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Polynomial Volterra processes

Eduardo Abi Jaber∗ Christa Cuchiero† Luca Pelizzari‡ Sergio Pulido§

Sara Svaluto-Ferro¶

Abstract

We study the class of continuous polynomial Volterra processes, which we define
as solutions to stochastic Volterra equations driven by a continuous semimartingale
with affine drift and quadratic diffusion matrix in the state of the Volterra pro-
cess. To demonstrate the versatility of possible state spaces within our framework,
we construct polynomial Volterra processes on the unit ball. This construction is
based on a stochastic invariance principle for stochastic Volterra equations with
possibly singular kernels. Similarly to classical polynomial processes, polynomial
Volterra processes allow for tractable expressions of the moments in terms of the
unique solution to a system of deterministic integral equations, which reduce to a
system of ODEs in the classical case. By applying this observation to the moments
of the finite-dimensional distributions we derive a uniqueness result for polynomial
Volterra processes. Moreover, we prove that the moments are polynomials with
respect to the initial condition, another crucial property shared by classical polyno-
mial processes. The corresponding coefficients can be interpreted as a deterministic
dual process and solve integral equations dual to those verified by the moments
themselves. Additionally, we obtain a representation of the moments in terms of
a pure jump process with killing, which corresponds to another non-deterministic
dual process.
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1 Introduction

Polynomial processes in finite dimensions, introduced in [28] and [40], constitute a class of
time-homogeneous Itô-semimartingales which are inherently tractable: conditional mo-
ments can be expressed through a deterministic dual process which is the solution of a
linear ODE. This is the so-called moment formula. They form a rich class that includes
Wright-Fisher diffusions ([48]) from population genetics, Wishart correlation matrices
([9]), and affine processes ([35]), just to name a few. Notably, polynomial diffusions offer
greater flexibility than affine diffusions, accommodating more general semialgebraic state
spaces, including in particular bounded state spaces; see [40] and [49] for a systematic
analysis. The computational advantages due to the moment formula in the polynomial
setting (see, e.g., [8] and [41]) have led to a wide range of applications, in particular in
population genetics and mathematical finance. Indeed, in population genetics dual pro-
cesses associated to moments and their interpretation in view of coalescent theory play
an important role: the Wright-Fisher diffusion with seed-bank component (see, e.g., [23]
and the references therein) is for instance an important example of a recently investigated
two-dimensional polynomial process in this field. In mathematical finance, polynomial
processes comprise a plethora of highly popular models, ranging from the famous Black
Scholes model over certain jump-diffusions to Jacobi-type processes, which have been
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used for stochastic volatility models, life insurance liability modeling, variance swaps,
and stochastic portfolio theory (see, e.g., [8, 22, 26, 39]).

All these models share a finite dimensional Markov property which sometimes may
not be adequate, for instance, for modeling volatility where path-dependence is crucial
(see, e.g., [25] and [45]). This has motivated the emergence of numerous models in the
literature based on stochastic Volterra equations, where the specification of the kernel
offers greater flexibility to align with market data ([5, 7, 34, 42, 44, 45, 52]). In particular,
the singular fractional kernel is important in view of rough volatility models [42]. To
obtain models such as the rough Heston model [36], the important class of affine processes
has been extended to the Volterra framework. In particular, existence and uniqueness of
solutions to the associated equations, invariance over certain domains, and formulas for
the Fourier-Laplace transform have been established within the affine paradigm, see e.g.,
[6, 32, 24]. Note that Volterra-type processes are not only used in the realm of volatility
modeling but also to model phenomena exhibiting short and long range dependence and
self-similarity. For instance, they have been applied in web-traffic [51, 57] and energy
markets (see, e.g. [12, 13]). In the latter, so-called Brownian semistationary processes,
introduced in [16], as well as volatility modulated Volterra processes, first considered in
[15], play an important role. All these processes can be embedded into the large class of
ambit processes, pioneered in [14] to model turbulence and tumour growth. We also refer
to the monograph [11] for a far reaching analysis of these processes.

In analogy to continuous affine Volterra processes as studied in [6], we shall define
continuous polynomial Volterra processes as solutions X of stochastic Volterra equations
driven by a continuous semimartingale Z depending on X in a way that resembles the
structure appearing in the classical framework. More precisely, Z has an affine drift
and a quadratic diffusion matrix in X. To derive moment formulas in this setting, we
draw inspiration from recent works on infinite-dimensional polynomial processes. While
there is already a vast literature on finite dimensional polynomial processes, a systematic
analysis of the infinite dimensional case was only recently provided in [29, 30, 27, 18].
The articles [29, 27] treat probability and non-negative measure-valued processes, which
include the famous Fleming-Viot and the Dawson-Watanabe superprocess (see [37] for an
introduction to superprocesses and [50] for measure-valued branching Markov processes).
To accommodate these and also function space valued processes, a common unifying
framework that establishes in particular the moment formula in a generic infinite dimen-
sional setting has been built in [30]. Related concepts have also been in considered [18]
and in [17].

Our work is the first systematic study extending the theory of polynomial processes
to the Volterra setting and contributes to the existing literature on Volterra processes in
multiple ways. In what follows, we describe the organization of the paper and our main
contributions.

In Section 2, we set the stage by defining continuous polynomial Volterra processes
and by recalling moment estimates and existence of solutions to the associated stochastic
Volterra equations from [6]. To illustrate the versatility of possible state spaces, even in
the Volterra case, we construct in Theorem 2.7 the first non-trivial example of a polyno-
mial Volterra process with possibly singular kernels that remains confined to the unit ball.
Notably, when restricted to the one dimensional case, our results provide the construc-
tion of Jacobi Volterra processes, see Corollary 2.8. This construction relies on a more
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general result in Theorem 5.1 showing existence of general Volterra processes confined
to the unit ball under structural assumption on the drift and diffusion coefficient of the
driving semimartingale Z. Note that solutions to Volterra equations that remain within a
convex set have so far been constructed and studied for domains with no curvature, such
as the non-negative orthant Rd

+, see [6, Theorem 3.6] and the extensions in [2, 10]. The
primary challenge in constructing a solution X that remains within a given convex set
with curvature arises from the potential singularity of the kernel. This singularity could
push the process X outside the domain, if the volatility does not vanish on the bound-
ary. This difficulty has already been observed in the construction of Volterra Wishart
processes [1, 32].

Section 3 is dedicated to an analysis of the moments of polynomial Volterra processes.
In particular, in Section 3.1 we establish an extension of the moment formula for polyno-
mial Volterra processes. This is the main moment formula in our work. It shows that the
moments are the unique solutions to a system of deterministic integral equations, which
reduce to a system of ODEs for classical polynomial diffusions; see Theorem 3.3. In the
terminology of [30] this formula corresponds to the bidual moment formula. In contrast
to the generic infinite dimensional framework of [30] we can here actually prove existence
and uniqueness of the system of deterministic integral equations. Using a variation of
constants technique, our arguments can be applied to deduce more explicit expressions
for the first and second-order moments and for all moments in the affine case, see Section
3.2. Moreover, we elucidate in Section 3.3 a crucial structural property, shared also by
classical polynomial diffusions, namely that the moments are polynomials with respect
to the initial condition. The corresponding coefficients can be interpreted as determin-
istic dual process and solve integral equations dual to those verified by the moments
themselves; see Theorem 3.8. In the terminology of [30] this corresponds to the dual mo-
ment formula, where we can again prove existence and uniqueness of the corresponding
equations (which had to be assumed in the general framework of [30]). Additionally, in
Section 3.4, we illustrate how our results and arguments can be applied to the moments
of the finite-dimensional distributions. Our considerations then also lead to a novel re-
sult regarding the uniqueness in law for solutions to stochastic Volterra equations in the
polynomial framework, as proved in Theorem 3.12.

In Section 4, we get inspiration from the work on classical Flemming Viot processes
and general infinite dimensional polynomial processes as considered in [30] to show that
the moments of a polynomial Volterra process can be expressed in terms of expectations of
a functional of a (finite dimensional) pure jump process with killing. Indeed, we consider
a function valued lift to the so-called Filipović space [38], denoted by B, and then apply
the ‘dual process’ approach. Denote the infinitesimal generator of the function valued lift
by A and consider polynomials f : B ×Rk → R, (λ, x) 7→ λ(x1) · · ·λ(xk). Then we show
that in the case of bounded kernels there exists a k-dimensional pure jump process with
killing, denoted by U , with generator L such that

Af(·, x)(λ) = Lf(λ, ·)(x). (1.1)

Modulo several technical conditions, e.g., stated in [31, Lemma A.1], it then holds that

Eλ0 [f(λt, x)] = EY0=x[f(λ0, Ut)]. (1.2)
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As the evaluation of λ at 0 corresponds to the Volterra process, we get a representation of
the kth moment by setting x = Y0 = 0 ∈ Rk. For the homogeneous case with linear drift
and volatility this formula is rigorously proved in Proposition 4.4 and Proposition 4.10
for the multivariate case. Since for λ0 ≡ X0 we have f(λ0, x) ≡ Xk

0 , we also see that
the kth moment of the Volterra process is a monomial of degree k in the initial value,
which is thus a special case of Theorem 3.8. For the general non-homogeneous case we
retrieve also a similar formula, see Remark 4.7. In this context, let us also mention
that the results of Section 3.3 can be seen from a similar duality point of view, here
with L corresponding to the dual operator in the terminology of [30], giving rise to a
system of deterministic PDEs. From a numerical perspective the jump representation
can sometimes have advantages as it is easy to simulate from a pure jump process and
then compute the right hand side of (1.2) via Monte Carlo.

Section 5 provides the proof of Theorem 5.1. Appendix A contains the main results
necessary to guarantee existence and uniqueness of solutions to the equations presented in
Section 3, namely the integral equations verified by the moments of polynomial Volterra
processes and by the coefficients in the expression as polynomial with respect to the initial
condition.

Notation: We denote polynomials on Rd of degree less than or equal to n by Poln(Rd).
N is the set of natural numbers and N0 = N ∪ {0}. For a multi-index α = (α1, . . . , αd),
with αi ∈ N0, we write |α| =

∑d
i=1 αi for the sum of its components. For a vector

x ∈ Rm, xi is its i-th coordinate. For a matrix A ∈ Rd×d, we denote by |A| =
√

Tr(A⊤A)
its Frobenius norm. Id is the d × d identity matrix. For any t ≥ 0, we use the symbol
Et to denote the conditional expectation given the σ-algebra Ft. We sometimes use the
convolution notation (f ∗g)(t) =

∫ t

0
f(t− s)g(s)ds for functions f and g, and (f ∗L)(t) =∫ t

0
f(t− s)L(ds) for a measure L.

2 Definition and existence of polynomial Volterra

processes

Fix a dimension d ∈ N and consider a filtered probability space (Ω,F , (Ft)t≥0,P), where
(Ft)t≥0 satisfies the usual conditions and F0 is the trivial σ-algebra on Ω. A continuous
polynomial Volterra process of convolution type is a d-dimensional adapted process X
with continuous trajectories solving a stochastic Volterra equation of the form

Xt = g0(t) +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs, t ≥ 0, (2.1)

where

• W is a d-dimensional Brownian motion,

• the initial condition g0 : R+ → Rd is in C(R+,Rd),

• the convolution kernel K : R+ → Rd×d is in L2
loc(R+,Rd×d),
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• the map b : Rd → Rd has components in Pol1(Rd), and σ : Rd → Rd×d is a continuous
map such that a(x) = σ(x)σ(x)⊤ has entries in Pol2(Rd). More precisely,

b(x) = b0 +
d∑

i=1

bixi, a(x) = A0 +
d∑

i=1

Aixi +
d∑

i,j=1

Aijxixj (2.2)

for some bi ∈ Rd and Ai, Aij ∈ Rd×d.

Observe that if all Aij = 0, X is an affine Volterra process as in [6]. As for stochastic
differential equations, we speak of weak solutions to (2.1) whenever the filtered probability
space and the underlying Brownian motion are not fixed a priori and they are part of
the solution. In this case, with a slight abuse of terminology, we say that X is a weak
solution to (2.1).

If we define the d-dimensional semimartingale Z as

Zt =

∫ t

0

b(Xs)ds+

∫ t

0

σ(Xs)dWs, (2.3)

then the stochastic Volterra equation (2.1) can be recast as

Xt = g0(t) +

∫ t

0

K(t− s)dZs.

The following proposition provides a priori estimates on the moments of any solution
to (2.1).

Proposition 2.1. Let X be a continuous solution to (2.1). Then, for any p ∈ N and
T ≥ 0,

sup
0≤t≤T

E[|Xt|p] ≤ c (2.4)

for some constant c which depends only on sup0≤t≤T |g0(t)|, p, K|[0,T ], bi, Ai, Aij, and T .

Proof. The initial curve g0 is continuous and hence bounded on compacts. In addition,
by (2.2), the drift function b and the volatility function σ are continuous and have linear
growth. Therefore, to prove this result we can follow the same argument as in the proof
of [6, Lemma 3.1].

The following theorem guarantees the existence of solutions to (2.1). The next as-
sumption is needed to state the result.

Assumption 2.2. There exists a constant γ ∈ (0, 2] such that
∫ h

0
|K(t)|2dt = O(hγ) and∫ T

0
|K(t+ h)−K(t)|2dt = O(hγ) for every T <∞.

Theorem 2.3 (Existence of polynomial Volterra processes). Suppose that Assumption 2.2
holds. Then, for any α < γ/2, (2.1) admits a weak solution X such that X − g0 has α-
Hölder continuous trajectories.
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Proof. This result is a consequence of [6, Theorem 3.4] and its proof, which can be
adapted to the framework of an initial continuous deterministic curve g0 instead of a
constant initial condition X0 ∈ Rd. The main difference is that the proof presented in [6]
relies on the existence of a resolvent of the first kind for the kernel K. This hypothesis is
not necessary because the same tightness argument to construct the weak solution in [6]
can be adapted by considering the integrated form of the equation (2.1)∫ t

0

Xsds =

∫ t

0

g0(s)ds+

∫ t

0

K(t− s)Zsds (2.5)

with Z as in (2.3) instead of the form L ∗ (X − g0) = Z with L the resolvent of the first
kind of K. The integrated form (2.5) of the stochastic Volterra equation (2.1), which
is suitable for stability results as illustrated in [2, Section 3], can be obtained using an
argument based on the stochastic Fubini theorem as shown in [2, Lemma 3.2].

Example 2.4. Assumption 2.2 is satisfied for the (possibly singular) fractional kernel
K(t) = tH−1/2 with H ∈ (0, 1). In particular, the corresponding polynomial Volterra
process (2.1) fails to be a semimartingale whenever H ̸= 1/2.

2.1 Polynomial Volterra processes on the unit ball

In this section, we construct polynomial Volterra processes (2.1), that remain in the unit
ball of Rd defined by

B = {x ∈ Rd : x⊤x ≤ 1}.

For the rest of this section, we will assume that the kernel K is scalar K : R+ → R,
and we use the so-called resolvent of the first kind, which is a measure L on R+ of locally
bounded variation such that

K ∗ L = L ∗K ≡ 1, (2.6)

see [43, Definition 5.5.1]. Some examples of resolvents of the first kind are given in [6,
Table 1]. A resolvent of the first kind does not always exist. For the main result of this
section, we need an additional assumption for the kernel.

Assumption 2.5. K is nonnegative, not identically zero, non-increasing and continuous
on (0,∞), and its resolvent of the first kind L is nonnegative and non-increasing in the
sense that s 7→ L([s, s+ t]) is non-increasing for all t ≥ 0.

Example 2.6. If K is completely monotone on (0,∞) and not identically zero, then
Assumption 2.5 holds due to [43, Theorem 5.5.4]. Recall that a function f is called
completely monotone on (0,∞) if it is infinitely differentiable with (−1)kf (k)(t) ≥ 0 for
all t > 0 and k ≥ 0. This covers, for instance, any constant positive kernel, the fractional
kernel tH−1/2 with H ∈ (0, 1/2], and the exponentially decaying kernel e−βt with β > 0.
Moreover, sums and products of completely monotone functions are completely monotone.

The next theorem provides the weak existence and uniqueness of a B-valued polyno-
mial Volterra process. The construction follows from a more general result for B-valued
stochastic Volterra equations given in Theorem 5.1.
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Theorem 2.7 (Existence and uniqueness of polynomial Volterra processes in the unit
ball). Fix a scalar kernel K : [0, T ] → R that satisfies Assumptions 2.2 and 2.5. Assume
that b and σ are such that

b(x) = b0 +Bx, σ(x) = c
√

1− x⊤xId1{x∈B}, x ∈ Rd,

where Id is the d× d identity matrix, c ∈ R, and b0 ∈ Rd and B ∈ Rd×d are such that

x⊤(b0 +Bx) ≤ 0 x ∈ ∂B. (2.7)

For any X0 ∈ B, there exists a unique continuous weak solution X to (2.1) such that
Xt ∈ B a.s. for every t ∈ [0, T ].

Proof. Straightfoward application of Theorem 5.1 and Theorem 3.12 below.

By restricting to the one-dimensional case, Theorem 2.7 allows the construction of
Jacobi Volterra processes on general compact intervals as shown in the next corollary.

Corollary 2.8. Let α1 ≤ α2, b ∈ [α1, α2], λ ≥ 0 and c > 0. Fix a scalar kernel
K : [0, T ] → R that satisfies Assumptions 2.2 and 2.5. Then, there exists a unique weak
[α1, α2]-valued solution to the equation

Yt = Y0 + λ

∫ t

0

K(t− s)(b− Ys)ds+ c

∫ t

0

K(t− s)
√

(Ys − α1)(α2 − Ys)dWs, (2.8)

Y0 ∈ [α1, α2], (2.9)

that we call Jacobi Volterra process on [α1, α2].

Proof. We note that in dimension d = 1 we have that B = [−1, 1]. In this case, the
specification of Example 5.2 yields an [−1, 1]-valued Volterra Jacobi process in the form

Xt = X0 +

∫ t

0

K(t− s)λ(b̃−Xs)ds+

∫ t

0

K(t− s)c
√

(1−Xs)(1 +Xs)dWs,

X0 ∈ [−1, 1],

for any b̃ ∈ [−1, 1]. Indeed, in this case it is straightforward to check that (2.7) is satisfied
since

xλ(b̃− x) =

{
λ(b̃− 1) ≤ 0 x = 1

−1λ(b̃+ 1) ≤ 0 x = −1.
(2.10)

Taking b̃ such that b = α2−α1

2
b̃+ α1+α2

2
we readily get that

Y =
α2 − α1

2
X +

α1 + α2

2

is a Jacobi Volterra process on [α1, α2] that satisfies (2.8).

Remark 2.9. In [40] the authors study stochastic invariance of polynomial diffusions,
that is solutions to (2.1) for the trivial kernel K ≡ 1, for more general state-spaces
E ⊆ Rd. In the case of E = B, choosing Q = Id and c = 0 in [40, Proposition 6.1]
essentially corresponds to Theorem 2.7 for the trivial kernel. In contrast with the diffusion
case, where a tagential diffusive behaviour of the volatility component σ is possible on
the boundary, here we restrict to vanishing volatility at the boundary. Because of the
possible singularity of the kernel at 0, we expect that any tangential diffusive behavior
of the volatility σ at the boundary will push the process outside the ball B.
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3 Moments of polynomial Volterra processes

Our aim is to find moment formulas for a continuous Volterra process X solving (2.1).
More precisely, we want to obtain formulas for expressions of the form

E[Xα
t ] = E[Xα1

1,t · · ·X
αd
d,t ], t ≥ 0, (3.1)

with α = (αi)
d
i=1 ∈ Nd

0 a multi-index. One of the difficulties to characterize these mo-
ments, compared to the classical framework when the kernel K is equal to Id, stems
from the fact that X is not necessarily a Markovian semimartingale. To circumvent this
complication, and inspired by previous works such as [3, 24, 47, 55], for each T ≥ 0, we
consider the process (indexed in time by t)

gt(T ) = g0(T ) +

∫ t

0

K(T − s)dZs, t ≤ T, (3.2)

for Z as in (2.3). The following lemma shows that we can control the moments of the
process g.

Lemma 3.1. Suppose that X is a continuous process solving (2.1) and define the processes
g as in (3.2). Then, for any p ∈ N and 0 ≤ T ≤ T ′,

E
[
sup

0≤t≤T
|gt(T )|p

]
≤ c (3.3)

for some constant c which depends only on sup0≤t≤T ′ |g0(t)|, p, K|[0,T ′], bi, Ai, Aij, and
T ′.

Proof. It is sufficient to prove the inequality (3.3) for p ≥ 2. Given T ≥ 0, thanks to the
Burkholder-Davis-Gundy and Jensen’s inequalities

E
[
sup

0≤t≤T

∣∣∣∣∫ t

0

K(T − s)σ(Xs)dWs

∣∣∣∣p] ≤ C E

[(∫ T

0

|K(T − s)|2|a(Xs)|ds
) p

2

]

≤ C

(∫ T

0

|K(t)|2dt
) p

2

sup
0≤t≤T

E[|a(Xt)|
p
2 ]

≤ C

(∫ T ′

0

|K(t)|2dt

) p
2

sup
0≤t≤T ′

E[|a(Xt)|
p
2 ]

(3.4)

for some constant C > 0. Similarly, multiple applications of Jensen’s inequality yield

E
[(

sup
0≤t≤T

∣∣∣∣∫ t

0

K(T − s)b(Xs)ds

∣∣∣∣)p]
≤ (T ′)

p
2

(∫ T ′

0

|K(t)|2dt

) p
2

sup
0≤t≤T ′

E[|b(Xt)|p].

(3.5)
Since the functions b and a have the form (2.2), (3.4) and (3.5) together with Proposi-
tion 2.1 yield (3.3).
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Notice that gT (T ) = XT and more generally

gt(T ) = Et

[
XT −

∫ T

t

K(T − s)b(Xs)ds

]
, t ≤ T, (3.6)

because – as a result of the proof of Lemma 3.1 above and in particular (3.4) – the process
Mt =

∫ t

0
K(T − s)σ(Xs)dWs, t ≤ T , is a martingale. Moreover, for each T ≥ 0, gt(T ) is

a semimartingale with dynamics

dgt(T ) = K(T − t)dZt = K(T − t)b(Xt)dt+K(T − t)σ(Xt)dWt, t < T. (3.7)

To study the moments of X in (3.1), we need to understand the behavior of more general
moments of the (infinite dimensional) processes g defined in (3.2). To this end, we consider
expressions of the form

m(p)(t, T1, . . . , Tp;w) = E

[
p∏

n=1

gin,t(Tn)

]
(3.8)

where p ∈ N, 0 ≤ t ≤ min{T1, . . . , Tp}, w = (in)
p
n=1 ∈ {1, . . . , d}p, and gin,t(Tn) is the in-

th coordinate of gt(Tn). If d = 1, we can omit the argument w and write m(p)(t, T1, . . . , Tp)
for p ∈ N. We shall use the convention m(0) ≡ 1.

Notice that
m(p)(t, t, . . . , t;w) = E[Xα(w)

t ] (3.9)

where α(w) is the multi-index given by αk(w) = #{n : in = k}, k = 1, . . . , d. In
particular, |α(w)| = p.

3.1 The main moment formula

The main result of this section is a characterization for the functions m defined in (3.8),
which in view of (3.9) determine the moments. More precisely, we will see in Theorem 3.3
below, that for some fixed level N , the vector-valued function

(t, T1, . . . , TN) 7→ {m(p)(t, T1, . . . , Tp;w) : p ∈ {0, . . . , N} and w ∈ {1, . . . , d}p} (3.10)

is the unique continuous solution to a specific integral equation. Referring to the termi-
nology of [30], this thus gives an existence and uniqueness result for the bidual moment
formula (which had to be assumed in the generic infinite dimensional setting of [30]). In
order to give a precise statement, we have to fix some notations. Given N ∈ N, we define
the set

I(N) = {(p, w) : p ∈ {0, 1, . . . , N} and w ∈ {1, . . . , d}p}. (3.11)

Let DN be the cardinality of the set I(N). Notice that DN = N + 1 for d = 1 and
DN =

∑N
p=0 d

p = (dN+1 − 1)/(d− 1) for d > 1. For T ≥ 0, let

D(N)
T = {(t, T1, . . . , TN) ∈ [0, T ]N+1 : t ≤ min{T1, . . . , TN}}, (3.12)

and let π be an enumeration of I(N). As we will see in Theorem 3.3 below, the function
in (3.10) belongs to the following space.
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Definition 3.2. Let X (N)
T be the space of RDN -valued bounded functions f on D(N)

T such
that the π(p, w)-th component fπ(p,w) only depends on the variables (t, T1, . . . , Tp) for any
(p, w) ∈ I(N), and fπ(0,∅) ≡ 1.

Given f ∈ X (N)
T , define the function M(N)

T f on D(N)
T as follows: (M(N)

T f)π(0,∅) ≡ 0,
and for (p, w) ∈ I(N) with 1 ≤ p ≤ N and w = (in)

p
n=1,

(M(N)
T f)π(p,w)(t, T1, . . . , TN) =

p∑
n=1

∫ t

0

e⊤inK(Tn − r)b0fπ(p−1,w−n)(r, (Tm)m ̸=n)dr

+

p∑
n=1

d∑
j=1

∫ t

0

e⊤inK(Tn − r)bjfπ(p,wj
−n)

(r, r, (Tm)m ̸=n)dr

+
∑

1≤n<m≤p

∫ t

0

e⊤inK(Tn − r)A0K(Tm − r)⊤eimfπ(p−2,w−n,−m)(r, (Tl)l ̸=m,n)dr

+
∑

1≤n<m≤p

d∑
j=1

∫ t

0

e⊤inK(Tn − r)AjK(Tm − r)⊤eimfπ(p−1,wj
−n,−m)(r, r, (Tl)l ̸=m,n)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t

0

e⊤inK(Tn − r)AjkK(Tm − r)⊤eimfπ(p,wj,k
−n,−m)(r, r, r, (Tl)l ̸=m,n)dr.

(3.13)

In (3.13), ei is the i-th canonical vector in Rd, w−n is the vector obtained by erasing
the n-th coordinate of w, w−n,−m is the vector obtained by erasing the n-th and m-th
coordinates of w, wj

−n is the vector whose first coordinate is j and the other coordinates

are given by w−n, and w
j,k
−n,−m is the vector whose first two coordinates are j, k and the

other coordinates are given by w−n,−m. Notice that thanks to the local square-integrability

of K the right side of (3.13) is well-defined for f ∈ X (N)
T and, moreover, M(N)

T f ∈ X (N)
T .

The following theorem provides formulas for the moments defined in (3.8). In view
of (3.9), this result also establishes relations between the moments of X in (3.1) and the
moments of the process g.

Theorem 3.3 (Main moment formula). Fix N ∈ N and T ≥ 0. Define m : D(N)
T → RDN

by mπ(0,∅) = m(0) ≡ 1, and for (p, w) ∈ I(N) with 1 ≤ p ≤ N , mπ(p,w)(t, T1, . . . , TN) =

m(p)(t, T1, . . . , Tp;w) as in (3.8). Then m ∈ X (N)
T (see Definition 3.2) and m solves the

integral equation

m(t, T1, . . . , TN) = m(0, T1, . . . , TN) + (M(N)
T m)(t, T1, . . . , TN), (t, T1, . . . , TN) ∈ D(N)

T ,
(3.14)

with M(N)
T as in (3.13). Furthermore, m is the unique solution in X (N)

T of (3.14) with

initial condition m(0, T1, . . . , TN), and m is continuous on D(N)
T .

Proof. To prove that m ∈ X (N)
T it is enough to show that m is bounded on D(N)

T . This
is a consequence of Hölder’s inequality and Lemma 3.1. Indeed, by Lemma 3.1, for any
in ∈ {1, . . . , d}, p ∈ N, and t ≤ Tn ≤ T ,

E[|gin,t(Tn)|p] ≤ E
[

sup
0≤t≤Tn

|gin,t(Tn)|p
]
≤ c

11



where c is constant depending only on sup0≤t≤T |g0(t)|, p, K|[0,T ], bi, Ai, Aij, and T .
We now prove (3.14). Clearly this equation holds by definition over the coordinate

π(0, ∅). We consider then (p, w) ∈ I(N) such that 1 ≤ p ≤ N and w = (in)
p
n=1. Itô’s

formula, together with (3.7), yields

d

(
p∏

n=1

gin,r(Tn)

)
=

p∑
n=1

(∏
m̸=n

gim,r(Tm)

)
dgin,r(Tn)

+
∑

1≤n<m≤p

( ∏
l ̸=n,m

gil,r(Tl)

)
d⟨gin,·(Tn), gim,·(Tm)⟩r.

(3.15)

The local martingale part in (3.15) is a true martingale thanks to (3.7), (2.2), the fact
that Xr = gr(r), and Lemma 3.1. The finite variation part can be written as

p∑
n=1

e⊤inK(Tn − r)b0

(∏
m̸=n

gim,r(Tm)

)
dr

+

p∑
n=1

d∑
j=1

e⊤inK(Tn − r)bjXj,r

(∏
m ̸=n

gim,r(Tm)

)
dr

+
∑

1≤n<m≤p

e⊤inK(Tn − r)A0K(Tm − r)⊤eim

( ∏
l ̸=m,n

gil,r(Tl)

)
dr

+
∑

1≤n<m≤p

d∑
j=1

e⊤inK(Tn − r)AjK(Tm − r)⊤eimXj,r

( ∏
l ̸=m,n

gil,r(Tl)

)
dr

+
∑

1≤n<m≤p

d∑
j,k=1

e⊤inK(Tn − r)AjkK(Tm − r)⊤eimXj,rXk,r

( ∏
l ̸=m,n

gil,r(Tl)

)
dr.

Since gin,r(r) = Xin,r, integrating on [0, t], taking expectation, using Fubini’s theorem
– which can be applied thanks to Lemma 3.1 – and by the definition of m in (3.8), we

12



obtain

m(p)(t, T1, . . . , Tp;w) =

p∏
n=1

gin,0(Tn)

+

p∑
n=1

∫ t

0

e⊤inK(Tn − r)b0m
(p−1)(r, (Tm)m ̸=n;w−n)dr

+

p∑
n=1

d∑
j=1

∫ t

0

e⊤inK(Tn − r)bjm
(p)(r, r, (Tm)m̸=n;w

j
−n)dr

+
∑

1≤n<m≤p

∫ t

0

e⊤inK(Tn − r)A0K(Tm − r)⊤eimm
(p−2)(r, (Tl)l ̸=m,n;w−n,−m)dr

+
∑

1≤n<m≤p

d∑
j=1

∫ t

0

e⊤inK(Tn − r)AjK(Tm − r)⊤eimm
(p−1)(r, r, (Tl)l ̸=m,n;w

j
−n,−m)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t

0

e⊤inK(Tn − r)AjkK(Tm − r)⊤eimm
(p)(r, r, r, (Tl)l ̸=m,n;w

j,k
−n,−m)dr.

(3.16)

This is precisely the coordinate π(p, w) of the identity (3.14), which concludes the proof

of (3.14). The uniqueness of solutions in X (N)
T of the integral equation (3.14) and the fact

that m is continuous on D(N)
T are a consequence of Corollary A.2 in Appendix A.

Remark 3.4. If we define the function

m(t, x1, . . . , xN) = m(t, t+ x1, . . . , t+ xN), (3.17)

for t, x1, . . . , xN ≥ 0 such that t+ xi ≤ T , i = 1, . . . , N . Then, Theorem 3.3 implies that
the function m is a mild-solution to the following non local PDE

∂tmπ(p,w)(t, x1, . . . , xp) = (∂x1 + · · ·+ ∂xp)mπ(p,w)(t, x1, . . . , xp)

+

p∑
n=1

e⊤inK(xn)b0mπ(p−1,w−n)(t, (xm)m̸=n)

+

p∑
n=1

d∑
j=1

e⊤inK(xn)bjmπ(p,wj
−n)

(t, 0, (xm)m ̸=n)

+
∑

1≤n<m≤p

e⊤inK(xn)A0K(xm)
⊤eimmπ(p−2,w−n,−m)(t, (xl)l ̸=m,n)

+
∑

1≤n<m≤p

d∑
j=1

e⊤inK(xn)AjK(xm)
⊤eimmπ(p−1,wj

−n,−m)(t, 0, (xl)l ̸=m,n)

+
∑

1≤n<m≤p

d∑
j,k=1

e⊤inK(xn)AjkK(xm)
⊤eimmπ(p,wj,k

−n,−m)(t, 0, 0, (xl)l ̸=m,n).

(3.18)

Indeed, this can be deduced using the change of variables Tn = t+ xn in (3.16) together
with the definition of the function m in (3.17).
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Remark 3.5. In the classical polynomial processes framework, where K = Id and g0 ≡
X0 ∈ Rd, the process g defined in (3.2) coincides with X, i.e. gt(T ) = Xt. Hence, in
this case, the function m in Theorem 3.3 does not depend on T1, . . . , TN . Consequently,
the function m defined in (3.17) does not depend on x1, . . . , xN and the PDE (3.18)
reduces to a linear ODE with constant coefficients. When d > 1, the dimension of this
linear ODE – which is DN = (dN+1 − d)/(d − 1) in the framework of this study – can
be reduced to

(
N+d
N

)
. This dimension reduction is possible because, as it can be seen

from (3.9), multiple w ∈ {1, . . . , d}p, 1 ≤ p ≤ N , yield the same moments of X. The
solution to this linear ODE can be expressed in terms of an exponential matrix. This
observation establishes a relation, when K = Id, between Theorem 3.3 and the classical
moment formula for polynomial processes as stated in [40, Theorem 3.1].

In the next subsection, using Theorem 3.3, we establish an alternative moment formula
using a variation of constants technique. This moment formula is useful to characterize
the first and second order moments of a polynomial Volterra process, and the moments
of affine Volterra processes, namely when Aij = 0 for all i, j in (2.2).

3.2 Moment formula using a variation of constants technique

Let B be a matrix with columns equal to b1, . . . , bd and let RB be the resolvent of −KB,
i.e. the solution to the linear equation KB ∗RB = KB+RB. Thanks to [6, Lemma 2.5],
(2.1) is equivalent to the integral equation

Xt = g0(t)−
∫ t

0

RB(t− s)g0(s)ds+

(∫ t

0

EB(s)ds

)
b0 +

∫ t

0

EB(t− s)σ(Xs)dWs

where EB = K − RB ∗K. Applying Theorem 3.3 to this reformulation of the stochastic
Volterra equation yields alternative moment formulas. Indeed, let

g̃t(T ) = g̃0(T ) +

∫ t

0

EB(T − s)σ(Xs)dWs = Et[XT ], t ≤ T, (3.19)

where g̃0(t) = g0(t)−
∫ t

0
RB(t− s)g0(s)ds+

(∫ t

0
EB(s)ds

)
b0. Define further, for (p, w) ∈

I(N), with 1 ≤ p ≤ N and w = (in)
p
n=1,

m̃(p)(t, T1, . . . , Tp;w) = E

[
p∏

n=1

g̃in,t(Tn)

]
.
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Adopt as before the convention m̃(0) ≡ 1. Theorem 3.3 shows that for (p, w) ∈ I(N), with
1 ≤ p ≤ N and w = (in)

p
n=1,

m̃(p)(t, T1, . . . , Tp;w) =

p∏
n=1

g̃in,0(Tn)

+
∑

1≤n<m≤p

∫ t

0

e⊤inEB(Tn − r)A0EB(Tm − r)⊤eimm̃
(p−2)(r, (Tl)l ̸=m,n;w−n,−m)dr

+
∑

1≤n<m≤p

d∑
j=1

∫ t

0

e⊤inEB(Tn − r)AjEB(Tm − r)⊤eimm̃
(p−1)(r, r, (Tl)l ̸=m,n;w

j
−n,−m)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t

0

e⊤inEB(Tn − r)AjkEB(Tm − r)⊤eimm̃
(p)(r, r, r, (Tl)l ̸=m,n;w

j,k
−n,−m)dr.

(3.20)

The following two remarks present two important consequences of (3.20).

Remark 3.6. This formulation of the moment formula yields more explicit expressions
for the first and second order moments. Indeed, the definition of g̃ in (3.19) provides
directly a formula for the first order moments m̃(1). Regarding the second order moments,
observe that by taking p = 2 and t = T1 = T2 in (3.20), we obtain a linear system of
integral convolution equations for the functions fπ(2,w)(t) = m̃(2)(t, t, t;w), w = (in)

2
n=1 ∈

{1, . . . , d}2. More precisely,

fπ(2,w)(t) =
2∏

n=1

g̃in,0(t) +

∫ t

0

e⊤i1EB(t− r)A0EB(t− r)⊤ei2dr

+
d∑

j=1

∫ t

0

e⊤i1EB(t− r)AjEB(t− r)⊤ei2m̃
(1)(r, r;wj

−n,−m)dr

+
d∑

j,k=1

∫ t

0

e⊤i1EB(t− r)AjkEB(t− r)⊤ei2fπ(2,wj,k
−n,−m)(r)dr.

This linear system of convolution equations can be solved using the resolvent of the
associated (matrix) kernel. In addition, thanks to (3.14), all the second order moments
m̃(2) can be expressed in terms of m̃(1) and the functions fπ(2,w), w ∈ {1, . . . , d}2.
Remark 3.7. If X is an affine Volterra process, i.e. Ajk = 0, then (3.20) provides a
recursive algorithm to find the moments m̃(p) of any order p ∈ N.

Remark 3.5 explained how the moment formula in Theorem 3.3 extends the moment
formula from the classical to the Volterra framework. The next subsection elucidates that
there is one important structural property that is common to the classical and Volterra
settings.

3.3 Moments of polynomial Volterra processes are polynomials

For a polynomial diffusion X starting at X0, i.e. when K ≡ Id and g0 ≡ X0 in our
framework, [40, Theorem 3.1] gives the following explicit formula for the moments of X

E[p(Xt)] = H(X0)
T etGp⃗, p ∈ Poln(Rd), t ≥ 0. (3.21)
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In (3.21), H(x) is a vector whose components are elements of a basis for Poln(Rd), G
is the matrix of the infinitesimal generator of X restricted to Poln(Rd), and p⃗ are the
coordinates of the polynomial p with respect to the basis in H(x). As a consequence, the
moments of a polynomial diffusion X with initial value X0 are again polynomials in the
variable X0. More precisely,

E[Xα
t ] =

∑
β∈Nd

0,|β|≤|α|

cβ(t)X
β
0 , (3.22)

for some deterministic and time-dependent family of coefficients {cβ : β ∈ Nd
0, |β| ≤ |α|},

which can be computed explicitly from (3.21). It turns out that this structural property
still holds for the moments m(p) in (3.8) of a polynomial Volterra process X starting at
X0, i.e. when g0 ≡ X0 in (2.1). Furthermore, by an application of Theorem 3.3, the
coefficients can be obtained by solving an integral equation similar to (3.14). Indeed, for
p = |α| = 0 this trivially holds true. For p = 1 and w = i1 ∈ {1, . . . , d}, we have

m(1)(t, T1;w) = E[Xii,T1 ]− e⊤i1

∫ T1

t

K(T1 − s)b(E[Xs])ds, 0 ≤ t ≤ T1, (3.23)

where we used (3.6) and the fact that b ∈ Pol1(Rd). Plugging the identity (3.19) into
(3.23) yields

m(1)(t, T1;w) = e⊤i1

(
Id −

∫ T1

0

RB(s)ds−
∫ T1

t

K(T1 − s)B

(
Id −

∫ s

0

RB(u)du

)
ds

)
X0

+ e⊤i1

(∫ T1

0

EB(s)ds−
∫ T1

t

K(T1 − s)

(
Id +B

∫ s

0

EB(u)du

)
ds

)
b0.

This readily shows the representation of the form (3.22) for first-order moments. In the
following theorem we exploit the moment-formula in Theorem 3.3, to generalize this result
for higher order moments.

Before stating the theorem, we recall the notation at the beginning of Subsection 3.1
and observe that for p ∈ N and w = (in)

p
n=1 ∈ {1, . . . , d}p

m(p)(0, T1, . . . , Tp;w) = X
α(w)
0 , (3.24)

where α(w) is the multi-index given by αk(w) = #{n : in = k}, k = 1, . . . , d.

Theorem 3.8 (Moments are polynomials). Suppose that X is a continuous solution to
(2.1) with g0 ≡ X0 and fix T ≥ 0. Then, for all p ∈ N0 and all w ∈ {1, . . . , d}p, we can
express the functions m(p) in (3.8) as

m(p)(t, T1, . . . , Tp;w) =
∑

β∈Nd
0,|β|≤p

C
(p)
β (t, T1, . . . , Tp;w)X

β
0 , (t, T1, . . . , Tp) ∈ D(p)

T , (3.25)

where the functions C
(p)
β (·, · · · , ·;w) ∈ C(D(p)

T ,R) are independent of X0.

In particular, for any α ∈ Nd
0, there exists a family {cβ}β∈Nd

0,|β|≤|α| of real-valued contin-
uous functions on [0, T ], independent of X0, such that

E[Xα
t ] =

∑
β∈Nd

0,|β|≤|α|

cβ(t)X
β
0 , t ≥ 0. (3.26)
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Furthermore – for any p ∈ N, w = (in)
p
n=1 ∈ {1, . . . , d}p, and β ∈ Nd

0 with |β| ≤ p – we
have

C
(p)
β (t, T1, . . . , Tp;w) = f

(p)
β (t, T1, . . . , Tp;w)

+

p∑
n=1

d∑
j=1

∫ t

0

e⊤inK(Tn − r)bjC
(p)
β (r, r, (Tm)m̸=n;w

j
−n)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t

0

e⊤inK(Tn − r)AjkK(Tm − r)⊤eimC
(p)
β (r, r, r, (Tl)l ̸=m,n;w

j,k
−n,−m)dr.

(3.27)
where

f
(p)
β (t, T1, . . . , Tp;w) = 1{β=α(w)} +

p∑
n=1

∫ t

0

e⊤inK(Tn − r)b0C
(p−1)
β (r, (Tm)m ̸=n;w−n)dr1{|β|<p}

+
∑

1≤n<m≤p

∫ t

0

e⊤inK(Tn − r)A0K(Tm − r)⊤eimC
(p−2)
β (r, (Tl)l ̸=m,n;w−n,−m)dr1{|β|<p−1}

+
∑

1≤n<m≤p

d∑
j=1

∫ t

0

e⊤inK(Tn − r)AjK(Tm − r)⊤eimC
(p−1)
β (r, r, (Tl)l ̸=m,n;w

j
−n,−m)dr1{|β|<p}.

(3.28)

Remark 3.9. Referring to the terminology used in [30], (3.27) provides a unique solu-

tion to the dual moment formula and (C
(p)
β (t, T1, . . . , Tp;w))t∈[0,T ] can be interpreted as

deterministic dual process.

Proof. Notice that, thanks to (3.9), (3.26) directly follows from (3.25) after taking t =
T1 = · · · = Tp. The arguments before the statement of the theorem show that (3.25)
holds for p ∈ {0, 1}. Reasoning by induction, assume that for each 1 ≤ q < p we

have constructed continuous functions C
(q)
β (·, . . . , ·;w) on D(q)

T such that (3.25) holds

with p replaced by q. Corollary A.3 in Appendix A shows that, for any β ∈ Nd
0 such

that |β| ≤ p, the system of equations (3.27) – seen as a system indexed over the ele-
ments w ∈ {1, . . . , d}p – with initial condition (3.28), has a unique solution such that

C
(p)
β (·, . . . , ·;w) ∈ C(D(p)

T ).

It is straightforward to check that the family of functions on D(p)
T defined as

n(q)(t, T1, . . . , Tp;w) =
∑

β∈Nd
0,|β|≤q

C
(q)
β (t, T1, . . . , Tp;w)X

β
0 , (q, w) ∈ I(p),

are a continuous solution (in X (p)
T ) to the moment-equation (3.14), with N replaced by p

and with initial conditions X
α(w)
0 for each (q, w) ∈ I(p). Notice that the initial conditions

are the same for the moments m(q) by (3.24). Since by Theorem 3.3 the solution to this
moment equation is unique, we conclude that m = n and (3.25) holds.

Remark 3.10. Observe that the integral equations verified by the coefficients Cβ in (3.27)
resemble the equations satisfied by the moments in (3.14). This structural property is
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well-known for classical polynomial processes. Indeed, in the classical case the coefficients
of the moments in (3.21) are given in terms of the exponential matrix etG which solves a
linear ODE as well. We could have vectorized the equations for the coefficients (3.27) as
we did it for the moments in (3.14). We opted, however, to not use the vectorization at
this point for clarity of exposition.

3.4 Moments of the finite dimensional distributions and unique-
ness in law

In this section we explain how the previous ideas can be extended to characterize moments
of the finite dimensional distributions of a weak solution to (2.1). These considerations
will allow us to prove a result concerning the uniqueness in law for solutions to (2.1).

Fix T ≥ 0, 0 ≤ t1 ≤ T and α1 a multi-index. Define

D(N)
t1,T

= {(t2, T1, . . . , TN) ∈ [t1, T ]
N+1 : t2 ≤ min{T1, . . . , TN}}.

Consider the RDN -valued function f on D(N)
t1,T

given by fπ(0,∅) ≡ 1 and, for 1 ≤ p ≤ N and
w = (in)

p
n=1,

fπ(p,w)(t2, T1, . . . , TN) = fπ(p,w)(t2, T1, . . . , Tp) = E[Xα1

t1
gi1,t2(T1) · · · gip,t2(Tp)].

Then - by the same considerations as in the proof of Theorem 3.3 – f is a bounded
function on D(N)

t1,T
satisfying the integral equation

fπ(p,w)(t2, T1, . . . , Tp) = E[Xα1

t1
gi1,t1(T1) · · · gip,t1(Tp)]

+

p∑
n=1

∫ t2

t1

e⊤inK(Tn − r)b0fπ(p−1,w−n)(r, (Tm)m̸=n)dr

+

p∑
n=1

d∑
j=1

∫ t2

t1

e⊤inK(Tn − r)bjfπ(p,wj
−n)

(r, r, (Tm)m ̸=n)dr

+
∑

1≤n<m≤p

∫ t2

t1

e⊤inK(Tn − r)A0K(Tm − r)⊤eimfπ(p−2,w−n,−m)(r, (Tl)l ̸=m,n)dr

+
∑

1≤n<m≤p

d∑
j=1

∫ t2

t1

e⊤inK(Tn − r)AjK(Tm − r)⊤eimfπ(p−1,wj
−n,−m)(r, r, (Tl)l ̸=m,n)dr

+
∑

1≤n<m≤p

d∑
j,k=1

∫ t2

t1

e⊤inK(Tn − r)AjkK(Tm − r)⊤eimfπ(p,wj,k
−n,−m)(r, r, r, (Tl)l ̸=m,n)dr

where 1 ≤ p ≤ N and w = (in)
p
n=1. The same arguments as in Appendix A show

that, for given inputs (K, b, a), this equation has a unique bounded solution with initial
condition E[Xα1

t1
gi1,t1(T1) · · · gip,t1(Tp)]. Since we already know that this initial condition

only depends on (K, b, a), i.e. it is the same for any weak solution X to (2.1), we conclude
that f only depends on (K, b, a). In particular, the mixed moments of the form E[Xα1

t1
Xα2

t2
]

are the same for any weak solution X to (2.1).
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Remark 3.11. It is not surprising that the function f defined above solves an integral
equation similar to (3.14), with initial condition expressed in terms of simple moments
at time t1. Indeed, consider the classical case where K ≡ Id. Then, the tower property
of the conditional expectation and the classical conditional moment formula yield

E[Xα1

t1
Xα2

t2
] = E[Xα1

t1
H(Xt1)]e

(t2−t1)Gp⃗

where we use the same notation as in (3.21) with n ≥ |α2|, and where p⃗ are the coordinates
of the monomial xα

2
with respect to the chosen basis. Observe that E[Xα1

t1
H(Xt1)]e

(t2−t1)G

solves a linear ODE with initial condition at t1 given by E[Xα1

t1
H(Xt1)].

A recursive argument, following the same lines as the above mentioned considerations,
proves that all weak solutions X of (2.1) have the same moments of the form

E[Xα1

t1
· · ·Xαl

tl
]

for l ∈ N, times t1 ≤ · · · ≤ tl and multi-indices α1, . . . , αl. Using this observation and
arguing as in the proof of [40, Lemma 4.1], we deduce the following result.

Theorem 3.12 (Uniqueness in law for polynomial Volterra processes). Suppose that for
any weak solution X to (2.1) and for any t ≥ 0, the law of Xt is determined by its
moments. Then uniqueness in law holds for (2.1).

Remark 3.13. As explained in the proof of [40, Lemma 4.1], the hypothesis of Theorem
3.12 holds for instance if for any weak solution X to (2.1) and t ≥ 0, there is ϵ > 0 such
that E[exp(ϵ|Xt|)] <∞. For example, this is the case if any such solution X is bounded.

Remark 3.14. Theorem 3.12 constitutes a new result regarding uniqueness in law for solu-
tions to stochastic Volterra equations. For affine Volterra processes [6] provide uniqueness
in law via the Fourier-Laplace transform. Pathwise uniqueness for stochastic Volterra
equations has been established for Lipschitz coefficients e.g., in [21] and, for certain co-
efficients in the one-dimensional case, when the kernel K is regular [4, 53] and when the
kernel is singular in [46, 56].

4 Jump representation of polynomial Volterra pro-

cesses

Let X be the Volterra process introduced in (2.1) whose dynamics are given by

Xt = λ0(t) +

∫ t

0

K(t− s)b(Xs)ds+

∫ t

0

K(t− s)σ(Xs)dWs, t ∈ [0, T ].

In this section we consider a different lift, denoted by λ that will provide an alternative
representation of the moments of X, namely in terms of a dual process which is a pure
jump process with killing. For this reason we also call the initial condition λ0 instead of
g0.
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4.1 One-dimensional case

For the reader’s convenience we consider first the one dimensional case setting d = 1. Let
(λt)t∈[0,T ] be a solution (in a sense made precise in Proposition 4.2 below) of

λt(x) = λ0(x) +

∫ t

0

∂xλu(x)du+

∫ t

0

K(x)
[
b(λu(0))du+ σ(λu(0))dWu

]
, λ0 ≡ X0 ∈ R,

(4.1)
for x ∈ R+. Similarly as in [32, Section 5] and as argued in Remark 4.3 below it holds
that λt(0) = Xt and that λ actually corresponds to the Musiela parameterization of the
processes (gt(T ))t∈[0,T ] considered in Section 3.

As a first step we introduce an appropriate space for the function-valued process
(λt)t∈[0,T ]. As in [19, 20], we let α : R+ → [1,∞) be a nondecreasing C1-function such
that α−1 ∈ L1(R+). The so-called Filipović space is then defined by

B = {y ∈ AC(R+,R) : ∥y∥α <∞},

where AC(R+,R) denotes the space of absolutely continuous functions from R+ to R and

∥y∥2α = |y(0)|2 +
∫ ∞

0

|y′(x)|2α(x)dx.

By [19, Lemma 3.2] we also know that B ⊆ R + C0(R+), namely the space of bounded
continuous functions with continuous continuation to infinity. Furthermore, let (St)t∈[0,T ]

denote the left-shift semigroup on B, i.e., Sty = y(t + ·). Then (St)t∈[0,T ] is the C0-
semigroup generated by the operator ∂x (see Filipović [38, Theorem 5.1.1]).

To ease technicalities and the exposition we make the following assumptions through-
out this section (unless otherwise stated).

Assumption 4.1. (i) We assume that the kernel K satisfies K ∈ B.

(ii) Both b and σ in (4.1) are linear maps. We thus set b(y) = b1y and σ(y)2 = A11y
2

for constants b1, A11 ∈ R.
With the shift semigroup at hand we can now define the notion of a mild solution to

(4.1) as in [33, Section 7.1]:
A predictable B-valued process (λt)t∈[0,T ], is said to be a mild solution to (4.1) if for

every t ∈ [0, T ]

P
[∫ t

0

∥λs∥2αds <∞
]
= 1,

and

λt = Stλ0 +

∫ t

0

St−uKb1λu(0)du+

∫ t

0

St−uK
√
A11λu(0)dWu, P-a.s. (4.2)

Proposition 4.2 (Existence and moment bounds for solutions of (4.1)). Under Assump-
tion 4.1 there exists a unique mild solution to (4.1) which has a continuous modification.
Moreover, for every k ≥ 1, we have

E[ sup
t∈[0,T ]

∥λt∥kα] ≤ CT,k,λ0 , (4.3)

where CT,k,λ0 is a constant that depends on T, k and λ0. This solution is also an (analyt-
ically) weak solution in the sense of [33, page 161].
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Proof. We apply [33, Theorem 7.2] for the Hilbert space H = B and U0 = R. We thus
need to verify the conditions of [33, Hypotheses 7.1]. As stated above ∂x generates the
strongly continuous right shift semigroup (St)t∈[0,T ]. Moreover, all measurability criteria
are satisfied. Furthermore, since the point evaluations at 0 are bounded linear functionals
and the fact that K ∈ B we have

∥Kb1g(0)−Kb1h(0)∥α + ∥K
√
A11g(0)−K

√
A11h(0)∥α ≤ C∥g − h∥α, ∀g, h ∈ B,

and of course also the linear growth condition. This implies the existence and uniqueness
of a mild solution (4.2). Concerning the moment estimate we apply [33, Equation 7.7]
stating that for p > 2

E[ sup
t∈[0,T ]

∥λt∥pα] ≤ ĈT,p(1 + E[∥λ0∥pα]),

By the initial condition λ0 ≡ X0 ∈ R we get a constant on the right hand side. Moreover,
since for 1 ≤ k ≤ 2 and p > 2

∥λt∥kα ≤ 1 + ∥λt∥pα
we obtain

E[ sup
t∈[0,T ]

∥λt∥kα] ≤ 1 + E[ sup
t∈[0,T ]

∥λt∥pα] ≤ CT,k,λ0 ,

and we get the assertion for all k ≥ 1. The last assertion concerning the (analytically)
weak solution follows from the same arguments as in [33, Theorem 6.5] since

E
[∫ T

0

∥K
√
A11λt(0)∥2α

]
<∞.

Remark 4.3. Since under Assumption 4.1 (λt)t∈[0,T ] is a mild solution to (4.1) with values
in B we immediately get from (4.2) by evaluating at some fixed x that

λt(x) = λ0(t+ x) +

∫ t

0

K(t+ x− u)b1λu(0)du+

∫ t

0

K(t+ x− u)
√
A11λu(0)dWu.

From this we see that λt(x) = gt(t + x) where the process g was the defined in (3.2),
implying that λ just corresponds to the Musiela parameterization of the processes g.
Moreover, (λt(0))t∈[0,T ] is the unique solution to the Volterra equation

Xt = X0 +

∫ t

0

K(t− u)(b1Xudu+
√
A11XudWu),

where uniqueness is a consequence of the linearity and thus Lipschitz property of the
coefficients.

We are now ready to state in Proposition 4.4 the expression of the moments of the
polynomial Volterra process in terms of a functional of a pure jump process with killing.
In the proof, we use the notation λ⊗k(x) to denote the product λ(x1) · · ·λ(xk) for x =
(x1, . . . , xk) ∈ Rk

+.
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Proposition 4.4 (Jump representation of one-dimensional polynomial Volterra pro-
cesses). Fix k ≥ 1 and let (Yt)t∈[0,T ] be the [0, T ]k-valued process generated by Gk with
domain D(Gk) = AC([0, T ]k,R) given by

Gkf(x) = 1⊤∇f(x) +
∫
(f(ξ)− f(x))ν(x, dξ),

for

ν(x, ·) = b1

k∑
i=1

K(xi)δ(x1,...,xi−1,0,xi+1,...,xk)

+ A11

k∑
i=1

∑
i<j

K(xi)K(xj)δ(x1,...,xi−1,0,xi+1,...,xj−1,0,xj+1,...,xk),

and Y0 = (0, . . . , 0). Suppose that Assumption 4.1 is in force and assume that the mild
solution (λt)t∈[0,T ] to (4.1) additionally satisfies

E[ sup
x∈[0,T ]k

|λ′t(x1)λt(x2) · · ·λt(xk)|] <∞. (4.4)

Then for each t ∈ [0, T ] it holds

E[Xk
t ] = Xk

0E
[
exp

(∫ t

0

κ(Yτ )dτ

)]
,

where

κ(x) = b1

k∑
i=1

K(xi) + A11

k∑
i=1

∑
j<i

K(xi)K(xj).

Proof. Set
Mkf(x) = Gkf(x) + κ(x)f(x),

for each f ∈ D(Gk). Observe that by Itô’s formula and (4.1) (since (λt)t∈[0,T ] is also an
analytically weak solution), we have

λ⊗k
t (x) = Xk

0 +

∫ t

0

Mkλ
⊗k
u (x)du+

∫ t

0

Qλ⊗k
u (x)dWu

for

Qf(x) =
√
A11

k∑
i=1

K(xi)f(x1, . . . , xi−1, 0, xi+1, . . . , xk).

Since
E[ sup

t∈[0,T ]

|λt(x1)λt(x2) · · ·λt(xk)|] <∞

due to (4.3) and as K ∈ B the third term is a true martingale and we thus have

E[λ⊗k
t (x)] = Xk

0 +

∫ t

0

E[Mkλ
⊗k
u (x)]du.
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Set then mt(x) = E[λ⊗k
t (x)] for each x ∈ [0, T ]k. Since (4.4) holds, Leibniz rule and

Fubini yield

Mkmt(x) = 1⊤∇E[λ⊗k
t (·)](x) +

∫
E[λ⊗k

t (ξ)]ν(x, dξ)

= E[1⊤∇λ⊗k
t (x)] + E

[∫
λ⊗k
t (ξ)ν(x, dξ)

]
,

proving that Mkmt(x) = E[Mkλ
⊗k
t (x)] and thus that

mt(x) = Xk
0 +

∫ t

0

Mkmu(x)du.

Note that since ms ∈ D(Gk) for each s ∈ [0, T ], by Itô’s formula we get

dms(Yt) = Gkms(Yt)dt+ dMt(ms),

for

Mt(f) =

∫ t

0

∫ (
f(ξ)− f(Yt)

)
(µt(dt, dξ)− ν(Yt, dξ)dt),

where µt is the jump measure corresponding to Y . Fixing now t ∈ [0, T ] we thus get that

dmt−s(Ys) = −∂smt−s(Ys)ds+ Gkmt−s(Ys)ds+ dMs(mt−s)

= −Mkmt−s(Ys)ds+ Gkmt−s(Ys)ds+ dMs(mt−s),

and similarly for Zs = exp(
∫ s

0
κ(Yτ )dτ)mt−s(Ys) we get

dZs = − exp

(∫ s

0

κ(Yτ )dτ

)
Mkmt−s(Ys)ds

+ exp

(∫ s

0

κ(Yτ )dτ

)
Gkmt−s(Ys)ds+ exp

(∫ s

0

κ(Yτ )dτ

)
dMs(mt−s)

+ κ(Ys) exp

(∫ s

0

κ(Yτ )dτ

)
mt−s(Ys)ds

= exp

(∫ s

0

κ(Yτ )dτ

)
dMs(mt−s),

showing that (Zs)s∈[0,t] is a local martingale. Since supt,x∈[0,T ] |mt(x)| < ∞ and K is
bounded we can conclude that

E
[
exp

(∫ t

0

κ(Yτ )dτ

)
Xk

0

]
= E[Zt] = E[Z0] = mt(0, . . . , 0) = E[λ⊗k

t (0, . . . , 0)] = E[Xk
t ].

Example 4.5. Note that for K ≡ λ0 ≡ 1 we get that X = X0E((b1t +
√
A11Wt)t∈[0,T ]).

The corresponding representation yields

E[Xk
t ] = Xk

0 exp
(∫ t

0

b1k + A11k(k − 1)dτ
)
= Xk

0 exp((b1k +
1

2
A11k(k − 1))t),

as expected.
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Remark 4.6. Observe that Proposition 4.4 shows that in the current homogeneous case
where both b and σ are linear functions, the kth moment of the Volterra process is just
a monomial in Xk

0 with coefficient E[exp(
∫ t

0
κ(Yτ )dτ)]. This is thus a special case of

Theorem 3.8. Note that the proof of Proposition 4.4 also shows that

E[λt(x1) · · ·λt(xk)] = E[λ⊗k
t (x)] = EY0=x

[
exp

(∫ t

0

κ(Yτ )dτ

)
λ0(Y1,t) · · ·λ0(Yk,t)

]
,

so that we also get a jump representation for m(t, t+x1, . . . , t+xk) (where we apply the
notation of Section 3.1). If λ0 ≡ X0, we obtain again a representation that involves only
Xk

0 and thus again a special case of Theorem 3.8.
Let us also explicitly draw the connection to the dual process approach outlined in

the introduction via (1.1). The infinitesimal generator A of the process λ applied to
cylindrical functions f(λ) = g(⟨a1, λ⟩, . . . , ⟨ak, λ⟩) where g ∈ C2(Rk) and a1, . . . , ak are
continuous linear functionals is given by

Af(λ) =
k∑

i=1

∂ig(⟨a1, λ⟩, . . . , ⟨ak, λ⟩)⟨∂xλ+Kb1λ(0), ai⟩

+
1

2

k∑
i,j=1

∂ijg(⟨a1, λ⟩, . . . , ⟨ak, λ⟩)⟨K
√
A11λ(0), ai⟩⟨K

√
A11λ(0), aj⟩.

Letting g(y) =
∏k

i=1 yi and ⟨ai, λ⟩ = λ(xi), i.e. the point evaluations for some fixed
x = (x1, . . . , xk), we thus obtain

Aλ(x1) · · ·λ(xk)

=
k∑

i=1

λ(x1) · · ·λ(xi−1)λ(xi+1) · · ·λ(xk)(∂xλ(xi) +K(xi)b1λ(0))

+
1

2

k∑
i,j=1

λ(x1) · · ·λ(xi−1)λ(xi+1) · · ·λ(xj−1)λ(xj+1) · · ·λ(xk)K(xi)K(xj)A11λ
2(0).

This is exactly the same as L in (1.1) with Lλ(x1) · · ·λ(xk) = Gkλ(x1) · · ·λ(xk) +
κ(x)λ(x1) · · ·λ(xk) and the process U from the introduction corresponds to the process
Y killed at rate κ.

Remark 4.7. We illustrate now how the proposed method works without supposing the
homogeneity condition of Assumption 4.1(ii). Consider coefficients b0, b1, A0, A1, A11 such
that b(x) = b0 + b1x and σ(x)2 = A0 + A1x + A11x

2. Fix k ≥ 1 and let (Yt)t∈[0,T ] be the
([0, T ] ∪ {†})k-valued process generated by the linear operator Gk with domain

D(Gk) ={f : ([0, T ] ∪ {†})k → R : f is symmetric,

f(·, . . . , ·︸ ︷︷ ︸
i

, †, . . . , †︸ ︷︷ ︸
k−i

)|[0,T ]i ∈ AC([0, T ]i,R), i ∈ {1, . . . , k}, f(†, . . . , †) = 1}

and given by

Gkf(y) = 1⊤∇f(y) +
∫
(f(ξ)− f(y))ν(y, dξ),
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for ∇xi
f(†) = 0, K(†) = 0 ,

ν(y, ·) = b0

k∑
i=1

K(yi)δ(y1,...,yi−1,†,yi+1,...,yk) + b1

k∑
i=1

K(yi)δ(y1,...,yi−1,0,yi+1,...,yk)

+ A0

k∑
i=1

∑
j<i

K(yi)K(yj)δ(y1,...,yi−1,†,yi+1,...,yj−1,†,yj+1,...,yk)

+
1

2
A1

k∑
i=1

∑
j ̸=i

K(yi)K(yj)δ(y1,...,yi−1,0,yi+1,...,yj−1,†,yj+1,...,yk)

+ A11

k∑
i=1

∑
j<i

K(yi)K(yj)δ(y1,...,yi−1,0,yi+1,...,yj−1,0,yj+1,...,yk),

and Y0 = (0, . . . , 0). Suppose that Assumption 4.1(i) holds true and assume that the mild
solution (λt)t∈[0,T ] to (4.1) additionally satisfies

E[ sup
y∈[0,T ]k

|λ′t(y1)λt(y2) · · ·λt(yk)|] <∞.

Then for each t ∈ [0, T ] it holds

E[Xk
t ] = E

[
exp

(∫ t

0

κ(Yτ )dτ

)
X

∑k
i=1 1{Yi,t ̸=†}

0

]
,

where

κ(y) = b(1)
k∑

i=1

K(yi) + σ(1)2
k∑

i=1

∑
j<i

K(yi)K(yj).

Observe that there is a direct connection between this representation and Remark 3.4.
Indeed, given a solution (ft)t∈[0,T ] of

∂tft(y) = Gkft(y)

we obtain that mπ(p,w)(t, x1, . . . , xp) = ft(x1, . . . , xp, †, . . . , †), p = 0, . . . , k solves (3.18).
Moreover, noting that

E[Xk
t ] =

k∑
j=0

E
[
exp

(∫ t

0

κ(Yτ )dτ

) ∣∣∣ k∑
i=1

1{Yi,t ̸=†} = j
]
P
( k∑

i=1

1{Yi,t ̸=†} = j
)
Xj

0 ,

we can also establish a direct connection with Theorem 3.8 and in particular equation
(3.26).

4.2 Multivariate case

We move now to the d-dimensional setting, letting again X be the process defined in
(2.1). In this case we consider a solution (λt)t∈[0,T ] of the SPDE given by

λt(x, i) = X0,i +

∫ t

0

d

dx
λu(x, i)du+

d∑
j=1

e⊤i K(x)bjλu(0, j)du

+
d∑

j1,j2=1

√
λu(0, j1)λu(0, j2)e

⊤
i K(x)

√
Aj1j2dWu,

(4.5)
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for x ∈ R+ and i ∈ {1, . . . , d} and where ei denotes the canonical basis vectors. The
Hilbert space for the corresponding function-valued process (λt)t∈[0,T ] is given by

Bd = {f : R+ × {1, . . . d} → R : f(·, i) ∈ B},

with

∥y∥2α,d =
d∑

i=1

(
|y(0, i)|2 +

∫ ∞

0

|y′(x, i)|2α(x)dx
)
.

We first start by establishing the analog of Proposition 4.2. Even though we believe
that existence of an analytically weak solution can be proved via the martingale problem
approach we here just focus on the case Aj1j2 = 0 whenever j1 ̸= j2 so that we only have
linear terms in the diffusion part and can apply similar arguments as in Proposition 4.2.

For completeness we recall the notion of a mild solution in the current setting when
Aj1j2 = 0 for j1 ̸= j2. A predictable Bd-valued process (λt)t∈[0,T ], is said to be a mild
solution to (4.5) if for every t ∈ [0, T ]

P
[∫ t

0

∥λs∥2α,dds <∞
]
= 1,

and for every i ∈ {1, . . . , d}

λt(·, i) = Stλ0(·, i)︸ ︷︷ ︸
≡X0,i

+
d∑

j=1

St−ue
⊤
i Kbjλu(0, j)du+

d∑
j=1

St−ue
⊤
i K
√
Ajjλu(0, j)dWu, P-a.s.

(4.6)
Throughout this section we shall assume the following condition on K.

Assumption 4.8. We assume that K satisfies Kij ∈ B for all i, j ∈ {1, . . . , d}.

Proposition 4.9 (Existence and moment bounds for solutions of (4.5)). Let Assump-
tion 4.8 hold true and suppose that Aj1j2 = 0 for j1 ̸= j2. Then there exists a unique
mild solution to (4.5) which has a continuous modification. Moreover, for every k ≥ 1,
we have

E[ sup
t∈[0,T ]

∥λt∥kα,d] ≤ CT,k,X0 , (4.7)

where CT,k,X0 is a constant that depends on T, k and X0. This solution is also an (ana-
lytically) weak solution in the sense of [33, page 161].

Proof. We again apply Theorem [33, Theorem 7.2] for the Hilbert space H = Bd and
U0 = Rd. Verifying the conditions of [33, Hypotheses 7.1] is completely analogous to
the one dimensional case and we obtain existence and uniqueness of a mild solution to
(4.6). The moments estimates and the assertion concerning the weak solution also follow
analogously.

In the next proposition we establish the jump representation in the multivariate case.
Here, we also allow for Aj1j2 ̸= 0 when j1 ̸= j2. Note that all the assumptions in
Proposition 4.10 except of (4.8) are satisfied under the conditions of Proposition 4.9.
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Proposition 4.10 (Jump representation of d-dimensional polynomial Volterra processes).
Fix k ≥ 1 and let (Yt)t∈[0,T ] be the ([0, T ] × {1, . . . , d})k-valued process generated by Gk

with domain D(Gk) = AC(([0, T ]× {1, . . . , d})k,R) given by

Gkf(x, i) = 1⊤∇xf(x, i) +

∫
(f(ξ, ℓ)− f(x, i))ν((x, i), d(ξ, ℓ)),

for

ν((x, i), ·) =
k∑

m=1

d∑
j=1

e⊤imK(xm)bjδ{((x1,i1),...,(0,j),...,(xk,ik))}

+
k∑

m=1

∑
n<m

d∑
j1,j2=1

e⊤imK(xm)Aj1j2K(xn)
⊤einδ{((x1,i1),...,(0,j1),...,(0,j2),...,(xk,ik))}

and
Y0 = ((0, 1) . . . , (0, 1)︸ ︷︷ ︸

k1-times

, (0, 2), . . . , (0, 2)︸ ︷︷ ︸
k2-times

, . . . , (0, d), . . . , (0, d)︸ ︷︷ ︸
kd-times

).

Suppose that Assumption 4.8 holds true and assume that (λt)t∈[0,T ] is a Bd-valued (ana-
lytically) weak solution to (4.5) satisfying

E[ sup
t∈[0,T ],i

|λt(x1, i1) · · ·λt(xk, ik)|] <∞ and

E[ sup
x∈[0,T ]k,i

|(∂xλt(x1, i1))λt(x2, i2) · · ·λt(xk, ik)|] <∞. (4.8)

Then for each t ∈ [0, T ] and each multi-index k = (k1, . . . kd) with |k| = k, it holds

E[Xk
t ] = E[Xk1

t,1 · · ·X
kd
t,d] = Xk

0E
[
exp

(∫ t

0

κ(Yτ )dτ

)]
,

where

κ(x, i) =
k∑

m=1

d∑
j=1

e⊤imK(xm)bj +
k∑

m=1

∑
n<m

d∑
j1,j2=1

e⊤imK(xm)Aj1j2K(xn)
⊤ein .

Proof. Set
Mkf(x, i) = Gkf(x, i) + κ(x, i)f(x, i),

for each f ∈ D(Gk) and observe that by Itô’s formula it holds

λ⊗k
t (x, i) = X0,i1 · · ·X0,ik +

∫ t

0

Mkλ
⊗k
u (x, i)du+

∫ t

0

Qλ⊗k
u (x, i)dWu.

for

Qf(x, i) =
k∑

m=1

d∑
j1,j2=1

e⊤imK(xm)
√
Aj1j2

×
√
f((x1, i1), . . . , (0, j1), . . . , (xd, id))f((x1, i1), . . . , (0, j2), . . . , (xd, id)).
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Since the third term is a true martingale, we have

E[λ⊗k
t (x, i)] = X0,i1 · · ·X0,ik +

∫ t

0

E[Mkλ
⊗k
u (x, i)]du.

Set then mt(x, i) = E[λ⊗k
t (x, i)]. Since (4.8) holds, Leibniz rule and Fubini yield

Mkmt(x, i) = 1⊤∇xE[λ⊗k
t (·, i)](x) +

∫
E[λ⊗k

t (ξ, ℓ)]ν((x, i), d(ξ, ℓ))

= E[1⊤∇xλ
⊗k
t (x, i)] + E

[∫
λ⊗k
t (ξ, ℓ)ν((x, i), d(ξ, ℓ))

]
,

proving that Mkmt(x, i) = E[Mkλ
⊗k
t (x, i)] and thus that

mt(x, i) = X0,i1 · · ·X0,ik +

∫ t

0

Mkmu(x, i)du.

Since ms lies in the domain of Gk for each s ∈ [0, T ] proceeding as in the one dimensional
case we get that the process (Zs)s∈[0,t] for

Zs = exp

(∫ s

0

κ(Yτ )dτ

)
mt−s(Ys)

is a true martingale and thus that

Xk
0E
[
exp

(∫ t

0

κ(Yτ )dτ

)]
= mt(Y0) = E[λ⊗k

t (Y0)] = E[Xk
t ].

Example 4.11. Observe that for K ≡ Id, λ0 ≡ (1, . . . , 1), bi = βiei, Aij = σ⊤
i σjeie

⊤
j for

some βi ∈ R, σi ∈ Rd we get that

Xi = E((βit+
d∑

j=1

σijW
j
t )t∈[0,T ]).

In this setting

ν((x, i), ·) =
k∑

m=1

d∑
j=1

e⊤imβjejδ{...,(0,j),...} +
k∑

m=1

∑
n<m

d∑
j1,j2=1

σ⊤
j1
σj2e

⊤
imej1e

⊤
j2
einδ{...,(0,j1),...,(0,j2),...}

=
k∑

m=1

βimδ{...,(0,im),...} +
k∑

m=1

∑
n<m

σ⊤
imσinδ{...,(0,im),...,(0,in),...},

showing that the second component of each Yi is constant over time. Since

κ(x, i) =
k∑

m=1

βim +
k∑

m=1

∑
n<m

σ⊤
imσin =

k∑
m=1

βim +
1

2

k∑
m,n=1

σ⊤
imσin −

k∑
m=1

σ⊤
imσim ,

the corresponding representation yields

E[Xk
t |λ0] = exp

(( d∑
j=1

kjβj +
1

2

d∑
j1,j2=1

kj1kj2σ
⊤
j1
σj2 −

d∑
j=1

kjσ
⊤
j σj

)
t
)
,

as expected.
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Remark 4.12. Note that in analogy to Remark 4.7 also in the multivariate setting the
non-homogeneous case can be treated. This can be done by adding zero indices in the
definition of κ and ν, i.e. including b0, and A0i = Ai0 = Ai for i = 0, 1, . . . , d, and changing
the corresponding jumps to (†, 0) (instead of (0, j) as it is the case for j = 1, . . . , d).

5 Volterra processes in the unit ball

In this section, we are interested in constructing general Volterra processes (2.1), that
remain in the unit ball B of Rd. To achieve this, structural conditions on the coefficients
b : Rd → Rd, σ : Rd → Rd×d and the kernel K ∈ L2

loc are needed. In a first step, we
consider more general continuous coefficients with linear growth

|b(x)| ∨ |σ(x)| ≤ c(1 + |x|), x ∈ Rd. (5.1)

It follows from [6, Theorem 3.4] that under Assumption 2.2 and (5.1), there exists a weak
solution to (2.1) with values in Rd. For the rest of this section, we will assume that the
kernel K is scalar K : R+ → R.

The next theorem provides the existence of a B-valued solution to the stochastic
Volterra equation (2.1) under structural conditions on the coefficients (b, σ) and the kernel
K. We denote by ∂B the boundary of B, that is

∂B = {x ∈ Rd : x⊤x = 1}.

Theorem 5.1 (Existence of Volterra processes in the unit ball). Fix a scalar kernel K :
[0, T ] → R that satisfies Assumptions 2.2 and 2.5. Assume that b and σ are continuous,
with linear growth (5.1) and

x⊤b(x) ≤ 0 and σ(x) = 0, x ∈ ∂B. (5.2)

For any X0 ∈ B, there exists a continuous weak solution X to (2.1) such that Xt ∈ B a.s.
for every t ∈ [0, T ].

Proof. The proof is given in Section 5.1 below.

Remark 5.2. Theorem 5.1 allows the construction of Volterra processes living in the more
general domain {x ∈ Rd : x⊤Qx ≤ 1}, for some positive definite d× d matrix Q. Indeed,
it suffices to construct a weak solution X for the unit ball and set Y = Q−1/2X.

5.1 Proof of Theorem 5.1

Proof of Theorem 5.1. For any n ∈ N consider the coefficients bn and σn by

bn(x) =

{
b( x

1−1/n
)− x

n(1−1/n)
, |x| ≤ 1− 1/n

b( x
|x|)−

x
n|x| , else

σn(x) =

{
σ
(

x
1−1/n

)
, |x| ≤ 1− 1/n

0, else.
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By the assumptions for b and σ, it follows that bn and σn are continuous, and they satisfy
the linear growth condition (5.1) uniformly in n, with common constant Ĉ. Denote
by Xn a continuous weak solution to (2.1) with respect to (bn, σn), obtained from [6,
Theorem 3.4]. Applying tightness and stability results for stochastic Volterra equations,
see for instance [6, Lemma A.1 and A.2], we have Xn =⇒ X̂, where X̂ solves (2.1) with
coefficients b̂(x) = 1B(x)b(x)+1Bc(x)b(x/|x|) and σ̂(x) = 1B(x)σ(x). If we can prove that
Xn ∈ B almost surely for all n ∈ N, then X̂ ∈ B almost surely and since b̂|B = b and
σ̂|B = σ, the claim follows.

Fix n ∈ N and denote X = Xn. Note that the coefficients (bn, σn) satisfy the stronger
conditions

σn(x) = 0 and x⊤bn(y) ≤ 0, |y|, |x| > 1− 1/n and |x− y| < ϵ, (5.3)

for some ϵ depending on n and the constant from the linear growth condition. Indeed let
y such that |y| > 1− 1/n and denote by ŷ = y/|y| ∈ ∂B, then

x⊤bn(y) = y⊤bn(y) + (x− y)⊤bn(y) = |y|(ŷ⊤b(ŷ)− (1/n)ŷ⊤ŷ) + (x− y)⊤bn(y)

≤ |y|(ŷ⊤b(ŷ)− (1/n)ŷ⊤ŷ) + |x− y| (|b(ŷ)|+ 1/n)

≤ |y|(ŷ⊤b(ŷ)− (1/n)ŷ⊤ŷ) + |x− y|(2C + 1)

≤ −(n− 1)

n2
+ (2C + 1)|x− y|

≤ 0,

whenever |x−y| ≤ n−1
(2C+1)n2 = ϵ, where we used Cauchy-Schwarz for the second inequality

with C denoting the linear growth constant of b, and the assumption (5.2) for the third
inequality.

Now consider the stopping time τ = inf{t ≥ 0 : Xt /∈ B}, we aim to prove that
P(τ < ∞) = 0. Applying similar reasoning to [6, Theorem 3.6], under Assumption 2.5,
for any stopping time τ and h > 0 we have

Xτ+h = (1− (∆hK ∗ L)(τ))X0 + (∆hK ∗ L)(0)Xτ + (d(∆hK ∗ L) ∗ (X))(τ)

+

∫ ∞

0

1(τ,τ+h](s)K(τ + h− s)bn(Xs)ds

+

(∫ ∞

0

1(τ,τ+h](s)K(t+ h− s)σn(Xs)dWs

) ∣∣∣∣∣
t=τ

=: a0(h) + a1(h) + a2(h).

(5.4)

Now for ϵ′ > 0, we define the events

Ωϵ′ =
{
τ <∞, X⊤

s b
n(Xu) ≤ 0 and σn(Xu) = 0 ∀u, s ∈ [τ, τ + ϵ′[

}
.

On the event Ωϵ′ , for all h ∈ (0, ϵ′), we have a2(h) = 0, and for ψ(t) = |Xτ+t|

ψ(h)2 = X⊤
τ+h (a0(h) + a1(h)) ≤ ψ(h)|a0(h)|+X⊤

τ+ha1(h), (5.5)
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where we simply applied Cauchy-Schwarz for the inequality. An application of Lemma 5.4
below yields that |a0(h)| ≤ 1. Moreover, by the definition of Ωϵ′ and the fact that K is
nonnegative, it follows that∫ τ+h

τ

K(τ + h− s)X⊤
τ+hb

n(Xs)ds ≤ 0.

Therefore we can conclude

ψ(h)2 ≤ ψ(h)|a0(h)|+X⊤
τ+ha1(h) ≤ ψ(h),

which readily yields ψ(h) ≤ 1, and thus Xτ+h ∈ B for all h ∈ (0, ϵ′) on Ωϵ′ . On the
other hand, by the definition of τ and continuity of X, there exists h ∈ (0, ϵ′) such that
Xτ+h /∈ B on Ωϵ′ . But this readily shows P(Ωϵ′) = 0 for all ϵ′. On the other hand, by
(5.3) and continuity of X, it follows that

P(τ <∞) = P

 ⋃
ϵ′∈(0,ϵ)∩Q

Ωϵ′

 = 0.

The two following lemmas where used in the proof.

Lemma 5.3. Let K satisfy (2.5). Then,

(∆hK ∗ L)(t) is nondecreasing in t, (5.6)

as well as
0 ≤ (∆hK ∗ L)(t) ≤ (K ∗ L)(t) = 1. (5.7)

Proof. The proof of (5.6) and (5.7) can be found in the proof of [6, Theorem 3.6], see
(3.9) and (3.10) therein.

Lemma 5.4. Let K satisfy (2.5) and f : [0, t] → B be continuous such that f(t) ∈ ∂B
for some t. Then, the quantity

a0(h) = (1− (∆hK ∗ L)(t)) f(0) + (∆hK ∗ L)(0)f(t) + (d(∆hK ∗ L) ∗ f)(t), h ≥ 0,

satisfies
a0(h)

⊤a0(h) ≤ 1, h ≥ 0.

Proof. We first notice that, thanks to the Cauchy-Schwarz inequality, we have

x⊤y ≤
√
x⊤x

√
y⊤y ≤ 1, x, y ∈ B. (5.8)
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We expand

a0(h)
⊤a0(h) = (1− (∆hK ∗ L)(t))2 f(0)⊤f(0) + (∆hK ∗ L)(0)2f(t)⊤f(t)+

+ (d(∆hK ∗ L) ∗ f)(t)⊤(d(∆hK ∗ L) ∗ f)(t)
+ 2 (1− (∆hK ∗ L)(t)) (∆hK ∗ L)(0)f(0)⊤f(t)
+ 2 (1− (∆hK ∗ L)(t)) f(0)⊤(d(∆hK ∗ L) ∗ f)(t)
+ 2(∆hK ∗ L)(0)f(t)⊤(d(∆hK ∗ L) ∗ f)(t)
≤ (1− (∆hK ∗ L)(t))2 + (∆hK ∗ L)(0)2+
+ (d(∆hK ∗ L) ∗ 1)2(t)

+ 2 (1− (∆hK ∗ L)(t)) (∆hK ∗ L)(0)
+ 2 (1− (∆hK ∗ L)(t)) (d(∆hK ∗ L) ∗ 1)(t)
+ 2(∆hK ∗ L)(0)(d(∆hK ∗ L) ∗ 1)(t)
= ((1− (∆hK ∗ L)(t)) + (∆hK ∗ L)(0) + (d(∆hK ∗ L) ∗ 1)(t))2

where for the second inequality, we used (5.8) combined with (5.6) and (5.7). Finally,
observing that

(d(∆hK ∗ L) ∗ 1)(t) = (∆hK ∗ L)(t)− (∆hK ∗ L)(0)

yields the desired claim.

A Well-posedness for Volterra-type integral equations

In this section we study existence and uniqueness of solutions to a certain class of integral
equations, including all the equations appearing in Section 3 for the characterization of
moments. Fix N,D ∈ N and T ≥ 0, and consider the domain D(N)

T as in (3.12). Denote

by C(D(N)
T ,RD) the space of continuous, vector-valued functions on the compact set D(N)

T .
Moreover, consider the families of kernels {An,i

1 }1≤n≤N ;1≤i≤2, and {An,m,j
2 }1≤n,m≤N ;1≤j≤3,

such that

An,i
1 : [0, T ] → RD×D, An,m,j

2 : [0, T ]×[0, T ] → RD×D, 1 ≤ n,m ≤ N, 1 ≤ i ≤ 2, 1 ≤ j ≤ 3.

We will make the following integrability assumptions for the matrix-norm of the kernels:

|An,i
1 | ∈ L1([0, T ]), |An,m,j

2 (t, s)| ≤ |Gn,m
1 (t)| · |Gn,m

2 (s)|, (A.1)
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for some Gn,m
1 ,Gn,m

2 ∈ L2([0,T]), for all 1 ≤ n,m ≤ N , 1 ≤ i ≤ 2, 1 ≤ j ≤ 3. Finally, for

all f ∈ C(D(N)
T ,RD) we define

(Ψf)(t, T1, . . . , TN) =
∑

1≤n≤N

∫ t

0

An,1
1 (Tn − r)f(r, r, (Tk)k ̸=n)dr

∑
1≤n≤N

∫ t

0

An,2
1 (Tn − r)f(r, (Tk)k ̸=n, r)dr

+
∑

1≤n<m≤N

∫ t

0

An,m,1
2 (Tn − r, Tm − r)f(r, r, r, (Tk)k ̸=n,m)dr

+
∑

1≤n<m≤N

∫ t

0

An,m,2
2 (Tn − r, Tm − r)f(r, r, (Tk)k ̸=n,m, r)dr

+
∑

1≤n<m≤N

∫ t

0

An,m,3
2 (Tn − r, Tm − r)f(r, (Tk)k ̸=n,m, r, r)dr.

(A.2)

Proposition A.1. Suppose that (A.1) holds. Then, for any function f0 ∈ C([0, T ]N ,RD)

there exists a unique solution f ∈ C(D(N)
T ,RD) to the integral equation

f(t, T1, . . . , TN) = f0(T1, . . . , TN) + (Ψf)(t, T1, . . . , TN), (t, T1, . . . , TN) ∈ D(N)
T . (A.3)

Proof. For λ ≥ 0 we introduce the norm ∥f∥λ,∞ = sup
(t,T1,...,TN )∈D(N)

T
e−λt|f(t, T1, . . . , TN)|,

where | · | denotes the Euclidean norm on RD. One can check that ∥ · ∥λ,∞ is equivalent to

the sup-norm, and (C(D(N)
T ,RD), ∥ · ∥λ,∞) is a Banach space. Following a standard proof

pattern, we wish to prove that the operator

T f = f0(·) + (Ψf)(·), f ∈ C(D(N)
T ,RD),

is invariant and contracts. For the invariance, we only need to show that (t, T1, . . . , TN) 7→
(T f)(t, T1, . . . , TN) is continuous. By assumption, f0 is continuous, and for x = (t, T1, . . . , TN)
and x′ = (t′, T ′

1, . . . , T
′
N), with t ≤ t′, we have

|(Ψf)(t, T1, . . . , TN)− (Ψf)(t′, T ′
1, . . . , T

′
N)| ≤ |(Ψf)(t, T1, . . . , TN)− (Ψf)(t, T ′

1, . . . , T
′
N)|

+ |(Ψf)(t′, T ′
1, . . . , T

′
N)− (Ψf)(t, T ′

1, . . . , T
′
N)| .

The second term converges to zero as t → t′ by dominated convergence and (A.1). For
the first term we only analyze the first and third components of Ψf as the others behave
similarly. Notice that for any 1 ≤ n,m ≤ N∫ t

0

|An,1
1 (Tn − r)f(r, r, (Tk)k ̸=n)−An,1

1 (T ′
n − r)f(r, r, (T ′

k)k ̸=n)|dr

≤
∫ t

0

|An
1 (Tn − r)| · |f(r, r, (Tk)k ̸=n)− f(r, r, (T ′

k)k ̸=n)|dr

+

∫ t

0

|An
1 (Tn − r)−An

1 (T
′
n − r)| · |f(r, r, (T ′

k)k ̸=n)|dr.
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and∫ t

0

|An,m,1
2 (Tn − r, Tm − r)f(r, r, r, (Tk)k ̸=n,m)−An,m,1

2 (T ′
n − r, T ′

m − r)f(r, r, r, (T ′
k)k ̸=n,m)|dr

≤
∫ t

0

|An,m,1
2 (Tn − r, Tm − r)| · |f(r, r, r, (Tk)k ̸=n,m)− f(r, r, r, (T ′

k)k ̸=n,m)|dr

+

∫ t

0

|An,m,1
2 (Tn − r, Tm − r)−An,m

2 (T ′
n − r, T ′

m − r)| · |f(r, r, r, (T ′
k)k ̸=n,m)|dr.

In the expressions on the right of the two previous inequalities, the first integrals converge
to zero as x → x′ by (A.1), dominated convergence and the fact that f is continuous.
For the second integrals, we can take ∥f∥∞ out of the integral, and then use (A.1) and
the fact that the translation of Lp-functions is continuous, see [54, Proposition 1.6.13],
to show that both terms converge to zero as x′ → x. Applying similar arguments to the
other components of Ψf , we conclude that T f ∈ C(D(N)

T ,RD).
Finally, denoting by dλ the metric induced by the norm ∥ · ∥λ,∞, we want to show that T
contracts for λ large enough, that is

dλ(T f , Tg) ≤ qdλ(f ,g), ∀f ,g ∈ C(D(N)
T ,RD) (A.4)

for some q < 1 and λ > 0. By definition

e−λt |(T f)(t, T1, . . . , TN)− (Tg)(t, T1, . . . , TN)|

≤
∑

1≤n≤N

∫ t

0

e−λt|An,1
1 (Tn − r)||f(r, r, (Tk)k ̸=n)− g(r, r, (Tk)k ̸=n)|dr

+
∑

1≤n≤N

∫ t

0

e−λt|An,2
1 (Tn − r)||f(r, (Tk)k ̸=n, r)− g(r, (Tk)k ̸=n, r)|dr

+
∑

1≤n<m≤N

∫ t

0

e−λt|An,m,1
2 (Tn − r, Tm − r)||f(r, r, r, (Tk)k ̸=n,m)− g(r, r, r, (Tk)k ̸=n,m)|dr

+
∑

1≤n<m≤N

∫ t

0

e−λt|An,m,2
2 (Tn − r, Tm − r)||f(r, r, (Tk)k ̸=n,m, r)− g(r, r, (Tk)k ̸=n,m, r)|dr

+
∑

1≤n<m≤N

∫ t

0

e−λt|An,m,3
2 (Tn − r, Tm − r)||f(r, (Tk)k ̸=n,m, r, r)− g(r, (Tk)k ̸=n,m, r, r)|dr

≤ dλ(f ,g)× ∑
1≤n≤N
i=1,2

∫ t

0

e−λ(t−r)|An,i
1 (Tn − r)|dr +

∑
1≤n<m≤N

j=1,2,3

∫ t

0

e−λ(t−r)|An,m,j
2 (Tn − r, Tm − r)|dr


︸ ︷︷ ︸

Cλ(t,T1,...,TN )

.

(A.5)

We claim that for all 1 ≤ n,m ≤ N , 1 ≤ i ≤ 2, and 1 ≤ j ≤ 3, we have

sup
0≤t≤T1≤T

∫ t

0

e−λ(t−r)|An,i
1 (T1−r)|dr, sup

0≤t≤T1,T2≤T

∫ t

0

e−λ(t−r)|An,m,j
2 (T1−r, T2−r)|dr

λ→∞−−−→ 0.

(A.6)
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Indeed, using a change of variable s = t− r, for any δ > 0 we can write the first integral
as∫ t

0

e−λs|An,i
1 (T1 − t+ s)|ds ≤

∫ δ

0

e−λs|An,i
1 (T1 − t+ s)|ds+

∫ t∨δ

δ

e−λs|An,i
1 (T1 − t+ s)|ds

≤ ∥An,i
1 ∥L1([T1−t,T1−t+δ]) + e−λδ∥An,i

1 ∥L1([0,T ]).

Since An,i
1 ∈ L1([0, T ]) by assumption (A.1), for any ϵ > 0, we can choose δ small enough,

such that ∥An,i
1 ∥L1([T1−t,T1−t+δ]) ≤ ϵ/2, uniformly in (t, T1). Choosing λ > 0 such that

e−λδ∥An,i
1 ∥L1([0,T ]) ≤ ϵ/2, we obtain

sup
0≤t≤T1≤T

∫ t

0

e−λs|An,i
1 (T1 − t+ s)|ds ≤ ϵ.

Similar considerations can be applied for the second term using the assumptions in (A.1).
Indeed, for some Gn,m

1 ,Gn,m
2 ∈ L2([0, T ]) we have∫ t

0

e−λs|An,m,j
2 (T1−t+s, T2−t+s)|ds ≤ max

i∈{1,2}
∥Gn,m

i ∥2L2([Ti−t,Ti−t+δ])+e
−λδ max

i∈{1,2}
∥Gn,m

i ∥2L2([0,T ]),

and we conclude with the same arguments as before, that we can find λ large enough
such that

sup
0≤t≤T1,T2≤T

∫ t

0

e−λ(t−r)|An,m,j
2 (T1 − r, T2 − r)|dr ≤ ϵ.

Hence, (A.6) holds and we can choose λ large enough, such that

sup
(t,T1,...,TN )∈D(N)

T

Cλ(t, T1, . . . , TN) < 1,

with Cλ as in (A.5). This implies (A.4) for some q < 1 and λ > 0. Banach fixed point
theorem yields the conclusion.

Corollary A.2. The function m defined in Theorem 3.3 is the unique solution in X (N)
T

of (3.14) with initial condition m(0, T1, . . . , TN), and m is continuous on D(N)
T .

Proof. We start by observing that M(N)
T can be defined for bounded functions f on D(N)

T

by inserting r (one or multiple times) as the last arguments of the function f in the
first, third and fourth addends in (3.13). Furthermore, this extension of the operator

M(N)
T restricted to the subspace C(D(N)

T ,RD) has the structure of the operator Ψ in
(A.2) with D = DN (the cardinality of the set I(N) in (3.11)), and the hypothesis (A.1)
holds. In addition, since g0 is continuous then m(0, T1, . . . , TN) is continuous as well.

By Proposition A.1 there exists a solution m′ ∈ C(D(N)
T ,RD) to the equation (3.14)

with initial condition m(0, T1, . . . , TN), where instead of M(N)
T we consider the above

mentioned extension of the operator. Furthermore, the proof of (A.5) in Proposition
A.1 also holds for bounded functions f ,g. Hence, uniqueness also holds over the space
of bounded functions on D(N)

T . These observations imply uniqueness of the solutions in

X (N)
T of (3.14) with initial condition m(0, T1, . . . , TN), and that the function m defined

in Theorem 3.3 has to coincide with m′ and in particular it is continuous.
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Corollary A.3. Fix β ∈ Nd
0 and p ∈ N such that |β| ≤ p. Suppose that that for each

1 ≤ q < p and any w ∈ {1, . . . , d}q, C(q)
β (·, . . . , ·;w) is continuous on D(q)

T . Consider the
system of equations (3.27) in Theorem 3.8 – seen as a system indexed over the elements

w ∈ {1, . . . , d}p – with initial condition f
(p)
β (· · · ;w), w ∈ {1, . . . , d}p, as in (3.28). Then

for each w ∈ {1, . . . , d}p, f (p)β (· · · ;w) is in C(D(p)
T ,R) and (3.27) has a unique solution

such that C
(p)
β (·, . . . , ·;w) ∈ C(D(p)

T ,R).

Proof. The continuity of f
(p)
β (· · · ;w) can be shown in the same way that we showed in

the proof of Proposition A.1 that T f was continuous for f continuous. By taking D = dp,
i.e. the cardinality of {1, . . . , d}p, and N = p, equation (3.27) has the structure of the
equation in Proposition A.1 and hence the claim follows.
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