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Consistent Long-Term Forecasting of Ergodic Dynamical Systems

Prune Inzerili 1 Vladimir Kostic 2 3 Karim Lounici 1 Pietro Novelli 2 Massimiliano Pontil 2 4

Abstract
We study the problem of forecasting the evolu-
tion of a function of the state (observable) of a
discrete ergodic dynamical system over multiple
time steps. The elegant theory of Koopman and
transfer operators can be used to evolve any such
function forward in time. However, their esti-
mators are usually unreliable in long-term fore-
casting. We show how classical techniques of
eigenvalue deflation from operator theory and fea-
ture centering from statistics can be exploited to
enhance standard estimators. We develop a novel
technique to derive high probability bounds on
powers of empirical estimators. Our approach,
rooted in the stability theory of non-normal op-
erators, allows us to establish uniform in time
bounds for the forecasting error, which hold even
on infinite time horizons. We further show that our
approach can be seamlessly employed to forecast
future state distributions from an initial one, with
provably uniform error bounds. Numerical exper-
iments illustrate the advantages of our approach
in practice.

1. Introduction
Dynamical systems offer a mathematical framework to de-
scribe the evolution of state variables over time. In many
applications, these models, often represented by unknown
nonlinear differential equations (ordinary or partial, and
possibly stochastic), necessitate the use of data-driven tech-
niques for characterizing the dynamical system and fore-
casting future states. This task has garnered substantial
interest in recent decades due its application in many fields,
including energy forecasting (Mohan et al., 2018), epidemi-
ology (Proctor & Eckhoff, 2015), finance (Pascucci, 2011),
atomistic simulations (Schütte et al., 2001), fluid dynam-
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ics (Mezić, 2013), weather and climate forecasting (Scher,
2018), and many more.

Particular emphasis is placed on long-term forecasting,
which, given any initial state of the system, aims to pre-
dict how it (or a given statistics thereof) will evolve over
time, until a long-term horizon. The accuracy of long-term
forecasting is of utmost importance for effective strategic
planning and early warning systems. However structured
data modalities, an increasing volume of observations, and
highly non-linear relationships among covariates pose sig-
nificant challenges to current approaches. In this work, we
specifically address the problem of long-term forecasting
of ergodic dynamical systems, whose states converge to an
unknown but invariant distribution over time.

The Koopman1 operator regression (KOR) framework to
learn dynamical systems from data became popular in the
last few years as it enables its users to accomplish several
important tasks including interpretation, control and fore-
casting; see, for example, the monographs (Brunton et al.,
2022; Kutz et al., 2016) for an introduction to these topics.
The very same framework can also be used to forecast state
distributions by means of the duality relation connecting
the Koopman operator (which evolves states and observ-
ables) and the Perron-Frobenius operator, which evolves
distributions. Kernel based algorithms to learn the Koop-
man or transfer operators have been studied in (Alexander
& Giannakis, 2020; Bouvrie & Hamzi, 2017; Das & Gian-
nakis, 2020; Klus et al., 2019; Kostic et al., 2022; 2023a;
Meanti et al., 2023; Nüske et al., 2023; Williams et al.,
2015; Bevanda et al., 2023; Hou et al., 2023). Deep learn-
ing approaches, on the other hand, were explored in the
works (Bevanda et al., 2021; Fan et al., 2021; Kostic et al.,
2023b; Lusch et al., 2018; Azencot et al., 2020; Morton
et al., 2018).

Our aim it to improve over mainstream KOR estimators,
whose performance is known to deteriorate as the forecast-
ing horizon extends further into the future (Kostic et al.,
2022). Within the setting of uniquely ergodic dynamical
systems, arbitrary initial state distributions are bound to

1Historically, the Koopman operator was introduced for de-
terministic dynamical systems, while the transfer operator is its
analogue in the stochastic case. The results presented in this paper,
however, apply to both settings.
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Figure 1. Mean Absolute Error (MAE) in forecasting the backbone
dihedral angles of Alanine Dipeptide. Data points are 10−3 ns
apart.

converge to an unknown but unique invariant2 distribution.
In this work we propose a paradigm to inject this prior
knowledge into existing kernel-based algorithms, producing
estimators which accurately forecast the long-term behav-
ior of observables of the system. Figure 1 illustrates the
benefit of such estimator on a molecular dynamics simula-
tions experiment, in which we wish to forecast the dihedral
angles of the Alanine Dipeptide (Wehmeyer & Noé, 2018)
molecule over a long time horizon. The figure shows that
the forecasting error of a state-of-the-art operator regression
estimator deteriorates as the forecasting horizon increases.
In contrast, when the same estimator is augmented by our
deflate-learn-inflate (DLI) method, the forecasting error
remains uniformly bounded in time, as predicted by our
theoretical analysis.

Contributions Our conceptually simple approach builds
upon well-known ideas in the literature (deflating and cen-
tering) and can be seamlessly integrated into any KOR es-
timator based on empirical risk minimization to enhance
their long-term forecasting accuracy. Yet our principal con-
tribution is to derive the first non-asymptotic forecasting
error bounds that hold uniformly over the time horizons.
We address both, forecasting the conditional mean of any
observable, and forecasting the state distributions from an
initial one.

Paper Organization Sec. 2 briefly reviews Koopman/ trans-
fer operators and their estimators. Sec. 3 introduces the long-
term forecasting problem alongside key quantities used to
characterized the error induced by the estimators studied
in the paper. In Sec. 4, we present the DLI approach and
discuss its implementation, while Sec. 5 contains our theo-
retical guarantees. Sec. 6 addresses long-term distribution

2That is, invariant under the action of the Perron-Frobenius
operator.

forecasting. Finally, in Sec. 7 we present numerical experi-
ments with our approach.

Notations If H is a separable Hilbert space, and (ei)i∈N

an orthonormal basis, we let HS (H) be the Hilbert space
of Hilbert-Schmidt (HS) operators onH endowed with the
norm ∥A∥2HS ≡

∑
i∈N ∥Aei∥2H, for A ∈ HS (H). For any

bounded operator A onH, we denote by ρ(A) and ∥A∥ the
spectral radius and operator norm of A respectively. Note
that ρ(A) ≤ ∥A∥ (see e.g. Trefethen & Embree, 2020).
Finally, for two measures µ and ν, µ≪ ν means that µ is
absolutely continuous w.r.t. ν, in which case dµ/dν denotes
the Radon-Nikodym derivative.

2. Background
In this section, we give some background on the trans-
fer operators (Lasota & Mackey, 1994) and their empiri-
cal estimators (Kostic et al., 2022). Throughout the paper
we study discrete stochastic dynamical systems, (Xt)t∈N,
where the state at time t ∈ N forms a random variable Xt

with law µt, taking values in a measurable space X , en-
dowed with σ-algebra ΣX . We assume that the sequence
(Xt)t∈N is a time-homogeneous Markov process, that is
P[Xt+1 | (Xs)

t
s=0] = P[Xt+1 |Xt], and there exists a tran-

sition kernel p : X × ΣX → [0, 1], such that, for every
(x,B) ∈ X × ΣX and t ∈ N,

P[Xt+1 ∈ B |Xt = x] = p(x,B).

We further assume that the dynamical system is uniquely
ergodic, that is, there exists a unique probability distribution
π, called invariant measure, such that if X0 ∼ π, then
Xt ∼ π, for every t ∈ N.

Koopman Operator The above dynamical systems are
general enough to capture several important phenomena, in-
cluding (discretized) Langevin dynamics (Davidchack et al.,
2015) or other systems constructed from the discretization
of stochastic differential equations. They can be studied
via Markov operators, and, in particular with forward trans-
fer operators Aπ : L

2
π(X )→ L2

π(X ) defined on the space
L2
π(X ) formed by square integrable functions w.r.t. the

invariant measure as

[Aπf ](x) := E[f(Xt+1) |Xt = x], x ∈ X , t ∈ N. (1)

Due to their prominence in the data-driven (determinis-
tic) dynamical systems community (see e.g. Brunton et al.,
2022), we also call Aπ the (stochastic) Koopman operators.

The significance of Koopman operators lies in their ability
to effectively linearize the underlying Markov processes.
Namely, for every observable f ∈ L2

π(X ), computing its
expected value after t time steps from some initial state
x ∈ X is simply powering of Koopman operator Aπ , i.e.

E[f(Xt) |X0 = x] = [At
πf ](x). (2)

2
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Perron-Frobenious Operator Additional interest in trans-
fer operators comes from the duality between observables
and state distributions. Specifically, if µ0 is absolutely con-
tinuous w.r.t. the invariant measure π, that is, it has a density
q0 := dµ0/dπ ∈ L1

π(X ) defined via the Radon-Nikodyn
derivative, and in addition the density is square-integrable,
then, for every t ∈ N one has qt := dµt/dπ ∈ L2

π(X ),
and the flow of the probability distributions (qt)t∈N follows
linear dynamics in the space L2

π(X ), given by the equations

qt = A∗
t q0 = (A∗

π)
tq0, t ∈ N. (3)

The operator A∗
π, known as Perron-Frobenius operator, is

the adjoint of the Koopman operator, and it is given, for
every q ∈ L2

π(X ), by

[A∗
πq](y) =

∫
p∗(y, dx)q(x) (4)

where p∗ is the time-reversal transition kernel defined, for
every B ∈Σ and y ∈X as p∗(y,B)=P[Xt−1 ∈B|Xt = y].
A consequence of (3) is that, once linearized, the process
can be efficiently evolved from any initial density q0 using
the spectral theory of bounded operators.

Among all observables/densities, constant ones play a par-
ticular role. Namely, (1) and (4) imply that

Aπ1π = 1π, and A∗
π1π = 1π, (5)

where 1π ∈ L2
π(X ) is the function π-almost everywhere

equal to 1. So, since ∥Aπ∥ = 1, its largest eigenvalue is
equal to 1, which since the process is uniquely ergodic, has
(up to scaling) unique eigenfunction 1π .

Operator Regression In recent years, the abundance of
emerging machine learning algorithms has sparked a grow-
ing interest on data-driven dynamical systems. In this setting
Aπ is not known, and a key challenge is to learn it from data.
An appealing class of KOR learning algorithms (Brunton
et al., 2022; Kostic et al., 2022; Kutz et al., 2016) aim to
learn the Koopman operator on a predefined reproducing
kernel Hilbert space (RKHS)H consisting of functions from
L2
π(X ). Namely, let k : X × X → R be a symmetric and

positive definite kernel function and H the corresponding
RKHS (Aronszajn, 1950), with norm denoted as ∥ · ∥H. We
let x 7→ kx ≡ k(·, x) ∈ H denote the canonical feature
map and assume, for every x ∈ X , that k(·, x) ∈ L2

π(X ),
which in turn implies thatH ⊂ L2

π(X ); for an introduction
to RKHS see, e.g., Steinwart & Christmann (2008).

In data-driven dynamical systems we are provided with a
dataset Dn := (xi, yi)

n
i=1 of consecutive states sampled at

equilibrium, and wish to learn the Koopman operator by
minimizing the empirical risk

R̂(G) := 1
n

∑
i∈[n]∥kyi −G∗kxi∥2, (6)

over operatorsG : H → H. Defining the sampling operators
Ŝx, Ŝy : H → Rn as Ŝxh := 1√

n
(h(xi))i∈[n] and Ŝyh :=

1√
n
(h(yi))i∈[n], (6) can be equivalently written as

R̂(G) = ∥Ŝy − ŜxG∥2HS

from which it is apparent that the estimators are of the
form Ĝ = Ŝ∗

xWŜy, for some n × n real matrix W . In
particular, we mention three important estimators that are
often used in applications: kernel ridge regression (KRR),
principal component regression (PCR) and reduced rank
regression (RRR), implementing different forms of regular-
ization on the operator G. While they are defined via empir-
ical covariance Ĉ := Ŝ∗

xŜx and cross-covariance operators
T̂ := Ŝ∗

xŜy on the RKHSH, in practice, they are computed
via kernel Gram matrices Kx := ŜxŜ

∗
x=

1
n [k(xi,xj)]i,j∈[n]

and Ky := ŜyŜ
∗
y = 1

n [k(yi,yj)]i,j∈[n], and applied using
Kxy := ŜxŜ

∗
y =

1
n [k(xi,yj)]i,j∈[n], see (Kostic et al., 2022)

for more information and the explicit form of estimators.

Estimation Error The spaces H and L2
π(X ) have differ-

ent norms. To handle this ambiguity, we use the injection
operator Sπ : H ↪→ L2

π(X ) such that, for all f ∈ H, the
object Sπf is the element of L2

π(X ) which is pointwise
equal to f ∈ H, but endowed with the appropriate L2

π(X )
norm. Moreover, the adjoint of the injection is given, for
f ∈ L2

π(X ), by

S∗
πf = EX∼π[f(X)kX ] ∈ H. (7)

Every estimator Ĝ defines an approximation of A|H : H →
L2
π(X ), the restriction of the Koopman operator to the

RKHS, namely A|H = AπSπ. Specifically, we estimate
A|H by the operator SπĜ : H → L2

π(X ). The correspond-
ing estimation quality can be measured by the operator norm
error

E(Ĝ) := ∥AπSπ − SπĜ∥, (8)

that is upper bounded by the excess risk of the operator re-
gression problem formulated in (Kostic et al., 2022). When
H is an infinite-dimensional universal RKHS optimal rates
in the error (8) for all the above estimators above were
developed in Kostic et al. (2023a).

3. Long-term Forecasting
While Koopman operator estimators are learned to guaran-
tee good one-step-ahead prediction, in order to truly learn
dynamics, recalling (2), one needs to guarantee good long-
term forecasting, that is [At

πSπh](x) ≈ [Ĝth](x), for t ∈ N
and h ∈ H, which we address in this section.

As stated in Kostic et al. (2022, Thm. 1), the control of the
one-step-ahead error (8) is not enough to guarantee good

3
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Figure 2. Asymptotically stable operators: For a a non-normal
(AA∗ ̸= A∗A) asymptotically stable (ρ(A) < 1) operator A,
∥At∥ exhibits transient growth captured by the Kreiss constant
η(A) before converging to zero at the linear rate ρ(A).

forecasting for long time-horizons. Indeed,

∥E[h(Xt) |X0 = ·]− SπĜ
th∥L2

π(X ) ≤ Et(Ĝ) ∥h∥H,

where Et(Ĝ) := ∥At
πSπ − SπĜ

t∥, t ∈ N is the error in-
duced by the power of the estimator.

After some algebra one verifies that At
πSπ − SπĜ

t =∑t−1
k=0A

k
π(AπSπ − SπĜ)Ĝ

t−1−k. Hence applying the
norm we have that

Et(Ĝ) ≤ min{s(Aπ) p(Ĝ), s(Ĝ) p(Aπ)} E(Ĝ), (9)

where for an operator A we define

s(A) :=

∞∑
t=0

∥At∥ and p(A) := sup
t∈N0

∥At∥. (10)

Therefore, to obtain long-term consistent forecasting, apart
from bounding the error (8), the two quantities in (10) also
need to be bounded. Unfortunately, whenever ρ(A) = 1 we
have that s(A) = +∞. Hence, recalling (5), for a consistent
estimator Ĝ of Aπ we have that s(Aπ) = ∞ and s(Ĝ) →
∞ with the number of samples, presenting a difficulty in
obtaining bounds on the infinite time-horizons. Moreover,
whenever the leading eigenvalue is not perfectly estimated
as 1, long term forecasting either explodes (ρ(Ĝ) > 1) or
collapses to zero (ρ(Ĝ) < 1). In order to overcome this
issue, we resort to well-known concepts in the study of
asymptotically stable linear dynamical systems in a Hilbert
space, see e.g. (Trefethen & Embree, 2020).

For a bounded linear operatorA such that ρ(A) < 1 we have
that limt→∞∥At∥ = 0, but, depending on the normality
of the operator, the convergence might not be monotone.
Namely, ifA is a normal operator, that isAA∗ = A∗A, then
∥At∥ = [ρ(A)]t, as illustrated by the blue line in Figure 2,
and consequently, p(A) = 1 and s(A) = 1/(1−ρ(A)).
Moreover, in this case 1/s(A) coincides with the distance
to instability of A

d(A) := inf
z∈C, |z|≥1

∥(A−zI)−1∥−1 (11)

that measures the distance of the operator’s spectra to the
unit circle relative to its sensitivity to perturbations, which
for normal operators equals 1−ρ(A).

On the other hand, as illustrated by the red line in Fig. 2,
when A is a non-normal operator, the sequence (∥At∥)t∈N0

may exhibit a transient growth before converging to zero,
that can be estimated by η(A) ≤ p(A) ≤ (e/2)[η(A)]2 (El-
Fallah & Ransford, 2002), where η(A) is the the Kreiss
constant of A defined as

η(A) := sup
z∈C, |z|>1

(|z|−1)∥(A−zI)−1∥ ≥ 1. (12)

For highly non-normal operators η(A) ≫ 1, indicating
a large transient growth, which is also related to much
smaller distance to instability d(A) ≪ 1− ρ(A), and
larger cumulative effect s(A) ≫ 1/(1− ρ(A)). Never-
theless, the latter quantity always remains bounded, since
due to lim supt→∞∥At∥1/t = ρ(A) < 1, there exists the
smallest integer ℓ such that ∥Aℓ∥ < 1, and, consequently,
s(A) ≤ 1

1−∥Aℓ∥
∥A∥ℓ−1
∥A∥−1 <∞.

Therefore, a promising approach to derive forecasting
bounds independent of the time-horizon is to transform
the learning objective from nonexpansive (∥A∥ = 1) to
asymptotically stable (ρ(A) < 1), which we introduce in
the following section.

4. Deflate-Learn-Inflate (DLI) Estimators
In section we present a conceptually simple estimator ag-
nostic method which overcomes the long term forecasting
failure of Koopman operator regression (KOR). It consists
of three steps: i) Remove the leading eigenvalue from the
transfer operator (deflate); ii) Compute an estimator from
data using centered features (learn); iii) Evolve the observ-
able with such estimator and correct it using the averages
over training data-points (inflate). We proceed to explain
each of these steps in turn.

Deflate The first step is a classical idea in the field of nu-
merical methods for eigenvalue problems, see, e.g., (Saad,
2011). In our context, recalling (5), it consists of remov-
ing (deflating) the known eigenpair (1,1π) of the Koopman
operator Aπ, in order to better estimate the unknown ones.
Since the leading Koopman eigenvalue λ1(Aπ) = 1 is sim-
ple, its corresponding spectral projector is 1π ⊗ 1π. The
corresponding deflated operator is

Aπ := Aπ − 1π ⊗ 1π = AπJπ = JπAπ, (13)

where Jπ := I − 1π ⊗ 1π is the orthogonal projector onto
the orthogonal complement of the subspace of constant
functions. Then, for every t ∈ N, At

π = At
π−1π⊗1π

implies

E[h(Xt) |X0 = ·]=At
πSπh+ EX∼π[h(X)]. (14)

4
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Learn To learn the deflated operator we follow the same
RKHS approach of operator regression, that is we ap-
proximate Aπ |H = AπSπ = JπAπJπSπ. Noting that
Im(Aπ) ⊆ Jπ we define the ”injection” to the appro-
priate subspace Sπ : H → Im(Jπ) as inject-and-project
Sπ := JπSπ, and look for the estimator Ĝ : H → H that
minimizes the estimation error of the deflated operator as

E◦(Ĝ) := ∥AπSπ − SπĜ∥. (15)

But then, the estimation error is controlled by the corre-
sponding risk minimization, see Appendix A.4 for detailed
derivation, where the empirical risk functional is given by

R̂◦(Ĝ) :=∥Ŝy − ŜxĜ∥2HS, (16)

via the projected sampling operators are Ŝx = JnŜx and
Ŝy = JnŜy, matrix Jn being the orthogonal projection
Jn=I−1n1⊤

n , and the vector 1n=n
−1/2[1, 1 . . . , 1]⊤∈Rn.

Next, observing that for the i-th standard basis vector ei ∈
Rn, we have that

Ŝ
∗
xei = Ŝ∗

x(ei− 1√
n

1n)=
1√
n
(kxi
− 1

n

∑
j∈[n]kxj

)

and similarly that Ŝ
∗
yei =

1√
n
(kyi
− 1

n

∑
j∈[n]kyj

). Using
these, we can rewrite the empirical risk (16) as

R̂◦(Ĝ) := 1
n

∑
i∈[n]

∥∥∥∥∥(kyi− 1
n

∑
j∈[n]

kyj

)
−Ĝ

∗(
kxi− 1

n

∑
j∈[n]

kxj

)∥∥∥∥∥
2

which shows an elegant connection between the two learning
problems. Namely, any estimator Ĝ of the Koopman opera-
torAπ can be transformed into an estimator Ĝ of the deflated
Koopman operator Aπ by simply empirically centering the
feature map of the kernel. In practice, this means instead
of using kernel Gram matrices Kx and Ky, to use their
centered versions Kx := JnKxJn and Ky := JnKyJn, re-
spectively. Moreover, as we show in Section 5, the deflated
version Ĝ of an estimator Ĝ can readily be statistically stud-
ied by replacing Koopman operator Aπ, injection Sπ and
sampling operators Ŝx and Ŝy by the projected ones Aπ,
Sπ , Ŝx and Ŝy , respectively.

Inflate Finally, we use an estimator Ĝ to obtain the empiri-
cal estimates of any observable h ∈ H as E[h(Xt) |X0 = ·].
For this purpose, we need to put back (inflate) the leading
eigenpair that we removed during the deflate step. Namely,

recalling (14), since AπSπh ≈ JπSπĜ
t
h = SπĜ

t
h−

⟨1π, SπĜ
t
h⟩1π and EX∼π[h(X)]=⟨S∗

π1π, h⟩H, we have

AπSπh≈SπĜ
t
h+⟨S∗

π1π, h−Ĝ
t
h⟩H1π. (17)

Thus, we have an additional term in estimation that depends
on (unknown) invariant measure. However, recalling (7),
S∗
π1π is equal to

kπ :=

∫
X
kxπ(dx) = EX∼π[kX ] ∈ H, (18)

known as the kernel mean embedding (KME) of the measure
π for which we have empirical estimators

π̂x := 1
n

∑
i∈[n]δxi

and π̂y := 1
n

∑
i∈[n]δyi

, (19)

associated to the input and the output points, respectively.
Thus, we can approximate kπ with both kπ̂x and kπ̂y to
estimate

⟨kπ, h−Ĝ
t
h⟩H≈⟨kπ̂y

, h⟩H−⟨kπ̂y
, Ĝ

t
h⟩H, (20)

and, consequently, estimate E[h(Xt) |X0=x] by

ĥt(x) :=[Ĝ
t
h](x)+1

n

∑
i∈[n]

(
h(yi)−[Ĝ

t
h](xi)

)
, x∈X . (21)

Since we always have estimators of finite rank r ≤ n ob-
tained by minimizing the empirical risk R̂◦, they are of the
form Ĝ = Ŝ

∗
xUrV

⊤
r Ŝy for some Ur, Vr ∈ Rn×r. Thus,

after some algebra, we obtain that powering of the estima-
tor can be efficiently computed by powering r×r matrix
M :=U⊤

r KxyVr ∈ Rr×r to obtain

ĥt(x)=
∑

i,j∈[n]

[wt,j+(Wt)ijk(xj , x)]h(yi), x ∈ X ,

where the weights matrix is computed as

Wt := JnVrM
t−1(JnUr)

⊤ ∈ Rn×n (22)

and vector as

wt :=
1√
n
(1n −WtKx1n) ∈ Rn. (23)

Note that the computational complexity added by DLI is
modest as it only amounts to centering the kernels with
a cost of O(n2), while the steps (22) and (23) incur the
same computational complexity as for the standard estimator
(Jn = I). Appendix A.4 gives a detailed algorithm for DLI
versions of KRR, PCR and RRR estimators.

5. Time-independent forecasting bounds
In this section we prove that the DLI paradigm transforms
Koopman estimators which are only one step ahead consis-
tent, into estimators that achieve uniform consistency over
time according to either L2

π(X )-error for the observables.

First, since ρ(Aπ) < 1, and hence s(Aπ) <∞, the follow-
ing result indicates that statistical bounds for one-step-ahead
operator norm error E◦ and supremum p of the estimator
are sufficient for uniformly good forecasting.

5
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Proposition 5.1. Let Ĝ be any estimator of Aπ, and let ĥt
be given by (21). Then, for every h ∈ H and t ∈ N

∥At
πSπh− Sπĥt∥/∥h∥ ≤ p(Ĝ)

(
s(Aπ) E◦(Ĝ)+ε

)
+ε,

where max{∥kπ − kπ̂x
∥, ∥kπ − kπ̂y

∥} ≤ ε for some ε > 0.

Proof. Observe that (17) and (21) imply, by adding and sub-
tracting kπ̂x

and kπ̂y
, that the forecasting error ∥At

πSπh−
SπĜ

t
h∥/∥h∥ can be upper bounded by ∥At

πSπ−SπĜ
t
∥+

∥Ĝ
t
∥∥kπ−kπ̂x∥+∥kπ−kπ̂y∥. Hence, (9) applied to E◦t

completes the proof.

Next, we state our main assumptions on the centered opera-
tors. We use the symbol “∗” to distinguish assumptions on
the centered operators C, T from their standard (uncentered)
operators C and T .

(BK) Boundedness. There exists cH> 0 such that
ess sup
x∼π

k(x, x) ≤ cH.

(RC*) Regularity Condition. For some α ∈ [1, 2] there
exists a > 0 such that TT∗ ⪯ a2C1+α.

(SD*) Spectral Decay. There exists β ∈ (0, 1] and a con-
stant b> 0 so that λj(C)≤ b j−1/β , ∀j ∈ N.

Assumptions (BK) and (SD) are taken from the works (Fis-
cher & Steinwart, 2020; Li et al., 2022) on kernel mean
embeddings. Assumption (RC) was introduced in (Kostic
et al., 2023a) to study KOR estimators.

First, note that C = S∗
πSπ = S∗

πJπSπ ⪯ S∗
πSπ = C, and

Im(AπSπ)⊆ Im(Sπ) implies Im(AπSπ)⊆ Im(Sπ). Thus,
we have that conditions (RC*) and (SD*) are weaker than
conditions (RC) and (SD), respectively. That is, if C and T
satisfy (RC) and (SD), then the centered objects C and T
satisfy (RC*) and (SD*) with possibly smaller β.

In this paper we provide analysis for the centered KRR, PCR
and RRR estimators. Since in the DLI method, we only need
to replace Ĉ and T̂ by their centered version Ĉ and T̂ re-

spectively to define the deflated versions Ĝγ , Ĝ
PCR

r,γ , Ĝ
RRR

r,γ ,
in order to optimally control the error (15) we rely on the
proof techniques of Kostic et al. (2023a), based on the SVD
decomposition of the injection operator Sπ . Since the main
difference between centered and uncentered operators arises
from using the projected injection operator Sπ instead of
Sπ , their analysis can be extended in an elegant way to con-
trol E◦(Ĝ). To this end, we only need to extend two bounds
on whitened features to the centered case.
Proposition 5.2. Let (BK) and (SD*) hold for some β ∈
(0, 1], and let ξ(x) := C−1/2

γ [kx − kπ]. Then there exist
τ ∈ [β, 1] and cτ , cβ ∈ (0,∞) such that for γ>0

∥ξ∥2 ≤ cβγ−β and ∥ξ∥2∞ ≤ cτγ−τ . (24)

Therefore, variance control of estimators from (Kostic et al.,
2023a) can be readily applied which leads to the learning
rates for centered KRR, RRR and PCR estimators.

To address the more challenging problem of bounding the
transient growth of the empirical estimators, we use the
following result, showing how one can obtain the concentra-
tion of the estimators’ Kreiss constant in the RKHS operator
norm; see App. B for the proof.

Lemma 5.3. Let (RC*) hold for some α > 1, then there
exists a compact GH:H→H such that AπSπ=SπGH and
ρ(GH)<1. Consequently, η(GH)<∞, d(GH)>0 and

η(GH)d(GH)

d(GH)+∥GH−Ĝ∥
≤ p(Ĝ) ≤ e

2

[
η(GH)d(GH)

d(GH)−∥GH−Ĝ∥

]2
.

holds for every Ĝ such that ∥GH−Ĝ∥ < d(GH).

We now specify Thm. 5.1 for the KRR estimator, i.e. when
Ur = I and Vr = (Kx + γI)−1, for some regularization
parameter γ > 0, and iid samples from the invariant distri-
bution. The results holding for the PCR and RRR estima-
tors with α ∈ [1, 2], as well as realistic non-iid sampling
along a trajectory of a beta-mixing process, are given in
Appendix B.

Theorem 5.4. Let (SD*) and (RC*) hold for some β ∈
(0, 1] and α ∈ (1, 2], respectively. In addition, let
cl(Im(Sπ)) = L2

π(X ) and (BK) be satisfied. If δ ∈ (0, 1),

γ ≍ n−
1

α+β and ε⋆n := n−
α

2(α+β) , (25)

then, for every t ∈ N, the forecasted observable given in
(21) based on KRR satisfies

∥E[h(Xt) |X0 = ·]− Sπĥt∥/∥h∥≤ Cε⋆n ln(δ−1),

with probability at least 1 − δ w.r.t. iid sampled data D
according to the invariant distribution π, where the constant
C may depend only on a, b and cH.

Proof Sketch. Recall that the centered population (KRR)
model is defined as Gγ = C−1

γ T where Cγ := C + γIH,

while the empirical estimator is Ĝγ = Ĉ
−1

γ T̂. Now, in
view of Thm. (5.1) and Lem. 5.3, it suffices to prove
that ∥GH − Ĝγ∥ ≤ d(GH)/2 w.h.p. and derive the
learning rate for E◦(Ĝγ). First, since, ∥GH − Ĝγ∥ ≤
∥GH−Gγ∥+∥Gγ−Ĝγ∥, Lem. B.6 in App. B gives that
∥GH −Gγ∥ ≤ aγ(α−1)/2. Next, using Kostic et al. (2023a,
Proposition 16), for the KRR estimator we obtain that

P

{
∥Ĝγ−Gγ∥ ≤ C ln(2δ−1)√

nγβ+1

}
≥1−δ. Thus, provided that

α > 1 and n is taken large enough, with our choice of γ, we
can guarantee that P

{
∥GH−Ĝγ∥ ≤ d(GH)/2

}
≥ 1 − δ.
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Next, by applying Propositions 5 and 16 from Kostic et al.
(2023a), we obtain that E◦(Ĝγ) ≤ Cε⋆n ln(δ−1). Finally,
Briol et al. (2019, Lem. 1) guarantees with probability at
least 1 − δ that max{∥kπ − kπ̂x

∥, ∥kπ − kπ̂y
∥} ≤ ϵ with

ϵ =
√

2
ncH

(
1 +

√
log(δ−1)

)
, and, hence, a union bound

combining the previous results with Thm. 5.1 yields the
result with probability at least 1− 4δ. Up to a rescaling of
the constants, we can replace 1− 4δ by 1− δ.

We conclude this section noting that the previous theorem
on the L2

π(X ) estimation error of the conditional mean can
be easily converted to the result on the L1

π(X ) estimation
error of the conditional variance. Namely, applying the
estimator (21) to the squared observable we can estimate
the second moment and easily derive the approximation of
V[h(Xt)|X0= ·] :=E[h(Xt)

2|X0= ·]−(E[h(Xt)|X0= ·])2,
as demonstrated in Appendix B.6.

6. State Distribution Forecasting
In this section we show how DLI estimators of the Koopman
operator defined on a universal RKHS can reliably be used
as estimators of a Perron-Frobenious operator.

The RKHS framework naturally allows one to introduce a
metric on the space of signed measuresM+(X ) via kernel
mean embeddings (see e.g. Muandet et al., 2017). That is,
given anH we can define the dual norm

∥µ∥H∗ := sup
∥h∥H≤1

∫
X
h(x)µ(dx), µ ∈M+(X ), (26)

that induces the weak∗ topology on M+(X ). Recalling
(18), the above supremum is attained at the KME kµ of
the measure µ. Moreover, the square distance of the kernel
mean embeddings of two signed measures µ and ν,

∥µ− ν∥2H∗ = ∥kµ − kν∥2H, µ, ν ∈M+(X ), (27)

is called the maximum mean discrepancy (MMD).

Next, we present how DLI estimators solve the problem of
state distribution forecasting. Recalling that qt = dµt/dπ,
we have that E[h(Xt)] = ⟨qt, Sπh⟩ for h ∈ H and t ∈ N.
So, using (7) we have that kµt = S∗

πqt, and, hence

⟨kµt
,h⟩=Ex∼µ0

[E[h(Xt)|X0=x]]=⟨q0,At
πSπh⟩ (28)

≈⟨q0,Sπĥt⟩=⟨kµ0
−kπ̂x

,Ĝ
t
h⟩+⟨kπ̂y

, h⟩H (29)

≈⟨kµ̂0
−kπ̂x

,Ĝ
t
h⟩+⟨kπ̂y

, h⟩H=⟨kµ̂t
,h⟩ (30)

where the first approximation is according to Proposi-
tion 5.1, the second one uses an empirical estimate µ̂0 =
n−1
0

∑
i∈[n0]

δzi of the initial measure µ0, and the estimated
KME is defined as

kµ̂t
:=kπ̂y+(Ĝ

∗
)t (kµ̂0

−kπ̂x). (31)

In this way, recalling (22)-(23), we have obtained µt ≈
µ̂t :=

∑
j∈[n]mt,jδyj , where the weights vector is mt =

wt+w
0
t ∈ Rn, for w0

t := 1√
n
WtKxz1n0

computed using
the kernel Gram matrix Kxz:=

1√
n0n

[k(xi,zj)]i∈[n],j∈[n0].

A direct consequence of this construction is that, by taking
the supremum of (28)-(30) over h ∈ H, we can easily
adapt Theorem 5.4 to bounding the MMD error between
distributions as follows.

Theorem 6.1. Under the assumptions of Theorem 5.4 for
every q0 ∈ L2

π(X ) and t ∈ N, with probability at least 1−δ
w.r.t. iid samples Dn according to π and samples (zi)i∈[n0]

from the initial distribution µ0, it holds

∥µ̂t − µt∥H∗≤C

 ln(δ−1)

n
α

2(α+β)
+

√
ln δ−1

n0 ∧ n

 ,

where the constant C may depend only on a, b, cH and ∥q0∥.

According to Thm. 6.1, the DLI paradigm enables learning
operators that can reliably forecast future state distributions,
uniformly over time. Notice that in practice, we can easily
sample from µ0, so we can make n0 ≥ n and then the
dominating term in (6.1) is ε⋆n, which depends only on the
properties of kernel embedding and transfer operator.

Finally, an outstanding property of DLI estimators of state
distributions is the preservation of the probability mass
along all trajectory, since it holds that

∑
j∈[n]mt,j=1 due

to the properties of the projector Jn.

7. Experiments
In this section, we compare the standard RRR estimator
to its DLI-enhanced counterpart. Our results indicate that
the DLI paradigm boosts the performance of the bare RRR
model in long-term forecasting across the board.

CIR Model The Cox–Ingersoll–Ross (Cox et al., 1985)
model (CIR) pertains to the field of mathematical finance
and is routinely used to describe the evolution of interest
rates. The CIR model characterizes the instantaneous in-
terest rate rt through the stochastic differential equation
drt = a(b−rt)dt + σ

√
rtdWt, where Wt is a Wiener pro-

cess. In the CIR model, the interest rate adjusts to the mean
b with a speed a. The volatility is described by σ and by the
value of the rate itself through the term

√
rt. For the CIR

model, the conditional expectation of the state E [rt | r0= ·]
and its variance V [rt | r0= ·] are known analytically (see
Appendix). In Table 1 we report the root mean square error
of RRR and DLI-RRR in estimating the conditional expec-
tation and conditional variance. For both quantities, the
DLI estimator attains smaller errors. Conditional mean and
variance are estimated at t = ln 2/a, corresponding to the
half-life of the mean reversion, and are averaged over 100

7
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Observable RRR DLI-RRR

E [rt | r0 = ·] 0.0691 ± 0.0333 0.0673 ± 0.0328
V [rt | r0 = ·] 0.0470 ± 0.0413 0.0124 ± 0.0051

Table 1. RMSE in estimating conditional expectation and variance
of the CIR model (100 independent training datasets).

independent models trained on datasets of 500 points each.
For this example we have set a = 2.5, b = 1.0 and σ = 0.5.
To simulate the CIR model we discretized the stochastic
differential equation with ∆t = 0.01.

Ornstein-Uhlenbeck Model We study the uniformly sam-
pled Ornstein-Uhlenbeck process dXt = −θXtdt+ σdWt,
where θ, σ > 0 and Wt is a Wiener process. Integrating the
stochastic differential equation shows that the probability
flow of Xt (given that X0 = x) is µt = N

(
xe−θt, σ

2

2θ (1−
e−2θt)

)
, yielding an invariant measure π = N (0, σ2/2θ).

We investigate the equilibration of an Ornstein-Uhlenbeck
process with initial condition X0 drawn from a Gaussian
mixture with means {−2, 2} and variances {0.04, 0.04},
respectively. In Fig. 3 we report the predicted probability
flow, as well as the relative MMD ∥µ̂t − µt∥2H∗ / ∥µt∥2H∗

attained by DLI and uncentered estimators. Note that the
DLI paradigm leads to a consistent improvement in fore-
casting performance throughout the entire trajectory. Notice
how the MMD error exhibits a transient growth for both
the RRR model and its DLI version during the short-term
forecasting. Recalling Figure 2, this effect is present due
to the non-normality of the estimators in the chosen RKHS
space, in concordance with our theoretical analysis.

Figure 3. Distribution forecasting: Relative MMD error for the
OU process for 100 independent experiments (thin lines).

Angles of Alanine Dipeptide We assess the forecasting
performance of DLI estimators on a dataset of molecular
dynamics simulations for the small molecule Alanine Dipep-
tide (Wehmeyer & Noé, 2018). The data comprises three

independent 250 ns simulations, each containing records
of the atomic positions, distances, and backbone dihedral
angles. We train the estimators on 100 independent sub-
samples — each 5000 points long — from one of the pro-
vided trajectories. We have used the 45 pairwise atomic
distances as input features and forecasted the two backbone
dihedral angles, dubbed ϕ and ψ in the scientific community,
over a forecast horizon of 0.1 ns. The angles ϕ and ψ are
well known to encode the long-term behavior of the system,
making them a perfect set of observables for the task of long-
term forecasting. In Fig. 1 we report the forecasting Mean
Absolute Error (MAE) for ϕ and ψ over a test set of 5000
points. The MAE has been computed using the minimum
image convention, as angles are 2π-periodic observables. It
is interesting to note how DLI estimators not only achieve a
smaller error but also a significantly smaller variance across
independent samplings of the training dataset. This is a
key benefit of our methodology, as minimizing forecast un-
certainty is crucial for strengthening risk management in
strategic planning. We remark that, as usual, the forecasting
error contains an irreducible component given by the intrin-
sic stochasticity of the process (see Appendix B.6). This
additive component, however, is the same in both estimators.

8. Conclusions
In this paper, we have studied data-driven approaches for
the long-term forecasting of ergodic discrete dynamical sys-
tems. These systems, which may be either deterministic or
stochastic, are fully represented by the associated Koopman
or transfer operator. We focused on the problem of predict-
ing the conditional mean, conditional variance as well as the
flow of state distributions from the initial one. Motivated by
the observation that mainstream KOR estimators may fail
at this task, we presented a conceptually simple and statisti-
cally principled approach which solves the above problem.
Our theoretical analysis offers novel insights into the impor-
tance of estimator non-normality in long-term forecasting,
contributing to a more comprehensive statistical learning
theory for dynamical systems. A compelling feature of our
method is its agnostic nature towards the KOR estimator.
Moreover, it offers the advantages of low computational
complexity and seamless integration with standard kernel
scaling methods. In the future it would be interesting to
extend our method and analysis to continuous-time systems,
as well as tackle non-stationary processes.

Broader Impact
This paper presents work whose goal is to advance theoreti-
cal understanding of Machine learning techniques. There
are several potential societal consequences of our work,
none which we feel must be specifically highlighted here. I
Our principled algorithms can help make machine learning

8
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methods more reliable in practical scenarios.
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Supplementary Material
The appendix is organized as follows:

• Appendix A provides a summary of important notations in Table 2, additional background on the Koopman operator
framework and the detailed algorithm (Alg. 1) used to implement the DLI paradigm.

• Appendix B contains the complete proofs of the results in the main body of the paper. Specifically,

– Appendices B.1-B.4 cover the extension of the existing bounds to the case of centered features,
– Appendix B.5 proves the result for RRR estimator,
– Appendix B.6 proves the bounds for the conditional variance forecasting
– Appendix B.7 presents the extension to non-iid sampling via β-mixing.

• Appendix C contains additional details on the experiments we performed in the main body of the paper.

A. Background
A.1. Markov Transfer Operators

Let X := {Xt : t ∈ N} be a family of random variables with values in a measurable space (X ,ΣX ), called state space. We
call X a Markov chain if P{Xt+1 ∈ B |X[t]} = P{Xt+1 ∈ B |Xt}. Further, we call X time-homogeneous if there exists
p : X × ΣX → [0, 1], called transition kernel, such that, for every (x,B) ∈ X × ΣX and every t ∈ N,

P {Xt+1 ∈ B|Xt = x} = p(x,B).

A large class of Markov chains consists of those endowed with invariant measure, denoted as π, that satisfies the equation
π(B)=

∫
X π(dx)p(x,B), B ∈ ΣX , see e.g. (Da Prato & Zabczyk, 1996). For such cases, we can consider the space of

square-integrable functions on X relative to the measure π, denoted as L2
π(X ), and define the Markov transfer operator,

Aπ : L
2
π(X )→ L2

π(X )

[Aπf ](x) :=

∫
X
p(x, dy)f(y) = E [f(Xt+1)|Xt = x] , f ∈ L2

π(X ), x ∈ X . (32)

Since it easy to see that ∥Aπf∥ ≤ ∥f∥, we conclude that ∥Aπ∥ ≤ 1, i.e. the Markov transfer operator is a bounded linear
operator. Moreover, recalling that 1π(x) = 1 for π-a.e. x ∈ X , since Aπ1π = 1π , we see that 1 ≤ ρ(Aπ) ≤ ∥Aπ∥ ≤ 1, i.e.
ρ(Aπ) = ∥Aπ∥ = 1.

A.2. Koopman Mode Decomposition (KMD)

In dynamical systems, Aπ is known as the (stochastic) Koopman operator on the space of observables F = L2
π(X ). An

essential characteristic of this operator is its linearity, which can be harnessed for the computation of a spectral decomposition.
Indeed, in many situations, especially when dealing with compact Koopman operators, there exist complex scalars λi ∈ C
and observables ψi ∈ L2

π(X ) that satisfy the eigenvalue equation Aπψi= λiψi. Leveraging the eigenvalue decomposition,
the dynamical system can be decomposed into superposition of simpler signals that can be used in different tasks such as
system identification and control, see e.g. (Brunton et al., 2022). More precisely, given an observable f ∈ span{ψi | i ∈ N}
there exist corresponding scalars γfi ∈ C known as Koopman modes of f , such that

At
πf(x) = E[f(Xt) |X0 = x] =

∑
i∈N

λtiγ
f
i ψi(x), x ∈ X , t ∈ N. (33)

This formula is known as Koopman Mode Decomposition (KMD) (Budišić et al., 2012; Arbabi & Mezić, 2017). It
decomposes the expected dynamics observed by f into stationary modes γfi that are combined with temporal changes
governed by eigenvalues λi and spatial changes governed by the eigenfunctions ψi. We notice however that the Koopman
operator, in general, is not a normal compact operator, hence its eigenfunctions may not form a complete orthonormal basis
of the space which makes learning KMD challenging.
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notation meaning

µt law of the state of process at the time t
qt density of the law of the state of process at the time t w.r.t. invariant distribution

k(·, ·) symmetric positive definite kernel function
ϕ(x) canonical feature map associated to x ∈ X also denoted by kx
kν kernel mean embedding of the measure ν
Aπ Koopman operator
Sπ canonical injection ofH ↪→ L2

π(X )
AπSπ restriction of the Koopman operator toH

1π function in L2
π(X ) with the constant output 1

Jπ projection onto 1⊥ in L2
π(X )

Aπ deflated Koopman operator
Sπ projected canonical injection ofH ↪→ L2

π(X )
AπSπ restriction of the deflated Koopman operator toH
R true risk
R◦ true centered risk
R̂ empirical risk
R̂◦ empirical centered risk
E true error
µ̂t empirical (signed) measure that estimates µt at time t ∈ N
ĥt function inH that estimates E[h(Xt) |X0 = ·]
E◦ true centered error
1n normalized constant vector in Rn with all components equal to 1/

√
n

Jn projection onto span(1n)
⊥ in Rn

Ŝx sampling operator of the inputs
Ŝy sampling operator of the outputs
C covariance operator
Ĉ empirical covariance operator
T cross-covariance operator
C centered covariance operator
Ĉ centered empirical covariance operator
T̂ empirical cross-covariance operator
T centered cross-covariance operator
T̂ centered empirical cross-covariance operator
Kx input kernel matrix
Ky output kernel Gramm matrix
Kγ regularized input kernel matrix
Kx centered input kernel matrix
Ky centered output kernel Gramm matrix
Kγ regularized centered input kernel matrix
B(H) the set of bounded operators onH
Br(H) the set of operators onH of a finite rank at most r
HS (H) the set of Hilbert-Schmidt (HS) operators onH
Sp(·) spectrum of a bounded operator
ρ(·) spectral radius of a bounded operator
d(·) distance to instability of a bounded operator
η(·) Kreiss constant of a bounded operator

Table 2. Summary of used notations.
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A.3. Kernel Based Learning of Koopman Operators

In many practical situations, the Koopman operator Aπ is unknown, but data from one or multiple system trajectories are
available. A learning framework called Koopman Operator Regression (KOR) was introduced in (Kostic et al., 2022) to
estimate the Koopman operator Aπ on L2

π(X ) using reproducing kernel Hilbert spaces (RKHS). More precisely, consider
an RKHS denoted as H with kernel k : X × X → R (Aronszajn, 1950). Let ϕ : X → H be an associated feature map
such that k(x, y) = ⟨ϕ(x), ϕ(y)⟩ for all x, y ∈ X . We assume that k(x, x) ≤ cH <∞, π- almost surely. This ensures that
H ⊆ L2

π(X ), and the injection operator Sπ : H → L2
π(X ), defined as (Sπf)(x) = f(x) for x ∈ X , along with its adjoint

S∗
π : L

2
π(X ) → H are well-defined Hilbert-Schmidt operators (Caponnetto & De Vito, 2007; Steinwart & Christmann,

2008). Then, the Koopman operator, when restricted toH, is given by

AπSπ : H → L2
π(X ).

Unlike Aπ , the operator AπSπ is Hilbert-Schmidt, which allows us to estimate AπSπ by minimizing the following risk

R(G) = Ex∼π

∑
i∈N

E
[
(hi(Xt+1)− (Ghi)(Xt))

2 |Xt = x
]

(34)

over Hilbert-Schmidt operators G ∈ HS (H), where (hi)i∈N is an orthonormal basis ofH. Moreover, we can write down a
bias-variance decomposition of the riskR(G) = R0 + EHS(G), where

R0 = ∥Sπ∥2HS − ∥AπSπ∥2HS ≥ 0 and EHS(G) = ∥AπSπ − SπG∥2HS, (35)

are the irreducible risk (i.e. the variance term in the classical bias-variance decomposition) and the excess risk, respectively.
This can be equivalently expressed in the terms of embedded dynamics in RKHS as:

E(X,Y )∥ϕ(Y )−G∗ϕ(X)∥2︸ ︷︷ ︸
R(G)

= E(X,Y )∥gp(X)− ϕ(Y )∥2︸ ︷︷ ︸
R0

+EX∼π∥gp(X)−G∗ϕ(X)∥2︸ ︷︷ ︸
EHS(G)

, (36)

where (X,Y ) is has the joint probability measure of two consecutive states of the Markov chain, and the regression function
gp : X → H is defined as gp(x) := E[ϕ(Xt+1) |Xt = x] =

∫
X p(x, dy)ϕ(y), x ∈ X , and is known as the conditional mean

embedding (CME) of the conditional probability p intoH. It was also shown that using universal kernels one can approximate
the restriction of Koopman arbitrary well, i.e. excess risk can be made arbitrarily small infG∈HS(H) EHS(G) = 0.

Therefore, to develop estimators one can consider the problem of minimizing the Tikhonov regularized risk

min
G∈HS(H)

Rγ(G):=R(G) + γ∥G∥2HS, (37)

where γ > 0. Denoting the covariance matrix as C := S∗
πSπ = EX∼πϕ(X) ⊗ ϕ(X) and cross-covariance matrix

T := S∗
πAπSπ = E(X,Y )ϕ(X)⊗ϕ(Y ), and regularized covariance as Cγ := C+γIH, one easily shows that Gγ := C−1

γ T
is the unique solution of (37) which is known as the Kernel Ridge Regression (KRR) estimator of Aπ .

Low rank estimators of the Koopman operator have also been considered. Notably, Principal Component Regression
(PCR) estimator given by [[C]]†rT , where [[·]]r denotes the r-truncated SVD of the Hilbert-Schmidt operator. However,
it is observed that both KRR and PCR estimators can fail in estimating well the leading Koopman eigenvalues (Kostic
et al., 2023a). To mitigate this, Reduced Rank Regression (RRR) estimator has been introduced in (Kostic et al., 2022) as
the optimal one that solves (37) with an additional rank constraint by minimizing over the class of rank-r HS operators
Br(H) := {G ∈ HS (H) | rank(G) ≤ r}, where 1 ≤ r <∞, i.e.

C−1/2
γ [[C−1/2

γ T ]]r = arg min
G∈Br(H)

Rγ(G). (38)

Now, assuming that data D = {(xi, yi)}i∈[n] is collected, the estimators are typically obtained via the regularized empirical
risk R̂γ(G):= 1

n

∑
i∈[n]∥ϕ(yi) − G∗ϕ(xi)∥2 + γ∥G∥2HS minimization (RERM). Introducing the sampling operators for

data D and RKHSH by

Ŝx : H → Rn s.t. f 7→ 1√
n
[f(xi)]i∈[n] and Ŝy : H → Rn s.t. f 7→ 1√

n
[f(yi)]i∈[n],
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and their adjoints by

Ŝ∗
x : Rn → H s.t. w 7→ 1√

n

∑
i∈[n]

wiϕ(xi) and Ŝ∗
y : Rn → H s.t. w 7→ 1√

n

∑
i∈[n]

wiψ(yi),

we obtain R̂γ(G)=∥Ŝy−ŜxG∥2HS + γ∥G∥2HS.

In the following we also use the empirical covariance operator defined as

Ĉ := Ŝ∗
xŜx = 1

n

∑
i∈[n]

ϕ(xi)⊗ ϕ(xi), (39)

and the empirical cross-covariance operator

T̂ := Ŝ∗
xŜy = 1

n

∑
i∈[n]

ϕ(xi)⊗ ϕ(yi). (40)

Additionally, we let Ĉγ := Ĉ + γIH be the regularized empirical covariance. Then we obtain the empirical estimators of the
Koopman operator on an RKHS that correspond to the population ones: empirical KRR estimator Ĝγ := Ĉ−1

γ T̂ , empirical

PCR estimator [[Ĉ]]†rT̂ , and empirical RRR estimator Ĉ−1/2
γ [[Ĉ

−1/2
γ T̂ ]]r.

Noting that all of the empirical estimators above are of the form Ĝ = ŜxUrV
⊤
r Ŝy, where Ur, Vr ∈ Rn×r and r ∈ [n]

which are computed using (normalized) kernel Gramm matrices Kx := ŜxŜ
∗
x = 1

n [k(xi, xj)]i,j∈[n] and Ky := ŜyŜ
∗
y =

1
n [k(yi, yj)]i,j∈[n], see (Kostic et al., 2022). In the next section (especially in Theorem A.2 and Alg. 1) we explain how to
compute these estimators in practice within the proposed DLI framework.

A.4. Deflate-Learn-Inflate Estimation of Koopman Operator

1) Deflation: Projecting the Koopman Operator

This step consists in projecting the Koopman operator onto the subspace of L2
π(X ) orthogonal to 1π: the opera-

tor to learn is no longer Aπ but Aπ − 1π ⊗ 1π. Denote by Jπ = I − 1π ⊗ 1π the orthogonal projector onto span(1π)
⊤ in

L2
π(X ), and two operators Jπ and Aπ commute since 1 is a left and right singular function of Aπ. Hence, we have that

Aπ − 1π ⊗ 1π = AπJπ = JπAπ = JπAπJπ, which we denote by Aπ, which implies that the restriction of the deflated
Koopman operator toH, i.e. AπSπ can be written as AπSπ = JπAπSπ , where Sπ := JπSπ is projected injection operator.
Remark A.1. In the specific context of Koopman regression the process of deflation is equivalent to centering the feature
map. Indeed deflation leads to learning the Koopman operator projected onto the L2

π(X )-orthogonal subspace of the constant
function, that is zero mean functions. On the sample level, this means substracting the empirical mean of the data set, a
procedure which is therefore equivalent to centering the feature map. Consequently, the following procedure is motivated by
the theory of centering feature maps.

2) Learn: Compute Estimators for AπJπ

Learning AπJπ is the most interesting part of the Deflate-Learn-Inflate process, based on regression techniques. Previous
literature on Koopman learning Kostic et al. (2022; 2023a); Li et al. (2022); Klus et al. (2019; 2018) provides three popular
estimators based on a statistics approach which we proceed to introduce. Since the regression problem is now learning
the projected Koopman operator AπJπ we will hereby, analogously to (35), introduce the risk associated to this learning
problem for a Hilbert-Schmidt operator G ∈ HS (H) asR◦(G) = R◦

0 + E◦HS(G), where

R◦
0 := ∥JπSπ∥2HS − ∥JπAπSπ∥2HS = ∥Sπ∥2HS − ∥AπSπ∥2HS ≥ 0, (41)

is the centered irreducible risk (i.e. the variance term in the classical bias-variance decomposition) and

E◦HS(G) := ∥JπAπSπ − JπSπG∥2HS = ∥AπSπ − SπG∥2HS, (42)

is the centered excess risk. After some algebra, similarly as in (Kostic et al., 2022), centered risk can be equivalently
expressed as:

R◦(G) = E(X,Y )∥(kY − kπ)−G∗(kX − kπ)∥2. (43)
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The following section explains how an estimator SπG for the Hilbert-Schmidt operator AπSπ is computed using regression
algorithms. Given a dataset D := (xi, yi)

n
i=1 of sampled consecutive states, we introduce the empirical mean square error

of an estimator G for AπSπ:

R̂◦(G) =
1

n

n∑
i=1

∥∥∥∥∥
(
ϕ(yi)−

1

n

n∑
i=1

ϕ(yi)

)
−G∗

(
ϕ(xi)−

1

n

n∑
i=1

ϕ(xi)

)∥∥∥∥∥
2

HS

(44)

which is merely the empirical version of 43. the excess risk associated to an estimator G for AπSπ . Notice that here we are
centering the feature map on the input and output space (by removing the mean). We also introduce the regularised risk
which defines two popular estimators:

R̂◦
γ(G) = R̂◦(G) + γ∥G∥2HS . (45)

The framework of statistical learning translates the approximation problem to a minimisation problem on the space of
Hilbert-Schmidt operator acting onH. This formulation was not introduced in the setting of Koopman operator regression
until (Kostic et al., 2022) and was key to giving some statistical insight onto the different learning techniques. The paper gives
various statistical properties of three supervised learning algorithms: Kernel Ridge Regression (KRR), Principal Component
Regression (PCR) and Reduced Rank Regression (RRR). The KRR estimator minimises the empirical regularised risk
(45) whilst the RRR algorithm minimises the same regularised risk under a fixed rank constraint. On the other hand the
PCR estimator does not minimise the empirical risk but projects the output on the leading r eigenvectors of the covariance
operator, that is the vectors responsible for the most variability of the inputs.

All of these estimators can be expressed in a unified form. Namely, denoting the normalized constant vector in Rn by
1n := n−1/2[1, . . . , 1]T and the orthogonal projector to orthogonal complement by Jn := In−1n⊗1n, we can introduce the
projected sampling operators Ŝx := JnŜx and Ŝy := JnŜy , which, recalling that kπ = EX∼πϕ(X), π̂x = 1

n

∑
i∈[n] ϕ(xi)

and π̂y = 1
n

∑
i∈[n] ϕ(yi), are used to define empirical versions

Ĉ := Ŝ
∗
xŜx =

∑
i∈[n]

(ϕ(xi)− kπ̂x
)⊗ (ϕ(xi)− kπ̂x

) and T̂ := Ŝ
∗
xŜy =

∑
i∈[n]

(ϕ(xi)− kπ̂x
)⊗

(
ϕ(yi)− kπ̂y

)
,

of the centered covariance matrix as C := S∗
πSπ = EX∼π (ϕ(X)− kπ) ⊗ (ϕ(X)− kπ) and centered cross-covariance

matrix T := S∗
πAπSπ = E(X,Y ) (ϕ(X)− kπ)⊗ (ϕ(Y )− kπ), respectively. Furthermore, we can introduce centered Kernel

matrices associated to the input points:

Kx := JnKxJn = Kx − (Kx1n)1
⊤
n − 1n(Kx1n)

⊤ + (1⊤
nKx1n)1n1⊤

n (46)

and, analogously, the one associated to the output points: Ky := JnKyJn. Then, a unified form for centered empirical
estimators is: G = Ŝ

∗
xW Ŝy = Ŝ∗

xJnWJnŜy , where W is a square matrix of size n (the number of samples), which we will
refer to as the matrix form of the estimator from now on. The following theorem gives the expression of the matrix form of
the estimators derived by the previously discussed algorithms. The proofs closely follow those presented in (Kostic et al.,
2022) for the estimators of the Koopman operator Aπ. The reader is encouraged to read this paper which introduces the
empirical risk minimisation problem.

Theorem A.2. The deflated Koopman operator restricted to the RKHSH, i.e. AπSπ = AπSπ , can be empirically estimated
by Ĝ = Ŝ

∗
xW Ŝy , where W ∈ Rn×n is determined as follows:

(i) The Kernel Ridge Regression (KRR) algorithm yields Ĝ = Ĝγ := Ĉ
−1

γ T̂ and W = (Kx + γIn)
−1.

(ii) The Principal Component Regression algorithm (PCR) yields Ĝ = Ĝ
PCR

r,γ := [[Ĉ]]†rT̂ and W = UrV
⊤
r , where

[[Kx]]r = VrΣrV
⊤
r is the r-trunacted SVD of Kx and Ur := VrΣ

†
r.

(iii) The Reduced Rank Regression algorithm (RRR) yields Ĝ = Ĝ
RRR

r,γ := Ĉ
−1/2
γ [[Ĉ

−1/2
γ T̂ ]]r and W = UrV

⊤
r , where

Vr := KxUr and Ur = [u1| . . . |ur] ∈ Rn×r is such that (σi, ui) are the solutions to the generalised eigenvalue
problem :

KyKxui = σ2
i (Kx + γIn)ui normalised such that u⊤i Kx(Kx + γIn)ui = 1.
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3) Inflation: Preservation of Probability Mass
Finally, we use Ĝ to obtain the empirical estimates of E[h(Xt) |X0 = ·], h ∈ H, and µt, for all t ∈ N, by putting back the
leading eigenpair that we have removed during the deflate step. Recalling (21) and (31), respectively, this results in

ĥt(x) :=[Ĝ
t
h](x)+⟨kπ̂y

, h⟩−⟨kπ̂x
, Ĝ

t
h⟩, x∈X , and kµ̂t

= kπ̂y
+(Ĝ

∗
)t (kµ̂0

−kπ̂y
)

where µ̂0 = n−1
0

∑
i∈[n0]

δzi is the initial empirical measure. Thus, recalling (22), (23), and using Theorem A.2 and
w0

t = 1√
n
WtKxz1n0 leads to Algorithm 1 that results in the sequence empirical measures µ̂t =

∑
i∈[n]mt,iδyi supported

on the output points (yi)i∈[n], which by construction satisfy µ̂t(X ) = 1 since
∑

j∈[n]mt,j=1⊤
n 1n = 1 due to Jn1n = 0.

Concerning the observables, as shown in (29)-(30) these two estimators are related via

⟨kµ̂0
, ĥt⟩ = ⟨kµ̂t

,h⟩,

and, hence we can forecast the observable as

ĥt(x) = ⟨kz, ĥt⟩ =
∑
i∈[n]

mt,ih(yi)

simply setting n0 = 1 and z1 = x in the algorithm bellow.

Algorithm 1 Forecasting observables and measures with KRR/PCR/RRR estimator via DLI framework
Require: DatasetDn = (xi, yi)i∈[n] from the process in stationary regime and samples (zi)i∈[n0] from some initial measure
µ0; hyperparameters γ > 0 and/or r ∈ [n]; forecasting horizon T ∈ N.
if r = n then {KRR estimator}

Solve (Kx + γI)m̃0 = Jn(Kxz1n0 −Kxy1n) in m̃0

Update m̃0 ← Jnm̃0

for t = 1, . . . , T − 1 do
Compute mt ← (1n + m̃t−1)/

√
n

Solve (Kx + γI)w̃t = JnKxym̃t−1 in m̃t

Update m̃t ← Jnm̃t

end for
Compute mT ← (1n + m̃T−1)/

√
n

else {low rank estimators}
if γ = 0 then {PCR estimator}

Compute Ur, Vr ∈ Rn×r using Theorem A.2(ii)
else {RRR estimator}

Compute Ur, Vr ∈ Rn×r using Theorem A.2(iii)
end if
Update Ur ← JnUr and Vr ← JnVr
Compute m̃0 ← U⊤

r (Kxz1n0
−Kxy1n)

Compute M ← U⊤
r KxyVr

for t = 1, . . . , T − 1 do
Compute mt ← (1n + V ⊤

r m̃t−1)/
√
n

Update m̃t ←Mm̃t−1

end for
Compute mT ← (1n + V ⊤

r m̃T−1)/
√
n

end if
Ensure: Vectors of weights mt ∈ Rn that define empirical measures µ̂t =

∑
i∈[n]mT,iδyi

, t ∈ [T ].

B. Proofs of Main Results
B.1. Main Assumptions

The following assumptions were used in Sec. 5 to derive the learning bounds:
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(BK) Boundedness. There exists cH> 0 such that ess sup
x∼π

k(x, x) ≤ cH, i.e. ϕ ∈ L∞
π (X ,H).

(RC) Regularity condition. For some α ∈ [1, 2] there exists a > 0 such that TT ∗ ⪯ a2C1+α, with T = S∗
πAπSπ .

(RC*) Regularity condition on the deflated operator For some α ∈ [1, 2] there exists a > 0 such that TT∗ ⪯ a2C1+α.

(SD) Spectral Decay. There exists β ∈ (0, 1] and a constant b> 0 such that λj(C)≤ b j−1/β , for all j ∈ J .

(SD*) Spectral Decay of the centered operator. There exists β ∈ (0, 1] and a constant b> 0 such that λj(C)≤ b j−1/β , for
all j ∈ J .

We start by observing that Sπ ∈ HS
(
H, L2

π(X )
)
, and, hence Sπ ∈ HS

(
H, L2

π(X )
)
, too. Hence, according to the spectral

theorem for positive self-adjoint operators, has an SVD, i.e. there exists at most countable positive sequence (σj)j∈N ,
where N := {1, 2, . . . , } ⊆ N, and ortho-normal systems (ℓj)j∈N and (hj)j∈N of cl(Im(Sπ)) and Ker(Sπ)

⊥, respectively,
such that Sπhj = σjℓj and S∗

πℓj = σjhj , j ∈ N . Moreover, since cl(Im(Sπ)) ⊆ Im(Jπ), we also have Jπℓj = ℓj , i.e.
EX∼π[ℓj(X)] = 0, j ∈ N .

Now, given α ≥ 0, let us define scaled injection operator Sα : H → L2
π(X ) as

Sα :=
∑
j∈N

σα
j ℓj ⊗ hj . (47)

Clearly, we have that Sπ = S1, while Im S0 = cl(Im(Sπ)). Next, we equip Im(Sα) with a norm ∥·∥α to build an
interpolation space.

[H]cα :=

f ∈ Im(Sα) | ∥f∥2α :=
∑
j∈N

σ−2α
j ⟨f, ℓj⟩2 <∞

 .

We remark that for α = 1 the space [H]cα is just an RKHSH seen as a subspace of Im(Jπ) ⊆ L2
π(X ). Moreover, we have

the following injections
[H]cα1

↪→ [H]c1 ↪→ [H]cα2
↪→ [H]c0 ↪→ Im(Jπ) ⊆ L2

π(X ),
where α1 ≥ 1 ≥ α2 ≥ 0.

Regularity condition. According to Zabczyk (2020, Theorem 2.2), the condition (RC*) is in fact equivalent to

Im(AπSπ) ⊆ Im(Sα) and, hence, AπSπ = SαGα
H, where Gα

H := S†
αT ∈ B(H).

Remark B.1 (Invariance of a RKHS). When α ≥ 1, we necessarily have that Im(AπSπ) ⊆ Im(Sπ), i.e. H is π-a.e.
invariant under the conditional expectation, and one has π-a.e. defined Koopman operator GH = G1

H. Moreover, since
for α > 1 we have that GH = C

α−1
2 Gα

H, which implies that GH is compact, being product of a compact and bounded
operators.

Embedding Property. Due to (BK) we also have that RKHSH can be embedded into L∞
π (X ), i.e. for some τ ∈ (0, 1]

[H]c1 ↪→ [H]cτ ↪→ L∞
π (X ) ↪→ L2

π(X ),

Now, according to (Fischer & Steinwart, 2020), if Sτ,∞ : [H]cτ ↪→ L∞
π (X ) denotes the injection operator, its boundedness

implies the polynomial decay of the singular values of Sπ, i.e. σ2
j (Sπ) ≲ j−1/τ , j ∈ N , and the following condition is

assured

(KE) Kernel embedding property: there exists τ ∈ [β, 1] such that

cτ := ∥Sτ,∞∥2 = ess sup
x∼π

∑
j∈N

σ2τ
j |ℓj(x)|2 < +∞. (48)

Finally, we make the following remark on finite-dimensional RKHS.
Remark B.2 (Finite-dimensional RKHS). WhenH is finite dimensional, all spaces [H]α are finite dimensional. Hence,
Im(AπSπ) ⊂ Im(Sπ) implies also Im(AπSπ) ⊂ Im(Sα) for every α > 0. Moreover, we can set τ and β arbitrary close to
zero.
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Remark B.3 (Link to CME). Centering the feature map has been explored in the context of conditional mean embeddings
(CME). The work most relevant to ours is (Klebanov et al., 2020), where one can find in-depth discussion on how kernel
properties and centering affect the existence of GH. On the other hand, the results in (Klebanov et al., 2020) are limited
to the statistical consistency w.r.t. number of samples, while in this work we address finite sample learning rates and the
impact of centering when learning dynamical systems.

B.2. Proof of Proposition 5.2

Embedding property and Whitened Feature Maps. The kernel embedding property (KE) allows one to estimate the
norms of whitened centered feature maps ξ(x) := C−1/2

γ [kx − kπ], γ > 0, that play key role in deriving the learning
rates, (Kostic et al., 2023a).

Proposition B.4. Let (BK) and (SD*) hold for some β ∈ (0, 1], and let ξ(x) := C−1/2
γ [kx−kπ]. Then there exist τ ∈ [β, 1]

and cτ , cβ ∈ (0,∞) such that for γ>0

∥ξ∥2 ≤ cβγ−β and ∥ξ∥2∞ ≤ cτγ−τ . (24)

Proof. We first observe that for every τ > 0 we have that

∥ξ(x)∥2 =
∑
j∈N

⟨C−1/2
γ [kx − kπ], hj⟩

2
=
∑
j∈N

1

σ2
j + γ

⟨kx − kπ, hj⟩2 =
∑
j∈N

σ
2(1−τ)
j

σ2
j + γ

⟨kx − kπ, hj⟩2

σ2
j

σ2τ
j

= γ−τ
∑
j∈N

(σ2
jγ

−1)1−τ

σ2
jγ

−1 + 1

|hj(x)− EX∼π[hj(X)]|2

σ2
j

σ2τ
j ≤ γ−τ

∑
j∈N

|(Sπhj)(x)|2

σ2
j

σ2τ
j = γ−τ

∑
j∈N

|ℓj(x)|2σ2τ
j ,

and, due to (48), we obtain ∥ξ∥2∞ ≤ γ−τ cτ . On the other hand, we also have that

∥ξ∥2 = tr(EX∼π[ξ(X)⊗ ξ(X)]) = tr(C−1/2
γ CC−1/2

γ ) = tr(C−1
γ C),

which is in uncentered case known as effective dimension of the RKHS H. Therefore, following the proof of Fischer &
Steinwart (2020, Lemma 11) for uncentered covariances, we show that the bound on the effective dimension remains valid
after centering with potentially improved bounds w.r.t. β. Namely, it holds that

tr(C−1
γ C) =

∑
j∈N

σ2
j

σ2
j + γ

≤

{
bβ

1−β γ
−β , β < 1,

cτ γ
−1 , β = 1.

(49)

For the case β = 1, it suffices to see that

tr(C−1
γ C) ≤ γ−1

∑
j∈N

σ2
j ∥ℓj∥2 = γ−1

∫
X

∑
j∈N

σ2
j |ℓj(x)|2π(dx) ≤ γ−1 ess sup

x∼π

∑
j∈N

σ2
j |ℓj(x)|2π(dx) = cτ γ

−1,

while for β < 1 we can apply the same classical reasoning as in the proof of Proposition 3 of (Caponnetto & De Vito,
2007).

B.3. Proof of Lemma 5.3

Lemma B.5. Let (RC*) hold for some α > 1, then there exists a compact GH:H→H such that AπSπ = SπGH and
ρ(GH)<1. Consequently, η(GH)<∞, d(GH)>0 and

η(GH)d(GH)

d(GH)+∥GH−Ĝ∥
≤ p(Ĝ) ≤ e

2

[
η(GH)d(GH)

d(GH)−∥GH−Ĝ∥

]2
.

holds for every Ĝ such that ∥GH−Ĝ∥ < d(GH).
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Proof. First note that, according to Remark B.1, α > 1 implies the existence of compact GH, for which w.l.o.g. we can
assume that GH : Ker(Sπ)

⊥ → Ker(Sπ)
⊥. Since for GH the peripheral spectrum is a subset of the point spectrum, let

λ be the leading eigenvalue of GH and by h ∈ H \ {0} its corresponding eigenvector. Then, since AπSπ = SπGH,
we have that AπSπh = λSπh and, due to Sπh ̸= 0, we conclude that λ is an eigenvalue of Aπ, too. Therefore,
ρ(GH) = |λ| ≤ ρ(Aπ) < 1.

Next, since η(Ĝ) ≤ p(Ĝ) ≤ (e/2)[η(Ĝ)]2, it suffices to prove that for any two bounded operators A and ∆, one has that
|η(A)− η(A+∆)| ≤ η(A)∥∆∥/(d(A)− ∥∆∥).

To that end, denote B = A+∆ and observe that (B − zI)−1 − (A− zI)−1 = (B − zI)−1∆(A− zI)−1, and, hence,

|∥(B − zI)−1∥ − ∥(A− zI)−1∥| ≤ ∥(B − zI)−1∥∥∆∥∥(A− zI)−1∥,

i.e.
|∥(B − zI)−1∥−1 − ∥(A− zI)−1∥−1| ≤ ∥∆∥.

Now, recalling definition of the Kreiss constant we have that

η(B) = sup
|z|>1

|z| − 1

∥(B − zI)−1∥−1
≤ sup

|z|>1

|z| − 1

∥(A− zI)−1∥−1 − ∥∆∥
= sup

|z|>1

(|z| − 1)∥(A− zI)−1∥
1− ∥∆∥/∥(A− zI)−1∥−1

≤ η(A)

1− ∥∆∥/d(A)
.

Since, we can show the lower bound in an analogous way, the proof is completed.

B.4. Proof of Theorems 5.4 and 6.1

We provide additional details used in the proof of this result.

Lemma B.6. Let Assumption (RC*) be satisfied. Then

∥GH −Gγ∥2 ≤ a2γα−1. (50)

Proof of Lemma B.6. We have

∥GH −Gγ∥2 = ∥C−1
γ T− C†T∥2 = ∥(C−1

γ − C†)TT∗(C−1
γ − C†)∥

≤ a2∥(C−1
γ − C†)C1+α(C−1

γ − C†)∥ = a2γα−1∥
∑

j :σj>0

(γ−1/2σj)
2(α−1)

(1 + (γ−1/2σj)2)2
hj ⊗ hj∥2 ≤ a2γα−1,

where the last inequality holds due to us ≤ u + 1 for all u ≥ 0 and s ∈ [0, 1] and using that the norm of the orthogonal
projector

∑
j :σj>0 hj ⊗ hj equals one.

To extend the proof of Theorem 5.4 to Theorem 6.1, it suffices to see that (29) and (30) imply that the forecasting error

∥µt − µ̂t∥H∗ can be upper bounded by ∥At
πSπ−SπĜ

t
∥∥q0∥+∥Ĝ

t
∥(∥kπ−kπ̂x

∥+ ∥kµ0
− kµ̂0

∥)+∥kπ−kπ̂y
∥. Hence, (9)

applied to E◦t and Briol et al. (2019, Lem. 1) that guarantees with probability at least 1 − δ that ∥kµ0
− kµ̂0

∥ ≤ ϵ with

ϵ =
√

2
n0
cH

(
1 +

√
log(δ−1)

)
, complete the proof.

B.5. Forecasting with RRR

We propose now to derive a result similar to Theorem 5.4 and 6.1 for the RRR estimator via an alternative argument which
is valid for any α ∈ [1, 2] in ((RC*)). To that end, instead of Lemma 5.3 we will use the following result based on the
Carleman-type bound on the resolvent of compact operators, see e.g. (Bandtlow, 2004).

Lemma B.7. Let G be a bounded linear operator on a Hilbert space such that ρ(G) < 1. If G has a finite rank r, then

p(G) := sup
t∈N0

∥Gt∥ ≤ 1

2
exp

(
2 r ∥G∥
1−ρ(G)

+ 1

)
. (51)

20



Consistent Long-Term Forecasting of Ergodic Dynamical Systems

Proof. As before, we have that p(G) ≤ (e/2)[η(G)]2, but now, since G is finite rank, we bound η(G) using Carleman- type
inequality. Namely, due to Bandtlow (2004, Theorem 4.1) for a trace-class operator A it holds that

∥(A− zI)−1∥ ≤ 1

d(z,Sp(A))
exp

(
∥A∥∗

d(z,Sp(A))

)
,

where d(z,Sp(A)) := minω∈Sp(A)|ω − z| is the distance of z ∈ C to the spectrum of the operator A, and ∥·∥∗ denotes
nuclear norm. Since, ∥·∥∗ ≤ r ∥A∥ for A of finite rank r, using that Sp(G) is contained in the open unit disk, we obtain for
z ∈ C s.t. |z| > 1

∥(z −G)−1∥(|z| − 1) ≤ (|z| − 1)

d(z,Sp(G))
exp

(
∥G∥∗

d(z,Sp(G))

)
≤ exp

(
r∥G∥

d(z,Sp(G))

)
,

and, thus,

η(G) ≤ exp

(
r∥G∥

inf |z|>1 d(z,Sp(G))

)
≤ exp

(
r∥G∥

1− ρ(G)

)
.

Corollary B.8. Assume the operator Aπ is of finite rank r for some r ∈ N. Let (SD*) and (RC*) hold for some β ∈ (0, 1]
and α ∈ [1, 2], respectively. In addition, let cl(Im(Sπ)) = L2

π(X ) and (BK) be satisfied. Let

γ ≍ n−
1

α+β and ε⋆n := n−
α

2(α+β) .

Let δ ∈ (0, 1). Then the forecasted distributions (31) based on Ĝ = Ĝ
RRR

r,γ satisfy for n large enough, with probability at
least 1− δ, for any t ≥ 1

∥µ̂t − µt∥H∗ ≲cH e
8r

1−ρ(Aπ)

(a+ 1

σ2
r(AπSπ)

)
ε⋆n ln(δ−1) +

√
ln δ−1

n0 ∧ n

 .

Proof. For brevity, we set Ĝ = Ĝ
RRR

r,γ and G = GRRR
r,γ . Exploiting the definition and properties of the RRR model, we

prove that there exists a constant c> 0, depending only r, cH, β such that for large enough n ≥ r, with probability at least

1− δ , the estimator Ĝ = Ĝ
RRR

r,γ satisfies ∥Ĝ∥ ≤ 2, 1− ρ(Ĝ) ≥ 1−ρ(G)
2 and E◦(Ĝ) ≲cH ε⋆n ln(δ−1).

We first observed that
E◦(Ĝ) ≤ ∥AπSπ − SπGγ∥+ ∥Sπ(Gγ −G)∥+ ∥Sπ(Ĝ−G)∥.

Proposition 5 in (Kostic et al., 2023a) and the condition cl(Im(Sπ)) = L2
π(X ) immediately give ∥AπSπ − SπG∥ ≤ aγα/2,

since for universal kernel, we have Im(AπSπ) ⊆ cl(Im(Sπ)). By definition of Gγ and since rank(Aπ) = r, we have
GRRR

r,γ = Gγ . Hence ∥Sπ(Gγ −G)∥ = 0.

We prove below that there exists a constant c = c(cH) > 0 such that, for n ≥ r large enough

P

{
∥Sπ(Ĝ−G)∥ ≤ c r

2
β

√
1

nγβ
ln(δ−1)

}
≥ 1− δ. (52)

Combining the previous display with our control on the bias and using that γ ≍ n−
1

α+β , we get that

P
{
E◦(Ĝ) ≲cH

(
a+ r

2
β

)
n−

α
2(α+β) log(δ−1)

}
≥ 1− δ.

Define B̂ := Ĉ
−1/2

γ T̂ and let P̂r denote the orthogonal projector onto the subspace of leading r right singular vectors of B̂.

Then we have Ĝ
RRR

r,γ = ĜγP̂r. Hence, we have ∥Ĝ
RRR

r,γ ∥ ≤ ∥Ĝγ∥. Exploiting Proposition 16 in (Kostic et al., 2023a), we
prove below that for n large enough

P
{
∥Ĝ∥ ≤ 2

}
≥ 1− δ. (53)
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Next we apply Corollary 1 of (Kostic et al., 2023a) to obtain that

P
{
ρ(Ĝ) ≤ ρ(Aπ) + ε⋆n ln(δ−1)

}
≥ 1− δ. (54)

Consequently on the same event, provided that n is large enough, we deduce that

1− ρ(Ĝ) ≥ 1− ρ(Aπ)

2
.

An elementary union bound combining the previous results and Lemma B.7 below gives the result with probability at least
1− 5δ. Up to a rescaling of the constant, we can replace 1− 5δ by 1− δ.

Proof of Equation (52). We first define B := C−1/2
γ T and we recall that T = S∗

πAπSπ. Applying Proposition 18 in
(Kostic et al., 2023a) gives, with probability at least 1− δ,

∥Sπ(G
RRR
r,γ − Ĝ

RRR

r,γ )∥ ≤ c ε2n(γ, δ/5)

1− ε1n(γ, δ/5)
+

σ1(B)

σ2
r(B)− σ2

r+1(B)

(c2 − 1) εn(δ/5) + c2 (ε2n(γ, δ/5))
2

(1− ε1n(γ, δ/5))2
, (55)

where c := 1 + a c
(α−1)/2
H ,

εn(δ) :=
4cH
3n
L(δ) +

√
2∥C∥
n
L(δ) and L(δ) := log

4 tr(C)

δ ∥C∥
, (56)

ε1n(γ, δ) :=
4cτ
3nγτ

L1(γ, δ) +

√
2 cτ
nγτ
L1(γ, δ), (57)

with

L1(γ, δ) := log
4

δ
+ log

tr(C−1
γ C)

∥C−1
γ C∥

,

and

ε2n(γ, δ) := 4
√
2 cH

√ tr(C−1
γ C)

n
+

√
cτ

nγτ/2

 log
2

δ
. (58)

Using (49) and elementary computations, we get that the dominating term in (55) is of the order
√

1
nγβ ln(δ−1) since τ ≥ β.

In addition, for B := C−1/2
γ T, we have σr+1(B) = 0 since rank(T) ≤ rank(Aπ) = 5. Finally, Proposition 6 of (Kostic

et al., 2023a) and our choice of γ guarantees for n large enough that σ2
r(B) ≥ σ2

r(AπSπ)−a2 cα/2H γα/2 ≥ σ2
r(AπSπ)/2 >

0.

Proof of Equation (53). Proposition 16 in (Kostic et al., 2023a) guarantees with probability at least 1− δ

∥Ĝγ∥ ≤
1 + ε3n(γ, δ/2)

1− ε3n(γ, δ/2)
,

where

ε3n(γ, δ) := 4
√
2 cH

√ tr(C−2
γ C)

n
+

√
cτ

nγ(1+τ)/2

 log
2

δ
. (59)

Using again (49) and the fact that τ ≥ β, we deduce that

ε3n(γ, δ) ≲
√
cH

√
1

nγ1+β
log(2δ−1).

With our choice of γ and for n large enough such that ε3n(γ, δ/2) < 1/4, we get

P

{
∥Ĝγ∥ ≤

1 + ε3n(γ, δ/2)

1− ε3n(γ, δ/2)
≤ 2

}
≥ 1− δ.
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B.6. Forecasting the Conditional Variance

In this section we focus on the conditional variance of an observable, and how to estimate it using DLI framework. First,
note that fixing the observable h ∈ H and time-step t ∈ N and considering joint distribution of (X0, Xt), according to
standard bias-variance decomposition of the square regression loss, any learner ĥt satisfies

E(X0,Xt)[h(Xt)− ĥt(X0))]
2︸ ︷︷ ︸

MSE

= EX0
[E[h(Xt) |X0]− ĥt(X0)]

2︸ ︷︷ ︸
bias

+EXt
[h(Xt)]

2 − EX0
[E[h(Xt) |X0]]

2︸ ︷︷ ︸
variance

. (60)

Hence, the irreducible part of the mean square error is the property of the distribution of the data and the observable.

Using the tower property of the expectation, we can further express the term EX0
V[h(Xt) |X0], where the conditional

variance is defined as
V[h(Xt) |X0] := E[[h(Xt)]

2 |X0]− [E[h(Xt) |X0]]
2. (61)

Now, assuming that both functions h and [h(·)]2 belong to the RKHSH, we can write the conditional variance via Koopman
operators in order to estiamte is

V[h(Xt) |X0 = x] := [At
πSπ[h(·)]2](x)− [[At

πSπh](x)]
2 ≈ ĥ(·)2t(x)− (ĥt(x))

2 =: h̃t(x), (62)

which leads to the obvious estimator. But then, the following lemma allows us to extend the bounds on the L2
π(X ) estimation

error of conditional mean to the to the L1
π(X ) estimation error of the conditional variance. That is, we have the following

result matching the one of Theorem 5.4, whose proof is a direct consequence of the subsequent lemma.

Theorem B.9. Let (SD*) and (RC*) hold for some β ∈ (0, 1] and α ∈ (1, 2], respectively. In addition, let cl(Im(Sπ)) =
L2
π(X ) and (BK) be satisfied. If δ ∈ (0, 1),

γ ≍ n−
1

α+β and ε⋆n := n−
α

2(α+β) ,

then, for every t ∈ N, the forecasted conditional variance of the observable given in (62) based on KRR satisfies

∥V[h(Xt) |X0 = ·]− h̃t∥L1
π(X )/∥h∥2≤ Cε⋆n ln(δ−1),

with probability at least 1− δ w.r.t. iid sampled data D according to the invariant distribution π, where the constant C may
depend only on a, b and cH.

Lemma B.10. Given x ∈ X and t ∈ N, let Et : H → L2
π(X ) be a bounded linear operator, and define a (non-linear)

operator Vt : H → L1
π(X ) as [Vth](x) := [Et(h(·)2)](x) − [Eth](x)

2, defined on {h ∈ H |h(·)2 ∈ H}. Then for ε > 0
the following holds

∥E[h(Xt) |X0 = ·]− Eth∥L2
π(X )/∥h∥H ≤ ε =⇒ ∥V[h(Xt) |X0 = ·]− Vth∥L1

π(X ) ≤ ε(2
√
cH + ε)∥h∥2H.

Proof. From the definition of Vt and (62), we have that

∥V[h(Xt) |X0 = ·]− Vth∥L1
π(X ) ≤ ∥E[g(Xt) |X0 = ·]− Etg∥L1

π(X ) + Ex∼π|E[h(Xt) |X0 = x]2 − [Eth](x)
2|.

Since L1
π(X ) norm is bounded by L2

π(X ) norm and ∥g∥ ≤ ∥h∥2, the first term is bounded by ∥h∥2ε.

For the second term, observe that

Ex∼π|E[h(Xt) |X0 = x]2 − [Eth](x)
2| =

∫
X
|E[h(Xt) |X0 = x]− [Eth](x)||E[h(Xt) |X0 = x] + [Eth](x)|π(dx).

Hence, using the Cauchy-Schwartz inequality, we can bound it by

∥E[h(Xt) |X0 = ·]− Eth∥L2
π(X )∥E[h(Xt) |X0 = ·] + Eth∥L2

π(X ),

and, consequently, by ε∥h∥ (2∥At
πSπh∥+ ε∥h∥), which yields the bound ε(2

√
cH + ε)∥h∥2 and completes the proof.

Therefore, the high probability forecasting error bounds that hold for conditional mean DLI estimators, hold also for the
corresponding conditional variance estimators in en adequate norm. Thus, theorems on RRR and PCR estimators are readily
extended to cover the conditional variance estimation.
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B.7. Non-iid Samples from a Trajectory

In this section we show how that the results of this paper based on iid assumption of the data samples are seamlessly
extended to the case of sampling along the trajectory. More precisely, we consider that a trajectory x1, . . . , xn+1 has been
sampled from the process as x1 ∼ π, yk−1 = xk ∼ p(xk−1, ·), k ∈ [2:n], and rely on the basic strategy, going back to at
least (Yu, 1994), that represents the process (Xt)t∈N by two interlaced block-processes in order to transfer a concentration
result for i.i.d. variables to the non-i.i.d. case. Such block-processes (Yt)t∈N and (Y ′

t )t∈N are defined as

Yt =

(2t−1)s∑
k=2(t−1)s+1

Xk and Y ′
t =

2ts∑
k=(2t−1)s+1

Xk for t ∈ N,

to accomplish that Yt/Y ′
t and Yt+1/Y

′
t+1 are sufficiently separated to be regarded as independent.

This is possible assuming that the Markov process is β-mixing, that is for τ ∈ N we can define coefficients βp (τ) as

βp (s) = sup
B∈Σ⊗Σ

|ρs (B)− (π × π) (B)| ,

where ρs is the joint distribution of X1 and X1+s, that tend to zero with increasing s ∈ N. Then, our extension to non-iid
setting is based on the following Lemma 1 of Kostic et al. (2022), which we restate here.

Lemma B.11. Let (Xt)t∈N be strictly stationary with values in a normed space (X , ∥·∥), and assume n = 2ms for
s,m ∈ N. Moreover, let Z1, . . . , Zm be m independent copies of Z1 =

∑s
k=1Xk. Then for ε > 0

P
{∥∥∥ n∑

i=1

Xi

∥∥∥ > ε
}
≤ 2P

{∥∥∥ m∑
j=1

Zj

∥∥∥ > ε

2

}
+ 2 (m− 1)βp (s) .

As an application of this result we can transfer the centered versions of the Propositions 12-15 from Kostic et al. (2023a)
which were proved in the i.i.d. setting to the non-iid setting. For brevity we showcase how this is done on Kostic et al.
(2023a, Proposition 12), while the rest follows in an analogous way using whitened features.

Proposition B.12. Let δ > 2(m− 1)βp(s). With probability at least 1− δ in the draw x1 ∼ π, xi ∼ p(xi−1, ·), i ∈ [2:n],
it holds that

P{∥T̂− T∥ ≤ εn(δ)} ∧ P{∥Ĉ− C∥ ≤ εn(δ)} ≥ 1− δ,

where

εn(δ) :=
4cH

3(n/2s)
L(δ) +

√
2m∥C∥
(n/2s)2

L(δ) and L(δ) := log
4 tr(C)

(δ/2− (m− 1)βp(s)) ∥C∥
. (63)

Proof. Given s ∈ N, let Z1, . . . , Zm be independent copies of Z1 =
∑s

i=1[ϕ(xi) − kπ] ⊗ [ϕ(xi+1) − kπ] − sT. Now,
applying Lemma B.11 with [ϕ(xi)− kπ]⊗ [ϕ(xi+1)− kπ]− T in place of Xi we obtain

P
{∥∥∥T̂− T

∥∥∥ > ε
}
=P

{∥∥∥∥∥
n∑

i=1

[ϕ(xi)− kπ]⊗ [ϕ(xi+1)−kπ]−T

∥∥∥∥∥ > nε

}
≤ 2P


∥∥∥∥∥∥

m∑
j=1

Zj

∥∥∥∥∥∥ > nε

2

+ 2 (m−1)βp(s).

To obtain the result whp probability 1 − δ, we bound the rightmost probability using the non-commutative Bernstein
inequality of Kostic et al. (2023a, Proposition 11) with iid operators Zi setting the probability as δ/2− (m− 1)βp(s) to
obtain

P
{∥∥∥T̂− T

∥∥∥ > ε
}
≤ 2P


∥∥∥∥∥∥ 1

m

m∑
j=1

Zj

∥∥∥∥∥∥ > nε

2ms

+ 2 (m−1)βp(s) ≤ δ.

Finally, solving for ε we obtain the proof for the centered cross-covariance. In the same way we obtain the bound for the
covariance.
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We notice that this result, apart from slightly larger numerical constants in a logarithmic term bound (63), is conceptually
identical to Kostic et al. (2023a, Proposition 12), when the sample size n is replaced by the effective sample size m ≈ n/2s.
The same conclusion remains true for Propositions 13-15 of Kostic et al. (2023a), since the only difference lies in the impact
of the regularization parameter γ > 0 on the bound. Therefore, we conclude that when the sampling of the data Dn is done

from a trajectory, in the results of Theorems 5.4 and 6.1 we have the bound (n/2s)
− α

2(α+β) log 2
δ , where s ∈ N is such that

(n/2s− 1)βp(s) ≤ δ/2.

C. Experimental Details
In both experiments, the Reduced Rank Regression estimator was implemented using the reference code from (Kostic et al.,
2022) available at https://github.com/Machine-Learning-Dynamical-Systems/kooplearn. The experiments were run on a
workstation equipped with an Intel(R) Core™i9-9900X CPU @ 3.50GHz, 48GB of RAM and a NVIDIA GeForce RTX
2080 Ti GPU. All experiments have been implemented in Python 3.11.

For the Cox–Ingersoll–Ross, the conditional expectation of the state and its variance are given by

E [rt | r0=r]=re−at + b(1− e−at)

and
V [rt | r0=r]=r σ

2

a (e−at − e−2at)+ bσ2

2a (1−e−at)2.

For the Ornstein-Uhlenbeck experiment we sampled the process every dt = 0.05. The estimators were trained with 250
observations sampled independently from the invariant distribution, while the initial distribution used to evaluate the MMD
was sampled 1000 times. Each experiment has been repeated 100 times independently, and the hyperparameters were tuned
on a validation set of 500 points sampled from the invariant distribution.

The code to reproduce the experiments will be open sourced.
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