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Abstract

Recent evidence has demonstrated the unique properties of the innate immune sys-

tem, known as innate immune memory, immune priming, or trained immunity. These

properties have been described as the ability of the innate immune system to learn

from previous microbial experiences, which improves survival after subsequent infec-

tion. In this review, we present the state of knowledge on trained immunity in inver-

tebrates and provide a comprehensive overview of these capabilities in cultured

marine molluscs, which are currently threatened by recurrent diseases. Studies have

shown that exposure to environmental microbiota, pathogens, or derived elements,

can provide a stronger response and protection against future infections. These stud-

ies highlight common and distinct features of protection, mechanisms, specificity,

and duration that vary with immune markers, and methods of stimulation. While the

cellular and molecular basis of these responses is only partially understood, effects

on phagocytosis, haemocyte populations, apoptosis, oxidative stress, and immune

gene expression have been suggested. Finally, we propose a framework for future

research to go beyond the current evidence and address potential limitations in the

implementation of trained immunity-based strategies to control disease. Immune

training may provide a unique opportunity to promote the sustainable development

of marine mollusc aquaculture.
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1 | INTRODUCTION

Molluscs are one of the most diverse and abundant animal groups in

terms of species and biomass.1 Marine molluscs, in particular, contrib-

ute substantially to aquaculture production, with bivalves accounting

for �20% of aquatic animal production by weight.2,3 Aquaculture is a

rapidly growing food production sector and a crucial source of animal

protein for human consumption. According to the Food and Agricul-

ture Organization of the United Nations (FAO), worldwide mollusc

aquaculture production has increased by �70 million tonnes over the

past three decades.3 Due to the socio-economic significance of these

species, a considerable amount of research has focused on infectious

diseases that can occur at different life stages and have repeatedly

affected production.2,4,5 Even more concerning is the increase in the

frequency and severity of marine diseases affecting wild and farmed

marine species, in association with global changes and anthropogenic

disturbances. This represents a major limitation for the sustainability

of aquaculture.6,7 Marine molluscs have been the subject of basic and

applied research on ecological issues, and physiological processes

(reproduction, growth, metabolism, and immunity) involved in disease

mitigation. Research efforts combined with the acquisition of impor-

tant genomic datasets have significantly enhanced our knowledge of

the molecular basis of molluscan immunity, thus providing new oppor-

tunities to improve our understanding of mollusc response and resis-

tance to disease.8–17

Molluscs exhibit a highly conserved innate immune system, which

they use to interact with microorganisms (see Ref. 8, for review). Hae-

mocytes (haemolymph circulating and infiltrating cells) are the main

immune response mediators at the cellular level, but epithelial cells

have also been implicated in response to pathogens.18,19 Mollusc

genomes contain a wide range of cellular and cytoplasmic recognition

molecules and receptors that detect microbe-associated or danger-

associated molecular patterns. Some of these recognition receptors

(e.g., TLR, RIG-like Receptor (RLR), SR, NLR, and Integrins) and soluble

proteins (e.g., FREPs, LBP/BPI, PGRP, GNBP, C1q, lectins) are highly

polymorphic or diversified in molluscs and invertebrates.20 They have

been suggested to support specificity in the innate immune response

and microbe recognition.20 Upon recognition, several mechanisms can

be induced to eliminate pathogens in the circulating fluids (haemo-

lymph) and tissues or inside immune-competent cells. In haemolymph,

proteolytic cascades are conserved in molluscs and primitive pro-

phenoloxidase and complement systems have been found.21,22 In

immune cells, the recognition of pathogens can lead to aggregation,

ETosis, and phagocytosis or endocytosis. Pathogens are then engulfed

and destroyed by lysosomal enzymes, cytotoxic/cytolytic compounds,

and oxidative burst, which is supported by the synthesis of reactive

oxygen or nitrogen species (ROS/RNS).23–25 Upon activation, haemo-

cytes can also trigger signalling pathways (Toll/NF-kB, Interferon

(IFN)-like, RLR-STING, Tumor Necrosis Factor pathways, etc.) and

well-known cell-autonomous defence mechanisms (such as autophagy

or apoptosis) that share striking similarities with pathways of the ver-

tebrate innate immune system.8,26,27 Antimicrobial activities are medi-

ated by a variety of well-conserved effectors from ROS, RNS,

proteases, and antimicrobial peptides (AMPs) and proteins.28–30

Although the accumulation of genomic data raises many questions,

particularly regarding functional conservation and interaction between

signalling pathways components, some of these complex mechanisms

have been linked to antibacterial and antiviral responses.31–33

Recent research has revealed original immune mechanisms in

molluscs, in addition to their potent defence systems. The immune

system of invertebrates relies on innate mechanisms and has long

been thought to lack adaptive mechanisms, unlike the adaptive or

acquired immune system of vertebrates, which depends on antibody

specificity and T-/B-cell receptor-mediated memory. However, stud-

ies on invertebrate and vertebrate species over the last two decades

have supported the existence of antigen-independent immunological

memory. This demonstrates that the innate immune system can adapt

following microbial challenge.34–36 To avoid any mechanism-based

confusion with the vertebrate antibody-dependent adaptive immune

system, these immunological memory responses have been called

‘immune priming’, ‘trained immunity’, or ‘innate immune memory’.
Although there is no consensual definition of these phenomena,

innate immune memory has been described as the ability of the innate

immune system to store or reuse information from a previously

encountered non-self-antigen or pathogen, resulting in a more robust

response that improves survival upon subsequent exposure to the

same or an unrelated pathogen.36,37 These immunological memory

traits, conserved throughout evolution, could provide a survival

advantage and greater protection against pathogen infection.36

These characteristics have important implications for implement-

ing innovative and sustainable ways to mitigate recurrent diseases in

cultured marine molluscs. Currently, there are very few prophylactic

or therapeutic treatments to address diseases in marine mollusc aqua-

culture. Marine molluscs are typically farmed in open environments,

which limit the use of antibiotics to larval stages and broodstock con-

ditioning in hatcheries due to feasibility issues and the risk of promot-

ing antimicrobial resistance. Prophylactic treatments, such as

probiotics, are also very limited for molluscs. Probiotics have been

successfully tested in laboratory settings, demonstrating the potential

to improve health and animal depuration in certain species.38 How-

ever, the literature reports several limitations, including inhibitory

effects on development.39 Biosecurity solutions have also been

explored to eliminate viral or bacterial pathogens.40 but these seawa-

ter treatments are only suitable for closed hatchery. Young animals

are still vulnerable when transferred and cultured in the open sea.

Genetic selection is currently the primary strategy being developed to

enhance resistance to pathogens.41–43 These solutions could poten-

tially impair animal genetic diversity, with potential trade-offs which

could compromise their resilience to future diseases. For species like

oysters, current cultural practices involve immersing larger quantities

of oysters in the environment to compensate for losses due to mas-

sive mortalities. It is important to note that leaving extensive quanti-

ties of dead and sick oysters to decay in farms can have negative

consequences on the environment. Studies have shown that it alters

the flux of dissolved materials, affects the structure of the planktonic

communities and enriches the surrounding seawater with pathogens
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(OsHV-1 virus) and opportunistic bacteria, which could facilitate the

spread of disease and potentially harm marine biodiversity.44,45 Over-

all, current approaches seem inadequate for effectively controlling the

emergence or re-occurrence of diseases.41 They may also be aggra-

vating factors and a major impediment to ensuring sustainable aqua-

culture development, which requires innovative ways to mitigate

these diseases.

In this context, enhancing immune capacities through trained

immunity seems like an attractive alternative strategy to prevent dis-

ease outbreaks and improve marine mollusc health. To address the

application potential of trained immunity, we present in this review an

outlook of trained immunity evidence brought forward in inverte-

brates, describing the main characteristics and mechanisms. We

review the latest advances in trained immunity capacities found in

marine molluscs of economic interest. Finally, we propose a frame-

work for future research to assess the feasibility of implementing

trained immunity for disease control in aquaculture.

2 | TRAINED IMMUNITY IN
INVERTEBRATES

The evidence for enhanced protection against either macro-

parasitic,46 bacterial, fungal,47 and viral infections48–51 has been docu-

mented in vertebrates (mammals, Teleostea)37,52,53 and invertebrate

phyla, from Cnidaria, Lophotrochozoa (Spiralia, mostly molluscs), but

mostly in Ecdyzoa (Decapoda, Branchiopoda, Lepidoptera, Coleoptera,

Diptera, and Hymenoptera).46,54–59 Studies on trained immunity in

invertebrates are quite heterogeneous and largely differ in terms of

experimental design, host–pathogen combinations, physiological sta-

tus of the host (age, developmental stages, sex), elicitors used for

training (live vs. inactivated pathogens, non-infectious agents, or syn-

thetic component), dose of stimulus applied (acute infection, repeti-

tive exposition, addition of adjuvants), route of priming (oral, mucosal

vs. injection), the degree of demonstrated specificity of the trained

response (broad vs. specific), and duration (time between first and sec-

ond encounter, within and across generations).35 This improved pro-

tection has been observed in different contexts. It can occur within

the same developmental stage (within-generation), across life stages

(ontogenic), or across generations, also called transgenerational

immune priming (TGIP). This prepares the offspring for potential

future infectious environments. TGIP has been shown to increase the

survival capacities of insects and crustaceans, sometimes over several

generations, making it a beneficial survival strategy.35,60,61 The time

between training and challenge can extend over weeks and even the

lifetime of the organism (from the larval stage to adulthood). In addi-

tion, environmental stressors such as heat or physical stress can affect

the immune response and train immunity in invertebrates, leading to

increased survival.62–70 It is worth noting that non-lethal heat shock

impacts have been studied in several invertebrate species, revealing a

potential role of heat shock proteins (hsp) in enhancing resistance to

pathogens.65,71–75 These proteins may modulate pathogen-associated

molecular pattern-induced immune receptor signalling or send

endogenous ‘danger signals’ to the immune system. For instance, they

have been used in fish vaccines.76,77

Despite an increasing number of reports are shedding light on

these phenomena, the biological mechanisms underlying trained

immunity are still poorly understood for most invertebrate species.

Theoretical models of response have been proposed.34,36,78–81 Molec-

ular evidence from various studies supports these mechanistic models,

demonstrating the potential diversity of response even within the

same phylum (Figure 1). They have demonstrated the existence of a

biphasic response, called the ‘recall response’, which is characteristic

of vertebrate immune memory. This involves stimulation of the

immune response following a primary exposure, followed by an

extinction phase and either a similar or stronger and faster secondary

response to a subsequent infection (Figure 1). This type of response

appears to be very rare in invertebrates, with only a few examples

observed in mosquitoes primed with Plasmodium berghei or dengue

virus.82,83 Another type of response, known as immune shift, has been

shown to exhibit qualitatively distinct primary and secondary

responses.84,85 Immune shift was first observed in the freshwater snail

Biomphalaria glabrata.46 It is mediated by snail-soluble immune factors

that lead to the degeneration and death of the Schistosoma mansoni

parasite, following a shift from cellular to humoral response upon sec-

ondary infection. Finally, a sustained response was observed. It is acti-

vated upon primary exposure, with no extinction phase, and is

maintained until the secondary infection.86–90 The latter response,

sometimes dismissed as true memory and compared with immune

enhancement,54 seems to be highly represented in invertebrates.78 It

can lead to increased resistance and potentially transmit trained

immunity across generations. In some cases, this response is associ-

ated with a gene expression shift called gene frontloading, which is

characterized by constitutive changes in gene baseline expres-

sion.88,91 While frontloading has mainly been demonstrated in the

context of environmental training and stress response, it has been

described as an adaptive mechanism to cope with environmental

changes and to drive phenotypic modifications, enhancing robustness

in cnidarians and molluscs.92–95 Interestingly, these mechanisms have

been suggested to be supported by epigenetic mechanisms.88,96

Many studies in vertebrates, invertebrates, and plants indicate

that long-term epigenetic and metabolic reprogramming of the innate

immune cells plays a crucial role in the remarkable persistence of

immune training. Therefore, these mechanisms emerge as a common

denominator of immune training across species.49,53,54,97 Epigenetic

developmental plasticity enables a complex organism to adapt to

micro-environmental signals, particularly during early life, thereby

increasing its fitness.98,99 Trained immunity involves epigenetic modi-

fications caused by metabolic reprogramming of innate immune cells

(e.g., changes in glycolysis, glutaminolysis, tricarboxylic acid cycle,

mevalonate, fumarate, itaconate, and lipid metabolism), since meta-

bolic intermediates (e.g., itaconate, fumarate, and succinate) can act as

substrates, cofactors, or inhibitors for chromatin-modifying

enzymes.100–102 These modifications are thought to occur primarily

through DNA methylation, histone modification and/or non-coding

RNA, which have been shown to alter the expression of genes

MONTAGNANI ET AL. 3

 17535131, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12906 by C

ochrane France, W
iley O

nline L
ibrary on [02/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



encoding key players in the epigenetic regulation machinery of

immune gene expression. These modifications can affect the pheno-

type over time, even without the initial inductive stimulus. In addition,

epigenetic inheritance is gaining ground attention as a key mechanism

of transgenerational plasticity and an important mediator of genome–

microbiome interactions in marine organisms exposed to environmen-

tal stress.103–107 The involvement of epigenetic mechanisms in the

transgenerational transmission of trained immunity has also been

demonstrated in arthropods.108–111

The debate continues on whether specificity is a hallmark of a

trained response since trained immunity in vertebrates seems to be

less specific than antibody-driven acquired immunity.53 In humans,

trained immunity can cause off-target effects of vaccines, inducing an

innate immune response against unrelated pathogens and providing

heterologous protection.112,113 In invertebrates, a wide range of

responses have been observed, from highly specific responses that

elicit stronger memory when facing closely genetically related bacteria

or parasites repeatedly, to cross-protection.46,56,58,60,114–117 Studies

suggested the implication of several classes of multigene families of

immune receptors that have the potential for somatic diversification

(DSCAMs for Down syndrome cell adhesion molecule, FREPs for

fibrinogen-related proteins).118 These receptors may play a role in

enforcing a specific trained response based on their diversity and

potential synergistic interactions, as well as mediating an increased

cellular response through phagocytosis or haematopoietic prolifera-

tion.119 The transgenerational response can either be specific to the

pathogen that induced the training, or non-specific, resulting in more

robust offspring that are more resistant to various pathogens (cross-

immunity).61

Furthermore, immune training has been shown to enhance vari-

ous immune mechanisms that eliminate pathogens, such as immune

cell proliferation and haematopoiesis, phagocytosis, apoptosis, or ROS

production.57,114,120 Trained responses have also been linked to other

immune effectors (e.g., AMPs) and stress proteins (hsp). However,

further investigation is needed to determine the exact role of these

factors.63,121–124 Like plants, invertebrates can use RNA interference

to provide transgenerational protection against viruses.50,125,126 Stud-

ies have suggested that transgenerational protection could also be

transmitted through pathogen-derived AMPs or mRNA-encoding

immune effectors.127,128

Taken together, the accumulating evidence for trained immunity

suggests that immunological memory may be a universal feature of all

living organisms, from bacteria (CRISPR-Cas system) to humans, with

significant implications for both health and disease in invertebrates.

However, the available data are incomplete, and a comprehensive

overview of this phenomenon across different phyla is necessary. This

includes information on duration, specificity, efficiency in a natural

context, and the underlying molecular and cellular mechanisms.

3 | TRAINED IMMUNITY IN
AQUACULTURE MOLLUSCS

Most cultured molluscan species are bivalves129 while only a few gas-

tropods are exploited in aquaculture. Accumulating experimental evi-

dence has demonstrated most species possess immune training

capacities (Figure 2).

3.1 | Abalones

The most commonly cultured marine gastropod species is the abalone,

which is prone to recurrent bacterial and viral infections.130–132 Evi-

dence of immune training capacities has been found in the European

abalone Haliotis tuberculata (Linnaeus, 1758),133 the New Zealand

Haliotis iris (Gmelin, 1791),134–136 Haliotis diversicolor (Reeve, 1846),137

F IGURE 1 Comparative trained immunity response model in invertebrate and aquaculture molluscs. The graph illustrates the diversity of
training responses observed in invertebrates and marine molluscs. Immune response over time after training induction (primary response) and
challenge (secondary response) is shown. The different response modes described in the literature are indicated by curves in different colours.
The legend indicates the species where the different patterns have been observed: a sustained response induced upon training with no extinction
phase, that is maintained up to the secondary response (dark blue line); an immune shift displaying qualitatively distinct primary and secondary
responses, involving distinct sets of genes (light blue and dark green lines); a tolerance response with a primary response but no secondary
response (light blue line). A biphasic response, named recall response with a primary response followed by an extinction phase and either a similar
or stronger and faster secondary response to a subsequent challenge (light green line).

4 MONTAGNANI ET AL.
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or Haliotis discus (Reeve, 1846)138 (Table 1). In H. iris, several studies

have shown that exposure to probiotic-enriched diets coming from

bacterial strains isolated from the gastrointestinal tract of healthy aba-

lones could improve immunity, growth, and survival, sometimes sev-

eral months after exposition.134–136 This treatment modified some

haemocyte-related immune parameters (increased total haemocyte

counts and ROS production) as well as the relative abundance of sev-

eral metabolites that were interpreted as immune training bioindica-

tors.134 In H. tuberculata, the effects of two consecutive infections

with a live Gram-negative pathogenic bacterium, Vibrio harveyi, were

investigated in two abalone populations. The St Malo population

appeared to be already resistant to the pathogen (St Malo population,

95% survival), while the Molène population displayed an increased

survival rate (51%) after 1 month and lower bacterial detection after

the second challenge, which was interpreted as a training effect.133

Furthermore, a recent study on H. diversicolor demonstrated its

immune training capacity in response to V. harveyi primo-infection.137

The authors found a significant improvement in survival rates upon

secondary challenge with the same pathogen 2 weeks after the first

exposure. A global comparative transcriptomic approach on hepato-

pancreas tissue revealed some molecular changes, reflected by signifi-

cant upregulations of various pathogen recognition receptors (PGRP;

TLR, C1q, scavenger receptors, …) and immune effectors associated

with detoxification and antioxidant response, but also of genes

involved in phagocytosis, metabolic pathways (glycolysis, fatty acid,

and amino acid metabolism) and calcium signalling pathways.

Although the experimental scheme in this study could not determine

the mode of response involved (analyses performed on a single time

point after the second challenge), the results suggest that the protec-

tion could rely on a stronger secondary response and/or a sustained

but similar immune response. Nevertheless, this study provided a first

overview of immune mechanisms that could synergistically lead to

immune training in abalones. More recently, in H. discus hannai, a tran-

scriptomic study was conducted on haemocytes from trained animals

following stimulation with a sub-lethal dose of live Vibrio

parahaemolyticus.138 The study showed increased survival rates

when facing a second challenge 7 days after priming with a lethal

dose of the same pathogen. Gene clusters that could contribute to

this enhanced immune protection in haemocytes were identified

and classified. There were 1019 genes associated with immune-

enhancing regulation and 281 genes classified as immune-enhancing

genes. The expression patterns of these genes showed significant

up-regulation following re-infection, indicating a recall pattern, and

intricate mechanisms involving conserved immune pathways such as

NF-kappaB, TLR, NOD-like receptor, and IL-17 signalling pathways.

Additionally, the immune effectors involved in detoxification and

the mediators of the apoptosis pathway were linked to this training

response. In conclusion, immune memory phenomena have been

demonstrated in abalone in response to exposure to probiotic or

killed bacteria, or to sub-lethal doses of pathogenic bacteria that

could increase survival. The specificity of the response was not

investigated. The effect of training was observed up to several

months after the initial exposure. Molecular mechanisms were iden-

tified involving phagocytosis, haemocytes, ROS production, and

numerous immune genes. The response in these organisms appears

to follow a recalled response profile (Figures 1 and 2).

3.2 | Clams

A few studies have shown that the clam Chlamys farreri (K.H. Jones &

Preston, 1904)139–142 (Table 1) displays immune training capacities

when exposed to live or heat-killed bacteria. The authors found that

injection of pathogenic bacteria (Vibrio anguillarum previously known

as Listonella anguillarum) resulted in a significant increase in immune

gene expression (peptidoglycan recognition protein-S1, Cf- PGRP-S1

or C-type lectins) following a second infection (72–168 h after first

exposure). Interestingly, Cong et al. reported a faster and stronger

F IGURE 2 Trained immunity evidence in marine molluscs. Illustration of the current knowledge on trained immunity in marine molluscs
(marked with blue colour, phylogenetic tree based on Davison and Neiman217). The methods used to evidence trained immunity are indicated
(injection by a syringe and bath treatment by a tank), as well as the pathogen used (bacteria or virus), as well as the longest training duration
observed (‘d’ for days and ‘mo’ for months) and when transgenerational immune priming (TGIP) has been observed. A Kaplan–Meier graph
indicates when a natural pathogen has been used to induce training and shown enhanced survival capacities observed. ‘NGS’ indicates when
global has been used to explore underlying mechanisms. A dot indicates when specific response has been observed (adapted from Milutinovic
et al.35).
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induction of the immune genes after the secondary infection, which is

demonstrative of a biphasic response pattern (known as a recall-type

response). Originally, Wang et al. found that there was a degree of

specificity in the training response, with increased survival when the

second injection was performed with the same pathogen.140 While

these studies did not examine duration beyond 7 days, another study

suggested transgenerational training capacities in this species.141 The

study demonstrated that maternal stimulation with the heat-killed

bacteria V. anguillarum induced significant changes in immune protein

levels and mRNA expression in the offspring at various developmental

stages. These immune proteins (including Cf-LGBP, Cf-LBP/BPI,

Cf-LYZ, and Cf-Cu/Zn–SOD) exhibited enhanced agglutination prop-

erties and bactericidal activities against Gram-negative bacteria

Escherichia coli and Vibro anguillarum, as well as fungi Pichia pastoris.

This enhanced immune competence was linked to improved survival

in offspring exposed to the same pathogen V. anguillarum at the

trochophore and D larval stages. Survival capacities in offspring were

not investigated at later life stages. Survival beyond these early devel-

opmental stages (occurring 24–48 h post-spawning) was not investi-

gated. Further research is needed to confirm whether this increased

survival is due to an immune training mechanism, as it was not possi-

ble to distinguish the training effect from the genetic effect. Spawning

was not replicated for the stimulated and control broodstock to

address this issue, and it is common to observe strong genetic bases

for disease resistance in shellfish species.41–43 In conclusion, immune

memory phenomena have been demonstrated in clams in response to

injection of heat-killed bacteria, which could increase survival. The

response showed signs of specificity. The effect of training was

observed up to 7 days after the first exposure, but appears to be

transgenerational. Molecular mechanisms were identified involving

phagocytosis, ROS production, and induction of immune gene expres-

sion. The pattern of expression in these organisms appears to follow a

recalled response profile (Figures 1 and 2).

3.3 | Mussels

3.3.1 | Biotic factors and enhancement of immune
capacities

Recent studies on mussels have attempted to go beyond the simplistic

classification of their immunity as non-adaptive and unspecific. The

molecular response of mussels after two exposures to Vibrio tasma-

niensis LGP 32 (formerly named Vibrio splendidus LGP32) was explored

(Table 1).143 The mussels were first exposed to a sub-lethal dose of

live V. tasmaniensis (107 UFC/mL), followed by 14 days of rest and a

second exposure to a non-lethal dose of the same pathogen. The

RNA-seq analysis of haemocytes revealed that the number of differ-

entially expressed genes (DEGs) was significantly lower after the sec-

ond infection compared with the first, indicating a stronger response

to the bacteria during the first encounter. Genes related to pathogen

recognition (perlucin-like protein), and the killing and sequestration of

invading pathogens (spore cortex-lytic enzyme or henna protein),

reached their highest expression levels after the first infection and

decreased as the experiment progressed and the second stimulation

occurred. Additionally, a set of modulated genes was identified that

either increased (primed genes), maintained or decreased (tolerised

genes) expression in the context of reinfection. These genes and their

functions suggest that haemocytes were activated to control and

resolve the inflammatory response, thereby avoiding subsequent

DNA damage and cell death. Furthermore, some key immune pro-

cesses, such as apoptosis or ROS production were clearly contained

or reduced when comparing the second exposure with the first one.

This suggests either an immunological tolerance or an immune shift

profile of mussel immunity in case of reinfection with the Gram-

negative bacteria V. tasmaniensis LGP32.143 Whether tolerance should

be considered as a response to immune training or not is up for

debate. Some studies have interpreted the tolerance phenotype as a

compensatory mechanism that results in a reduced response to a sec-

ondary stimulus, thus avoiding inflammatory damage.81 Research on

Mytilus galloprovincialis (Lamarck, 1819)143,144 indicates that these ani-

mals undergo a reprogramming of immune and stress-related genes.

This reprogramming may help prevent damage and excessive

responses, ultimately leading to acclimatization to situations of infec-

tion or exposure to contaminants. Given that these animals are filter-

feeders that continuously internalize particles from the environment;

this strategy is likely to be effective. This assessment is supported by

the fact that this species is known for being very resilient, with virtu-

ally no records of mortality in the natural environment.145

Mussels are a promising species for somatic diversification of

immune receptors and effector antimicrobial molecules, which could

support a trained immune response. They exhibit varied responses to

different pathogen species, as evidenced by their distinctive interac-

tions with Vibrio aestuarianus 01/032 and V. tasmaniensis LGP32.

Although mussels can overcome both infections, their responses dif-

fer.146 Some haemolymph molecules have been found to play a role in

the sensitive interactions between host haemocytes and specific path-

ogens.147,148 The mussel genome contains a diverse array of PGRPs,

including Toll-like receptors (TLRs), peptidoglycan receptors,

Fibrinogen-like receptors (FREPs), C1q proteins, and immune-related

lectins, which enable the recognition of potentially pathogenic species

with high specificity.149 Mussels exhibit a large number of immune-

related genes, as reviewed in Ref. 150, and this is highlighted by the

variability in their pan-genomic features, where a set of particularly

immune-enriched genes varies between individual mussel genomes

(this phenomenon is known as presence/absence of variation and has

been defined in the recently published Mussel Genome Project149).

3.3.2 | Abiotic stress and enhanced immune
capacities

The impact of environmental stress on molluscs has not been exten-

sively researched. However, in 2015, Aleng et al.151 demonstrated

that a non-lethal heat shock resulted in a trained status in Perna viridis

(Linnaeus, 1758), characterized by thermotolerance and an increased
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ability to resist Vibrio alginolyticus infections. A few years later,

M. galloprovincialis adults were exposed to microplastics (<5 mm diam-

eter; 4.6E+5 microbeads L�1)144 following the principle of repeated

exposure to non-self-molecules. Although not strictly a form of an

immune stimulation, the exposure was found to affect the immune

and stress response. The results showed that exposure to microplas-

tics resulted in the up-regulation of genes related to stress processes.

After the depuration and the second exposure, the expression of

those immune and stress-related genes decreased. This suggests that

mussels can establish alternative responses that promote acclimation

mechanisms to cope with subsequent stress.144 In a very similar

approach, mussels were repeatedly exposed to nanoplastics.152 This

exposure resulted in changes in haemocyte subpopulations, an

increase in haemolymph bactericidal activity, and transcription of cer-

tain immune-related genes. The authors concluded that these immune

parameters may shift to preserve homeostasis upon re-exposure to

nanoplastics and train animals to increase their robustness.152

In conclusion, immune memory phenomena have been demon-

strated in mussels in response to injection of live or heat-killed bacte-

ria or environmental stress for up to 2 weeks after exposure. The

specificity of the response was not investigated. Molecular mecha-

nisms have been identified involving phagocytosis, ROS production,

apoptosis and alteration of immune gene expression. The response in

these organisms appears to follow a tolerance or immune shift

response profile (Figures 1 and 2).

3.4 | Oysters

Studies on the Pacific oyster Crassostrea gigas (Thunberg, 1793),

recently renamed Magallana gigas (Salvi & Mariottini, 2016) provide

compelling evidence for the existence of immune training capacities in

oysters. Like mussels, oysters possess a large number of

immune-related genes characterized by high diversification and poly-

morphism.13,20,153 They also exhibit pathogen recognition specificity,

displaying distinct responses when infected with bacterial or viral

pathogens.154

3.4.1 | Antibacterial immune training

Several studies have demonstrated that injection of a heat-killed or

formaldehyde-killed bivalve bacterial pathogen V. splendidus can induce

an enhanced immune response upon a secondary challenge with the

same live pathogen155–159 (Table 1). The authors reported an increase

in the total haemocyte count, a higher number of newly generated hae-

mocytes and enhanced cell regeneration in the gills.155,156 These obser-

vations were also associated with an increase in the expression of

genes related to haematopoiesis after the secondary challenge suggest-

ing that haematopoiesis may play a role in antibacterial immune training

in the Pacific oyster. The gills and haemocytes showed improved

phagocytic activity, with a stronger and faster response upon secondary

challenge, 7 days after priming.155,156 Interestingly, the increased

phagocytosis of haemocytes appeared to be specific to V. splendidus, as

the enhanced response was not observed following a secondary chal-

lenge with other Vibrio species, marine yeast, or gram-positive bacte-

ria.155 These studies showed discrepancies in the regulation of

CgGATA3 and CgSOD genes in haemocytes (not regulated or down-

regulated)155,157 and gills (significant increase).156 More recently, Lian

et al.159 also demonstrated an enhanced immune response after 7 days

of training with the same heat-killed V. splendidus strain. This response

was associated with significant differences in the expression of Toll-like

receptor 3 (CgTLR3), myeloid differentiation factor 88-2 (CgMyd88-2),

and interleukin 17-1 (CgIL17-1) in the haemocytes, 6 h after the sec-

ondary stimulation. Interestingly, the response was associated with epi-

genetic modifications with an increase in histone H3 lysine

4 trimethylation (H3K4me3) enrichment at the promoter of the CgTLR3

gene. These results suggest for the first time a role of histone modifica-

tions in oyster immune training. Additional studies are necessary to gain

a better understanding of the fundamental molecular mechanisms

involved and to elucidate the role of these tissues and cells in support-

ing immune training. Wang et al.158 enhanced the molecular compre-

hension of antibacterial immune training in oysters by performing a

global transcriptomic approach on haemocytes. They compared the

transcriptomic responses between a first exposure to heat-killed

V. splendidus and a second challenge with the same live bacteria, reveal-

ing a series of genes with a recall expression pattern. These genes were

associated with metabolic processes and immune-related pathways,

including recognition receptors such as TLRs. Interestingly, some DEGs

exhibited a higher basal expression level after the first stimulation,

which was linked to recognition receptors and signal molecules. This

set of genes could contribute to the initiation of an enhanced secondary

response. The MyD88 gene from the Toll pathway, and a potential NF-

κB target gene, CgTIMP, also showed long-lasting up-regulation, indi-

cating a role of this pathway in this phenomenon. However, this study

only focused on the common DEGs between the first and second stim-

ulation. Therefore, we lack information on specific molecular mecha-

nisms that could differ between both stimulations and indicate a shift

between responses, which could also contribute to the enhanced

immune response. Although the aforementioned studies represent a

breakthrough in demonstrating the existence of antibacterial immune

training in oysters, the impact on survival was not investigated in these

different trials. The use of a Vibrio strain isolated from moribund scal-

lops, which is likely non-pathogenic to oysters, may have hindered the

evaluation of this aspect. Furthermore, the stimulation time did not

exceed 7 days. This period should be extended to observe whether

these patterns could be maintained longer in order to evaluate the

duration of memory.

However, more recent studies have also tested the induction of

immune training responses following a 24-h immersion in formalin-

inactivated or live pathogenic V. alginoluticus.160 If pre-exposure to

live bacteria didn't affect survival, formalin-inactivated bacteria

induced a significant increase in survival 7 days after exposure (from

92.5% to 100% survival). This response was associated with lower

levels of ROS after priming and a peak in ROS levels 10 days after

challenge. The authors also tested the transmission of the phenotype
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to the next generation. Although larvae from trained animals showed

greater survival 12 days after fertilization following infection with a

wide range of Vibrio species, these larvae also suffered massive mor-

tality 6 to 10 days after fertilization. This observation raises the ques-

tion of the application of a selection filter that may have biased the

results.

3.4.2 | Antiviral immune training

Several studies have also reported antiviral immune training capacities in

C. gigas26,88,161–168 (Table 1). These studies used a viral mimic, the syn-

thetic double-stranded RNA molecule called poly(I:C), to induce an anti-

viral immune state that protects oysters from infection by the ostreid

herpes virus OsHV-1 μVar. This virus is a triggering pathogen of the

Pacific Oyster Mortality Syndrome (POMS), which is currently causing

mass mortalities worldwide. The authors demonstrated that poly(I:C),

either by injection or bath treatment, could significantly improve long-

term protection up to 5 months after primary exposure, increasing oyster

survival when faced with OsHV-1 μVar during experimental infections or

an environmental disease outbreak.162 This protection was shown to be

specific to antiviral protection. Primary exposure to heat-killed Vibrio

bacteria failed to induce protection against OsHV-1 μVar, and poly(I:C)

did not provide any protection against a secondary V. tasmaniensis infec-

tion.162,166 The induction of antiviral immune training seemed to involve

the activation of nucleic acid signalling pathways, which are highly con-

served in the C. gigas genome.20,26 Poly(I:C) and other double- and

single-stranded RNAs have been shown to increase survival.162,169 While

training has been shown to induce the expression of many conserved

antiviral genes,164,166,169 a whole-animal transcriptomic approach has

provided further insight into the molecular pathways involved in this

response.88 The response is characterized by a sustained up-regulation

of immune and antiviral genes, particularly genes involved in IFN-like and

Toll/NF-kB pathways and apoptosis, which could play a role in the sub-

sequent control of viral infection. This pattern of response suggests that

the training relied on pre-conditioning the oyster immune system. In

addition to the sustained response, this study reveals other minor gene

expression patterns (recalled, shifted), suggesting that the mechanisms

behind training may be more complex than previously believed. Further-

more, genes with metabolic and epigenetic functions have been identi-

fied in trained oysters. Based on studies of trained mechanisms in

mammals and plants,53,170 epigenetic modifications may explain the

observed sustained gene expression pattern and immune protection.

In C. gigas, antiviral immune training also seems to protect oysters

across generations.161,165 Offspring of females trained with poly(I:C)

3 days before spawning exhibited enhanced survival capacities when

exposed to OsHV-1 μVar.161,165 This improved survival could not be

explained by differential expression profile in the offspring of trained

oysters compared with controls. This led the authors to suggest that

the enhanced protection may be due to maternal provisioning of anti-

viral compounds (mRNAs encoding antiviral proteins) in the eggs or

reflect epigenetic reprogramming mechanisms. The long-term

persistence of the enhanced immune capacities in the offspring needs

to be further investigated.

3.4.3 | Environmental stress and enhanced immune
capacities

As filter feeders, bivalves evolve in a rich microbial environment with

pathogenic and commensal microorganisms that challenge their

immune system. This constant interaction challenges their immune sys-

tem, which may have led to the evolution of immune training mecha-

nisms.171 Determining the extent to which the natural oyster

environment and its microbial content drive immune training would be

informative. In mammals and arthropods, commensal microbiota has

been shown to shape immune capacities in early life stages and have a

systemic effect on the immune response, inducing a form of trained

immunity and enhanced resistance to a wide range of unrelated

pathogens.172–176 These findings are reminiscent of the evidence for

symbiont-mediated priming, recently reviewed in Refs. 78,177. In

C. gigas, a recent study showed that larval exposure to a non-infectious

environmental microbiota in the laboratory could protect against

POMS, both within and across generations.178 This enhanced immune

competence was supported by a long-term reprogramming of immune

gene expression and changes in epigenetic marks.178 Enhanced immune

capacities were notably correlated with differential expression of con-

served PGRP (lectins, scavenger receptors TLR, RLR, macrophage

receptor), innate immune pathways (IFN-TLR-JAK/STAT pathways),

and antimicrobial effectors (TNF, proteinases, SOD, interferon-

stimulated genes, AMPs). This systemic effect of microbial stimulation

conferring protection against a viral disease has also been demonstrated

in other vertebrate or invertebrate models.173–175,179 Interestingly, one

study also reported that oysters naturally exposed to a POMS episode

in the environment were less susceptible to OsHV-1 21 months

later,180 suggesting a role of immune training in the development of

resistance to the disease in the environment.

Regarding abiotic factors, oysters (as sessile organisms) are

exposed to constant variations in environmental conditions and espe-

cially to thermal stress. Recent studies have shown that high tempera-

tures and harsh environments inhibit the progression of OsHV-1 μVar

infection and promote better survival through transcriptomic

changes.181–183 These results suggest that environmental factors

could also train immunity at the gene expression level to increase the

overall robustness and survival of animals against pathogens.

In conclusion, immune memory phenomena were demonstrated

in oysters in response to injection or immersion with heat-killed bac-

teria, inactivated virus or viral mimic, environmental microbiota, or

environmental stress that could increase survival. The response

showed no evidence of specificity. The effect of training was

observed for up to 5 months after the initial exposure and appears to

be transgenerational. Molecular mechanisms have been identified

involving phagocytosis, ROS production, apoptosis, and the modifica-

tion of the expression of many immune genes, but also modifications

16 MONTAGNANI ET AL.
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of epigenetic marks. The response in these organisms appears to fol-

low a sustained response profile (Figures 1 and 2).

4 | TRAINED IMMUNITY AS A DISEASE
CONTROL STRATEGY: RESEARCH
PROSPECTS AND POTENTIAL LIMITATIONS

In recent years, these growing number of studies have revealed a new

aspect of the immune capacities of cultured marine molluscs. These

studies collectively demonstrate that previous exposure to heat-killed

or sub-lethal doses of pathogens, environmental microbiota, and

microbial-derived compounds can enhance immunity or provide

greater protection against future infections. The studies revealed

common and distinct features of protection, mechanisms, specificity,

or duration, depending on the tissue explored, immune markers, and

modes of stimulation used (Table 1 and Figure 2). They also revealed

that immune training responses can be as diverse as the species stud-

ied, with evidence for either recall, immune shift, sustained, or even

tolerance types of responses (Figure 1). Although more reports are

emerging on this topic, the cellular and molecular mechanisms behind

these responses in marine molluscs are not yet fully understood and

remain mostly speculative (see for review Refs. 54,184). The authors

have highlighted the functional role of phagocytosis (abalones, oys-

ters), effects on haemocyte populations (abalones, mussels, oysters),

apoptosis (mussels, oysters), oxidative stress (oysters, mussels), and

the involvement of multiple immune genes from recognition recep-

tors, conserved signalling pathways (IFN-like, Toll/NF-κB pathways),

cytokines, and effectors (AMPs; Table 1). These findings are consis-

tent with studies in snails, insects, and mammals where trained immu-

nity leads to more effective antimicrobial responses. This involves

phagocytosis, modifications in the density of circulating immune cells,

increased cytokine and ROS production, and the involvement of the

Toll signalling pathway.53,114,185–189

The combined data allow us to improve our knowledge of mollus-

can immune capacities, and to consider new strategies for disease miti-

gation in marine mollusc aquaculture. Table 1 highlights the

discrepancies between studies exploring these phenomena and illus-

trates the need to adopt common experimental schemes to draw com-

mon or specific patterns between species. In the following sections, we

present a framework for future research aimed at developing trained

immunity-based applications and addressing its potential limitations

(Figure 3). We discuss issues and propose ways to understand (i) how

trained immunity can be induced and implemented in aquaculture sys-

tems, (ii) the underlying mechanisms of this memory trait, (iii) its poten-

tial limitations, and (iv) associated socio-economic issues.

4.1 | Demonstrating and implementing immune
training

Various methods have been used to demonstrate trained immunity in

invertebrate species, particularly using inactivated bacteria, viruses,

non-pathogenic bacteria, or microbial-derived compounds as training

agents. While trained immunity appears to be a conserved property in

molluscs, it may not be relevant to all pathogen interactions or all mol-

lusc species. These capacities may depend on life histories and the co-

evolution of host–pathogen interactions. Therefore, the choice of

immuno-stimulant used to test the phenomenon may be crucial for its

detection. Trained immunity may be more likely to be detected when

exposed to natural pathogens and using natural routes of infection.

Studies have also shown that various factors can influence the out-

come of immune training and should be considered when comparing

results between species or methodologies. The susceptibility to path-

ogens and immune competence in marine molluscs can vary depend-

ing on age, genetics, feeding habits, and environmental factors, as well

as sex, circadian cycle, or the presence of other infectious agents or

symbionts.185

To fully characterize a ‘trained state’ in different mollusc spe-

cies, it is important to consider the various markers. Survival against

natural pathogens as well as pathogen loads after training should be

systematically assessed. It is also important to study immune capaci-

ties in different genetic backgrounds to determine whether different

populations respond similarly to immune stimulation. As trained

immunity appears to depend on the specificity and longevity to rec-

ognize and ‘remember’ pathogens previously encountered, it is cru-

cial to investigate the specificity and persistence of protection over

time. Some studies have reported non-specific protective effects.

When invertebrates (crustaceans, insects) were injected with an

inactivated pathogen or its derived elements, this treatment could

confer increased protection against other pathogens (cross-protec-

tion).51,190 This broad response may be advantageous in dealing with

polymicrobial or emerging diseases. As for the duration of protec-

tion, immune training has been shown to persist throughout the life

of the animal and across generations. Studies on insects have shown

that the acquisition of training capacities can depend on a specific

set point and time of exposition, suggesting higher survival benefits

when trained early in life.191,192 Early development is recognized as

a window of vulnerability and opportunity that can affect the devel-

oping immune system and lay the foundation for lifelong immu-

nity.175,176,193,194 Furthermore, there is compelling evidence that

early life environments can induce long-lasting changes in the

immune system of offspring and have critical impacts on health and

disease.195 Early life stages may thus represent a critical window to

imprint the immune system with long-lasting protection from

disease.196

After establishing the potential to induce trained immunity,

the next step towards application is to consider how to produce

and expose animals to training agents on a farming scale. The opti-

mization of training induction should evaluate the process of

pathogen inactivation, the optimal dosage, and the delivery

method. All of these parameters have the potential to affect the

immunogenicity of the training agent, its application, and the effi-

ciency and durability of the induced training response. For biose-

curity reasons, it is recommended to use inactivated natural

pathogens or microbial-derived elements. A recent study showed
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that a wide range of potential inactivation methods could be used

to induce antiviral immune training in oysters.197 In addition, it

could be necessary to identify the immunogenic fractions

(e.g., proteic or nucleic acid components of pathogens) of the

training agent, which could be more easily produced and pre-

served over time. Large-scale methods of treatment should also

be investigated. If the majority of training experiments performed

in the laboratory were carried out by injecting the animals (filing

the shells or after anaesthesia), this method of administration

would be difficult to apply on a large scale. Early immune training

would greatly benefit future applications in aquaculture, espe-

cially when batch exposition through immersion is more practical.

For example, several dozens of oysters can produce hundreds of

millions of progenies in commercial hatcheries. Although this is a

very large number of progenies, it represents a relatively small

volume in litres. Investigating trained immunity inheritance over

generations could also be a key asset to produce large quantities

of trained progenies. Implementing this method in cultured and

hatchery-reared animals would be advantageous in terms of prac-

ticality, food safety, and ethics.

4.2 | Understanding and characterizing trained
immunity mechanisms

Studies on the molecular and cellular foundations of trained

immunity in invertebrates indicate that its mechanistic underpin-

nings might be as diverse as the host–pathogen systems and

forms of immunological memory.34,36 These systems may have

co-evolved in response to environmental conditions and cost–

benefit trade-offs. They could also be the result of different

immune strategies that are not necessarily genetically related but

serve a similar general function, allowing individuals to learn from

their own immunological experiences. Investigating the molecular

and cellular underpinnings of trained immunity could help deter-

mine whether the innate immune response of marine molluscs is

F IGURE 3 A proposed framework for the development of trained immunity investigation and application in cultured marine molluscs.
Schematic representation of the different steps proposed to access a comprehensive view of trained immunity in marine molluscs to help develop

new strategies for disease mitigation (from laboratory to field). We will need to investigate several species and use a transdisciplinary approach to
go from evidencing these phenomena to understanding all its possible limitations to warrant a sustainable development of aquaculture.

18 MONTAGNANI ET AL.

 17535131, 0, D
ow

nloaded from
 https://onlinelibrary.w

iley.com
/doi/10.1111/raq.12906 by C

ochrane France, W
iley O

nline L
ibrary on [02/05/2024]. See the T

erm
s and C

onditions (https://onlinelibrary.w
iley.com

/term
s-and-conditions) on W

iley O
nline L

ibrary for rules of use; O
A

 articles are governed by the applicable C
reative C

om
m

ons L
icense



a true adaptive response or as some authors have suggested,

‘just’ due to a ‘loitering’ immune response.186 Studying these

mechanisms will also help to identify cellular, molecular, meta-

bolic, or epigenetic biomarkers of a trained phenotype that could

predict the probability of survival and provide indicators of effi-

cient training in populations.

Recently developed cutting-edge ‘omics’ technologies could

be used to perform integrative approaches and to obtain a compre-

hensive picture of the mechanisms supporting within-generational

or trans-generational trained immunity. These approaches could

help to envision the nature of the training response, from receptors

to effectors that mediate the protection phenotype, but also to

identify original or conserved trained responses and immune fac-

tors supporting them. Depending on the training agent and

immune pathways involved, diverse responses are likely to be iden-

tified.185 The relative impact of the up-regulation of immune genes

or through the poising of the enhanced response can be deci-

phered. To this end, research on trained immunity must investigate

and compare the basal activation state during the initial stimulation

and the response developed after the removal of the initial stimula-

tion. Recent studies on several molluscan species have shown that

invertebrates have plastic immune effectors that can provide an

efficient and specific response to pathogen exposure. In particular,

numerous studies have suggested a role for proteins bearing immu-

noglobulin superfamily domains like DSCAMS or FREPs that func-

tion as hypervariable PGRPs.119,198 Those candidate proteins have

been identified in different bivalve species and transcriptomic

approaches should help to characterize their role in trained

immunity.32,199

In contrast to ‘classical’ adaptive immune memory, trained

immunity is not antigen-specific. Instead of being mediated

through gene rearrangements, it involves epigenetic and metabolic

reprogramming. The rapidly growing fields of epigenetics and

metabolomics will allow to further investigate these mechanisms in

invertebrates and to determine whether they can target specific

immune pathways and cells. Although immune cells have been

shown to play a role in trained immunity, particularly in verte-

brates, evidence for their role in the induction and long-term stor-

age of memory information in invertebrates is still lacking and

requires further investigation. The recent single-cell RNAseq tech-

nology should help determine whether trained immunity can differ-

entiate or activate specific haemocyte populations, as well as its

impact on cellular functions. The use of proven techniques, such as

the adoptive transfer of immune cells and the study of cellular

activities (phagocytosis) should also help to decipher the cellular

mechanisms and cell types that support memory. Haemocytes are

the cells of choice to investigate memory carriers, but the impact

of training in other organs and cell tissues should not be over-

looked. In mammals, trained immunity depends on the reprogram-

ming of bone marrow immune cells (called central trained

immunity) but also on functional changes in peripheral long-lived

immune cells or non-immune epithelial and endothelial cells (called

peripheral-trained immunity).53 Different tissues may exhibit

varying responses and susceptibility to pathogens and damage,

resulting in different immune reactions.

Elucidating the mechanisms of trained immunity could help to

design multiple strategies to induce or enhance training by applying

biological modifiers that regulate specific immune, metabolic, or epi-

genetic pathways.

4.3 | Potential limitations of trained immunity

Before implementing trained immunity-based strategies in farms, sev-

eral potential issues should be addressed.

The potentially profound effects of trained immunity on cellu-

lar and metabolic mechanisms and other physiological responses

raise the question of possible trade-offs between trained immunity

and other physiological traits. Long-lived organisms are likely to

face repeated exposure to the same or similar pathogens. There-

fore, sustained immune protection and an overall increase in host

defence capacity should be beneficial and provide a survival advan-

tage. Despite its benefits in the context of infection, long-term

activation of the innate immune system may be a double-edged

sword, inducing maladaptive and detrimental effects. Moreover,

the phenotypic traits that benefit an organism during one develop-

mental stage may have negative consequences in subsequent

stages of life. This is especially true for molluscs, whose develop-

mental stages can vary greatly in form, physiology, and environ-

mental conditions. It has been suggested that trained immunity

mechanisms may contribute to the pathogenesis of auto-

inflammatory and/or autoimmune diseases in vertebrates.53 In

invertebrates, studies have suggested potential trade-offs between

training response and various fitness traits, notably nutrient-

demanding processes, such as reproduction, larval development, or

other immune defences.61,200,201 In oysters, enhanced immune

capacities in larvae from poly(I:C)-treated females seem to display

trade-offs with fitness traits. Transgenerational training seems to

impair growing capacities and impact the oyster microbiome. These

results call for further research on the effects of trained immunity

on physiological responses.168 This trade-off issue should be con-

sidered to understand the adaptive significance of these mecha-

nisms and to anticipate potential limitations for future applications

in cultured molluscs.

In addition, previous studies in invertebrates have shown that

immune training induction is not restricted to pathogen exposure but

can also be modulated by a wide range of environmental factors,

including non-pathogenic microbes62,172,178 and environmental stress

conditions.62–64 A question arises as to whether various natural envi-

ronments and their microbial content (commensal non-pathogenic

microbes or sub-lethal exposure to pathogens) may influence the

acquisition of a trained phenotype or the efficiency of protection

strategies for animals farmed in the open environment. Cross-talk

between immune pathways has indeed been reported, where stimula-

tion by one class of pathogen influences the response to

another.62,172 Studies in vertebrates have also reported impaired
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antiviral immunity in the lung after manipulation of commensal bacte-

ria.174 In oysters, early exposure to environmental microbiota has

been shown to durably train the immune response and to increase

resistance to a polymicrobial disease.178 It could be speculated that

commensal bacteria modulate responsiveness to pathogens as well as

trained capacities and should be further investigated.

Trained immunity could also have ecological and epidemiological

impacts by modifying host–pathogen interactions and co-evolution. It

can alter epidemiologically relevant parameters such as disease-

induced mortality and recovery from infection. Additionally, it can

impact pathogen shedding rates, transmission probabilities, and the

persistence of diseases in wild and cultured populations.201–203 Theo-

retical models have tried to assess the impact of within-generational

and trans-generational trained immunity on the evolutionary ecology

of host–pathogen interactions by predicting their effects on disease

prevalence, but also on the age structure and population dynamics of

insects.204 The developed interaction models suggest that immune

training may or may not affect pathogen persistence and disease

dynamics under different scenarios. Epidemiological studies in human

populations have shown that the effects of non-specific protection

induced by vaccination could last for over 5 years.112 The effects of

trained immunity on host–pathogen interactions and disease dynam-

ics could significantly influence trained immunity-based strategies and

their implementation in farms. To address how disease can be influ-

enced by control strategies, we need to develop data-driven epidemi-

ological models that account for the trained status. These models

should simulate the impact of training on disease transmission dynam-

ics and the output of implementing protection strategies in mollusc

farms. On the one hand, trained immunity should lead to a reduction

in pathogen circulation in the environment, inducing a virtuous circle.

On the other hand, sup-optimal protection could negatively influence

disease dynamics in populations. Studies on adaptive immunity have

shown that imperfect or ‘leaky’ vaccination can increase disease prev-

alence and microbial virulence evolution. It is crucial to prevent these

situations from occurring.

4.4 | Socio-economic challenges of solutions based
on trained immunity

Trained immunity could significantly contribute to sustainable marine

mollusc aquaculture by providing prophylactic approaches to manage

disease impact on socio-ecological systems. These emerging tech-

niques could therefore lead to major changes in farming practices and

the organization of the aquaculture sector. In this context, the socio-

anthropological and socio-economic aspects of this research will be of

great importance.

According to the sociology of innovation,205 one of the main

obstacles to technological innovation is its appropriation by the popu-

lation. This challenge is even greater when changes affect the living

world.206–208 Biotechnological developments can generate controver-

sies that last long after their implementation in the market.209 These

controversies do not only involve ethical issues related to the

domestication or artificialization of the living world but also indirect

socio-economic impacts such as market structures and the use of ter-

ritories (e.g., professional and recreative fisheries, tourism).210,211 In

the case of pathogen control in particular, the controversies surround-

ing biotechnological solutions such as vaccination or the use of antibi-

otics illustrate the potentially irrational questions that may arise from

the lack of involvement of various stakeholders.

Implementing trained immunity-based solutions in the aquacul-

ture sector is not only about gaining acceptance by highlighting the

positive outcomes of this technique (improved biosecurity, fewer

infected animals transmitting the disease, less impact on the environ-

ment) and increasing the control and prevention of pathologies.

Instead, scientists need to rethink their approach by involving various

stakeholders (from the general population, to public institutions, to

farmers and aquaculture farmer organizations) in the early stages of

the technological innovation process and involving them in the selec-

tion of the most suitable solutions that match their specific needs and

resources. Stakeholders, with their diverse backgrounds, are increas-

ingly aware of the complexity of environmental issues and more

involved in aquaculture policy-making and management. They are

rightfully demanding safer products and coherent global solutions.

Their knowledge is a valuable resource for developing innovative solu-

tions and promoting lasting changes in perception and behaviour.

To support the development of technologies in local aquacultural

socio-ecological systems, researchers can develop a hybrid network.

This network would be composed of aquaculture professional organi-

zations (such as shellfish farming committees and professional hatch-

ery associations), shellfish farming facilities, health and veterinary

institutions, and policymakers who follow the steps identified by

actor-network theory (Problematization, Interest, Enlistment, and

Mobilization).212 By doing this, they can create and maintain consen-

sus when controversies arise and ensure the naturalization213 of nov-

elty within the various collectives concerned. This may require

modifying the initially planned research agendas to meet stakeholder

expectations or to consider unexpected factors within aquaculture

socio-ecosystems resulting from the application of new technologies,

To achieve this, it is necessary to engage with all stakeholders in order

to support the development of these innovations and to address the

questions and concerns of producers and consumers.

5 | CONCLUSIONS

Over the past two decades, it has become increasingly clear that

marine molluscs exhibit incredibly plastic immune responses and

that their innate immune system also retains elements of immune

memory. Although significant progress has been made in discovering

trained immunity capacities in marine molluscs, this review has

highlighted the scarcity of studies considering the recent emergence

of these concepts in these species. Understanding this novel aspect of

immunology is crucial in light of the increasing epizootic disease out-

breaks currently affecting marine invertebrates, for which no treat-

ments are currently available. A trained immunity-based strategy
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could be a viable alternative or complement to current genetic selec-

tion strategies,214 with the potential for with a possibility of rapid

implementation to combat future emerging diseases. This review also

emphasizes the need for more comprehensive information in several

grey areas. There is still much to learn about how the innate immune

system of marine mollusc acquires memory, both within and across

generations. We need to understand all the factors that influence its

effects, its relationship with animal fitness, and its impact on epidemi-

ology. Future research will shed light on the adaptive strategies and

evolutionary history adopted by different species to control patho-

gens. There is still a long way to go before trained immunity can be

applied on a large scale in marine molluscs. However, recent evidence

of the development of a vaccination strategy in insects215 and the

potential for vaccine-like approaches in shrimps (see Ref.216, for

review) pave the way for future applications in other invertebrates.

We anticipate that this field of research will represent an important

new approach for developing more efficient prophylactic measures

and ensuring sustainable and environmentally sound disease manage-

ment in marine mollusc aquaculture.
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