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Modeling of a Remote Center of Motion
Spherical Parallel Tensegrity Mechanism for
Percutaneous Interventions

H. El Jjouaoui, G. Cruz-Martinez, J-C. Avila Vilchis, A. Vilchis Gonzdlez, S.
Abdelaziz and P. Poignet

Abstract The present paper deals with the mathematical modeling of a new 2
DOF remote center of motion spherical parallel tensegrity mechanism, dedicated
to percutaneous needle interventions. Analytical inverse kinematic and numerical
direct kinematic models are developed. Trilateration approach is considered in order
to determine the coordinates of the joints that constitute the system. A 3D prototype
of the mechanism has been developed for future evaluations. This work constitutes
a first step towards the control of the mechanism.
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1 Introduction

In Interventional radiology, needle puncture is widely used for cancer diagnosis and
treatment, such as biopsy and ablation [1]. To perform these gestures, it is necessary
to manually adjust the needle position and orientation. Feedback from imagers (MRI,
CT, US) [2] is necessary to determine the exact position of the needle. Using a robotic
assistant instead of radiologist’s hand to position the needle is of interest since it
increases the needle position accuracy [3] [4].

Using a tensegrity architecture to design a robotic assistant is of great interest,
particularly when stiffness variation is required [5]. Tensegrity structures were in-
troduced for the first time by Richard B. Fuller [6]. They can be defined as structures
composed of rigid compressed elements (bars) forming a self-equilibrium that pre-
serve its stable state using the forces produced by the tension of flexible elements
(springs, cables) that are linked to the rigid parts [7]. Designing a robot based on
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tensegrity allows to produce efficient structures [8] with variable stiffness, high
precision as well as high volume-to-mass ratio and stiffness-to-mass ratio [9].

The main challenge for such robotized medical interventions is to design a remote
center of motion (RCM) mechanism that allows a rotational movement around a fixed
point, which is in our case the needle insertion point. There are several mechanism
architectures in the literature that guarantee a rotation around a RCM [10]. Our
approach is based on the use of a spherical parallel RCM [11] that is redesigned
to incorporate the concept of tensegrity. Pantographs, constituted by rigid curved
bars, are introduced to the mechanism. These bars are connected to each other using
revolute joints. The joints axis are directed towards the RCM [12]. The pantographs
have the form of spherical parallelograms that allow the incorporation of cables
and springs to define the system as a spherical remote center of motion tensegrity
mechanism. Itis a2 DOF mechanism driven by 4 cables. The 2 degrees of redundancy
are used to vary the stiffness of the mechanism.

This work deals with the kinematic modeling of such a system. In section 2, the
system description is introduced. In section 3, the inverse and the direct kinematic
models as well as the workspace estimation are derived. The trilateration approach
that allows the computation of the joints coordinates is also introduced. Finally,
conclusions and perspectives are discussed in section 4.

2 System Description

The system, as illustrated in Fig. 1, is a spherical RCM mechanism. The needle
guide is the end effector of the mechanism. It is manipulated using two spherical
pantographs. The first pantograph is located in a sphere surface of radius R;. It is
connected to the base at the joint A;. Similarly, the second pantograph is located
in a sphere surface of radius R, and is connected to the base at the joint A,. The
manipulation of each pantograph is obtained by manipulating a pair of two cables.
The first cable is attached to the joint B, passes through a pulley located at D; and
some other pulleys before being winded on a first actuated pulley. The second cable
is attached to the joint C;, passes through a pulley located at A; and some other
pulleys before being winded on the second actuated pulley. Similarly, the second
pantograph is manipulated using two actuated cables 3 and 4.

3 System Modeling

The origin of the reference frame Ry = (O, Xo, ¥, Zo) is defined as the RCM of the
mechanism (Fig. 1). The end effector orientation is defined by x = [ u]” (Fig. 2,
left). The coordinates of the joint T are expressed in the reference frame Ry as
T=[I,T, T,]T . The joint variables are defined by 8 = [8; 82]" . The variable j3;
represents the angle between (AiB;.) and (A,-D;.). The points B;. and D;. represent
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Encoder 1

Cable 2 Cable 3

Fig. 1 System overview.

respectively the projection of the points B; and D; on the plane (P1) (Fig. 2, right).
These joint variables are measured using optical encoders located at the joints A
and A, (Fig. 1).

End effector

(P2)
(Py)

Fig. 2 Right, joint variables definition. Left, end effector orientation.
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3.1 Inverse Kinematic Model

The inverse kinematic (IK) model allows to express the joint variables 8 = [8; 82]7
according to the orientation x = [ u]” of the needle guide. This orientation is
supposed to be known and can be expressed using the coordinates of T = [T T, T,]7.
The IK model is determined in two steps. First, a relationship between 3; and 6; is
established. 6; represents the angle between (OT) and (O A;) (Fig. 3). In the second
step, a relationship between the angle 6; and the end effector position T is derived.
From Fig. 2, right, one can notice that || A I, || = ficos(B1/2) where f| = ||A1G]|.
The distance f] is fixed whereas || A ;|| is variable. This latter can be used to compute
the distance ||A1K1|| = ||A111]|cos(61/2), as it can be observed from Fig.3. Besides,
|A1K1|| = Rysin(6;/2). Based on these 3 equations, one can express the relationship
between 31 and 61, and similarly the relationship between 5, and 8, for the second
pantograph:
Bi =2 xcos” (R;/ fi * tan(6;/2)) €8]

(P1)

Fig. 3 Definition of the relationship between 8, and S

Knowing the coordinates of the vectors T, A; and Ay, it is possible to compute
the angle 6; between T and A, and the angle 6, between T and Aj:

ATT i
0, = +cos~ (— 1) = +cos”! (Tx cos(f10) + T Sm(910))
lAL [T I3 2
AlT T, cos(6y) + T, sin(O
By = tcos~ (—22 ) = scos~! (22 (620) + T sin( 20))

Il AT Ry
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where 6} is the angle between (OA;) and Xx( axis and 6 is the angle between
(OA;) and y, axis. Only positive solutions are considered since the robot can evolve
only in the upper hemisphere.
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Fig. 4 Robot parametrization.

3.2 Direct Kinematic Model

The direct kinematic allows to express the orientation of the needle guide x = [ u]”

according to the joint variables 8 = [3; B82]7 . This is performed also in two steps.
First, the relationship between 6; and 3; is established by inverting (1):

0; =2« tan”" (fi/R; * cos(B:/2)) 3)

The second step consists in solving the following system of equations, obtained
by inverting (2):
T, cos(610) + T sin(619) — Ry cos(61) =0
Ty cos(620) + T sin(62) — Ry cos(62) =0 4)
2,72 2 _ p2
T +Ty+T; -Ry =0

This system of equation could possibly be solved analytically but here a numerical
approach is considered. Finally, the end effector orientations are computed by:

n = atan2(7Ty, T)

)
u = atan2(T,,Ty)
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To determine the coordinates of the joints B;, C;, D;, E; and F; in the reference
frame R (Fig. 4), a trilateration approach is considered. This approach is based on
the intersection of 3 known spheres to determine the coordinates of the intersection
point. In the following, we will show how to determine the coordinates of C; and the
same approach can be considered to determine the coordinates of the other joints.

The three spheres that are used to determine the coordinates of C; are (S1),
(52) and (S3). (S1) has O as the origin and r; = Ry as a radius. (S2) has the
coordinates of A as a center and r, = ||A;Cy|| as a radius. (S3) has the coordinates
of T as a center and r3 = ||A|C|| as a radius. The distance ||A|C}|| is computed as
|A1C1]| = 2Rysin(6,/4) (Fig.3). The spheres are defined as:

A trilateration frame R;,; = (O, X¢ri, ¥;,i» Ztri) 1s defined. The x,,; axis is chosen
along A;. The axis y,,; is chosen so that 7 is in the plane (X;;y,,;):

Xiri = Ap/]|Aq|
Ziri = T X Xppi /|| T X X4 (6)

Yiri = Zeri X Xqri

where A represents the vector of coordinates of A; in the reference frame. The
equation of spheres are:

Py =r?
(x—U)2+y2+Z2=r§ )

(x=V) + -V +=r3

where V. and V), are the coordinates of 7' in the trilateration frame. They are computed
as Vy = T x,,; and Vy = T Y:ri- The variable U = R; represents the coordinate of
A} in R;,;. The coordinates of Cj in the trilateration frame R;,; can be computed
analytically by solving (7). Finally, the coordinates of C; in the reference frame are

computed as [*x Oy 9217 =[x/ ¥,,; Zeril [x ¥ 2]7.

3.3 workspace

The geometric workspace of the robot is depicted in Fig. 5. It has been obtained
by varying the joint variables 8; € [0, n]. The geometric parameters of the robot
(Fig. 5) have been chosen so that the obtained workspace covers a required workspace
defined as a 40° cone with its head pointing to the RCM.

3.4 prototype

A prototype of the robot has been developed using 3D printing. 2 incremental rotary
optical encoders with a resolution of 500 CPR have been integrated in A; and As.
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Fig. 5 Geometric workspace obtained using these parameters: Ry = 133.9 mm, R, = 133.5 mm,
fi =200 mm, f;, = 181.6 mm

The overall structure has 1100 g weight and a volume similar to a hemisphere of
approximately 7.8 dm>.

Fig. 6 Prototype of the mechanism.

4 Conclusion and perspectives

A robotic assistant for percutaneous interventions based on spherical RCM tensegrity
mechanism has been proposed in this paper. A geometric approach to determine the
inverse and direct kinematic models have been developed. The geometric workspace
of the robot is shown as a result of the approach, and a prototype has been mounted for
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future evaluations. Future work will deal with the differential kinematic modeling,
singularity analysis as well as static model determination that are necessary to
control the mechanism. Besides and as observed in the actual prototype, structural
improvements have to be performed to enhance the vertical stiffness of the robot for
a robust manipulation and a better guarantee of the RCM constraint.
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