t = 0 [Fig. 4(e)]
we again find two zero-modes corresponding to the Weyl
states, albeit separated in energy. Comparing Figs. 4(b) and
4(e), we observe that larger Weyl node separations induce a
smaller splitting of the midgap localizer states. As discussed
in the main text, this agrees with the intuition based on the
Dirac Hamiltonian picture: The two Dirac zero-modes of the
localizer are closer together as the Weyl nodes become closer
in momentum space, allowing for the two zero-modes to
hybridize. The two zero-modes lie within the gap until we
lower E0 below the van Hove energy, as seen previously in
Fig. 3(b). At energies E0/t = −1.5 the spectrum is dominated
by a single trivial parabolic band. Hence, the localizer spec-
trum shown in Fig. 4(f) displays energies and degeneracies
that coincide with the surface spectrum of a 3D spherical
topological insulator that is discussed in the main text.

Last, in the third row, Fig. 4(c) shows the band structure
when M/t = 4, such that the spectrum is gapped at half-
filling. When E0 lies within the gap the spectrum of the
localizer is also gapped. However, as we decrease E0 to cross
the band, we recover a trivial metal, signaled once more by
the energies and degeneracies of a 3D spherical topological
insulator.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 4. Evolution of the localizer spectrum for different band structures. Panels (a), (d), and (g) show the band structure for a 3D two-band
WSM model with M/t = 2, 2.7, 4, respectively. Dashed lines show the values of E0/t for which we compute the localizer spectrum σ [L]
that is plotted in units of κ/t . Panels (b) and (c) show σ [L] calculated for a band structure shown in (a) with maximally separated Weyl
cones, obtained for E0/t = 0 and E0/t = −0.75, respectively, with κ = 0.1. In both panels, we see two midgap states corresponding to the two
Weyl cones. Panels (e) and (f) show σ [L] calculated for a band structure shown in (d), obtained for E0/t = 0 and E0/t = −1.5, respectively,
with κ = 0.1. The first panel shows two midgap states corresponding to the two Weyl cones while the second panel begins to display the
characteristic spectrum of a trivial metal. The degeneracy is dictated by the sequence of a spherical topological surface state, as discussed in
the main text. Panels (h) and (i) show σ [L] corresponding to a two-band trivial insulator with a band structure shown in (c), at E0/t = 0 and
E0/t = −2.5, respectively, with κ = 0.1. The first panel shows a clear gap while the second panel has a well-developed spectrum characteristic
of a trivial metal. The multiplets are equally spaced and their degeneracy is dictated by the sequence of a spherical topological surface state, as
discussed in the main text.
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