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Abstract
We propose a forecasting tool for precipitation based on analogues of circula-
tion defined from 5-day hindcasts and a stochastic weather generator that we
call “HC–SWG.” In this study, we aim to improve the forecast of European pre-
cipitation for subseasonal lead times (from 2 to 4 weeks) using the HC–SWG.
We designed the HC–SWG to generate an ensemble precipitation forecast from
the European Centre of Medium-range Weather Forecasts (ECMWF) and Cen-
tre National de la Recherche Météorologique (CNRM) subseasonal-to-seasonal
ensemble reforecasts. We define analogues from 5-day ensemble reforecast of
Z500 from the ECMWF (11 members) and CNRM (10 members) models. Then,
we generate a 100-member ensemble for precipitation over Europe. We evalu-
ate the skill of the ensemble forecast using probabilistic skill scores such as the
continuous ranked probability skill score (CRPSS) and receiver operating char-
acteristic curve. We obtain reasonable forecast skill scores within 35 days for dif-
ferent locations in Europe. The CRPSS shows positive improvement with respect
to climatology and persistence at the station level. The HC–SWG shows a capac-
ity to distinguish between events and non-events of precipitation within 15 days
at the different stations. We compare the HC–SWG forecast with other precipi-
tation forecasts to further confirm the benefits of our method. We found that the
HC–SWG shows improvement against the ECMWF precipitation forecast until
25 days.
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1 INTRODUCTION

Making accurate subseasonal forecasts remains a chal-
lenge for the scientific community (White et al. 2022). The
subseasonal time range lies between the medium-term
daily weather forecast and the seasonal forecasting (Vitart
et al., 2017). Considerable efforts have been made to under-
stand the different processes, interactions, and sources of
predictability in order to improve the subseasonal fore-
cast (Domeisen et al., 2022; Robertson & Vitart, 2019;
White et al., 2022). The subseasonal predictability is linked
to atmospheric, oceanic, and land processes (Robertson
& Vitart, 2019). The most important sources of pre-
dictability of the subseasonal range are as follows: the
Madden–Julian oscillation (Lau & Waliser, 2011; Vitart
et al., 2017), owing to its impacts on tropical and extrat-
ropical worldwide weather (Cassou, 2008; DeFlorio et al.,
2019); the soil moisture (Koster et al., 2010), as this can
influence lower atmospheric temperature and local pre-
cipitation (Domeisen et al., 2022; Wei & Dirmeyer, 2019);
snow cover (Lin & Wu, 2011), in particular for the polar
and midlatitude regions (Penny et al., 2019); ocean con-
ditions (Woolnough et al., 2007), which showed capacity
to enhance precipitation and temperature forecast over
certain areas (Subramanian et al., 2019); and the strato-
sphere, which has lagged impacts on precipitation and
temperature (Butler et al., 2019).

Improving the subseasonal forecast is also related to
the improvement of model physics by incorporating cou-
pled processes and many components of the Earth system,
such as ocean and sea ice and including the uncertain-
ties in the initial conditions related to the interactions
between the different sources of predictability mentioned
previously (Merryfield et al., 2020; Newman et al., 2003;
Rashid et al., 2011; Vitart, 2014). Subseasonal forecasts
have been more accurate with the improvement of numer-
ical weather prediction (NWP) models (Robertson &
Vitart, 2019). NWP forecasting has improved over the past
decades due to model improvements and the availabil-
ity of better data and forecast initialization (Magnusson
& Källén, 2013). NWP models have shifted from deter-
ministic to probabilistic approaches in the past decades.
Indeed, ensemble (probabilistic) forecasts help to catch
atmospheric chaos by producing a set of probabilities for
the predicted variable (Palmer, 2000). Hence, a probabilis-
tic forecast provides both the most likely scenario and the
uncertainties associated with it through a larger ensem-
ble forecast that allows more confident verification of the
subseasonal forecast.

As a result of all the aforementioned efforts, the sub-
seasonal ensemble forecasts have showcased their poten-
tial to deliver valuable predictions and early alerts for
significant climate and weather events (Domeisen et al.,
2022; Mariotti et al., 2018; Robertson & Vitart, 2019). These

include many impactful events, such as severe heatwaves,
cold spells, and tropical storm occurrences (Domeisen
et al., 2022; Merryfield et al., 2020). For instance, ensemble
NWP predictions showed a good forecast skill for atmo-
spheric fields such as the geopotential height at 500 hPa
for up to 1 month (Robertson & Vitart, 2019). Never-
theless, the subseasonal forecast skill is still insufficient
for some weather variables, such as precipitation. There
are at least two reasons for this shortcoming. Precipita-
tion results from complex nonlinear and multiscale pro-
cesses that are not well resolved in NWP models (Stan &
Straus, 2019; Zhang et al., 2021). Errors related to the phys-
ical parametrization assumptions combined with a lack of
resolution explain the poor predictability of precipitation
(Karl et al., 1990). In addition, small-scale effects, such as
topography or orography, are not well resolved by NWP
models. However, those parameters are important for local
weather (Wilks, 2011, chap. 6).

Many studies investigated the quality and accu-
racy of the subseasonal forecast for precipitation and
other variables. Domeisen et al. (2022) showed that
precipitation events, including events in Europe at the
subseasonal range time, can be more predictable by
associating them with a correct large-scale circulation.
Zhang et al. (2021) explained that the forecast skill of
the subseasonal-to-seasonal (S2S) precipitation forecast
depends on the geographical regions and seasons. For
extreme precipitation forecast, Olaniyan et al. (2018) found
that the S2S models could not reliably forecast the extreme
precipitation during the West African monsoon. In addi-
tion, Rivoire et al. (2023) assessed the forecast skill of the
S2S extreme precipitation forecast and found high hetero-
geneity in the forecast skill over regions and seasons in
Europe.

To overcome subseasonal forecast issues related to
model parametrization or uncertainties, subseasonal fore-
casts can be obtained by combining numerical or dynam-
ical weather prediction models with machine-learning
approaches (Weyn et al., 2021) as outlined by Barnes
et al. (2023), where they showed the improvement in
the forecasting skill of total regional rainfall across Great
Britain for up to 1 month using convolutional neural net-
works, or with statistical techniques that can also con-
tribute to enhance the forecast information on a small
scale. Indeed, statistical forecasts based on NWP informa-
tion tend to correct forecast biases (Klein et al., 1959; Specq
& Batté, 2020) as shown in Ben Bouallègue et al. (2023),
where statistical postprocessing methods have been used
to optimize NWP forecast of 2 m temperature and 10 m
wind speed.

Stochastic weather generators (SWGs) have been used
to generate ensemble weather forecasts for different
climate/weather variables (Wilks & Wilby, 1999). SWGs
have a good capacity to simulate the behaviour of the
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KROUMA et al. 3

climate variables (Ailliot et al., 2015). They have been used
to forecast weather and climate variables such as tem-
perature (Yiou & Déandréis, 2019), precipitation (Krouma
et al., 2022), the Madden–Julian oscillation (Krouma et al.,
2023), and the North Atlantic oscillation. SWGs have a
low computing cost compared with numerical models
(Ailliot et al., 2015). Combining SWGs with analogues of
atmospheric circulation is a promising approach to simu-
late the weather. Indeed, the circulation analogue method
assumes that the future evolution of the atmosphere will
be similar to the flows that followed the historical ana-
logues (Atencia & Zawadzki, 2014; Blanchet et al., 2018;
Lorenz, 1969; Yiou et al., 2013).

The aim of this work is to improve the forecast skill
of precipitation averages over Europe using an SWG based
on analogue circulation for subseasonal lead times (≈10 to
35 days). The SWG developed by Yiou (2014) showed the
capacity to forecast average precipitation (Krouma et al.,
2022) within 5–10 days and temperature within 40 days
(Yiou & Déandréis, 2019) with promising probabilistic
scores. In this work, we revisit the SWG described by
Krouma et al. (2022) to optimize the simulation of Euro-
pean precipitation from ensemble dynamical reforecasts
of the European Centre of Medium-range Weather Fore-
casts (ECMWF) and the Centre National de la Recherche
Météorologique (CNRM) of Météo France. The idea is to
use the gained forecast skill of the Z500 forecast from
dynamical models as input to the SWG to have an ensem-
ble forecast of precipitation at different lead times up to
1 month. Then, we evaluate the ensemble forecast skill
using skill scores such as the continuous ranked probabil-
ity score (CRPS) and the receiver operating characteristic
(ROC) curve. We also compare our forecasts of precipi-
tation with the ECMWF precipitation forecast using the
CRPS and the anomaly correlation coefficient (ACC) as a
deterministic score.

The rest of the article is structured as follows: Section 2
details the data used for running our forecast. Section 3
describes the forecast process, including the circulation
analogues computation and the SWG and explains the ver-
ification metrics used to evaluate the forecast skill. The
results of the simulations and the evaluation of the ensem-
ble forecast, as well as the comparison of the SWG forecast
with the ECMWF precipitation forecast, are presented and
discussed in Section 4. Section 5 contains the main conclu-
sions.

2 DATA

We use daily geopotential at 500 hPa (Z500) data from
dynamical reforecasts. Reforecasts (also known as
hindcasts) are forecast runs using the same model version

as the real-time forecast for past periods. Two configu-
rations are mainly used to produce reforecasts. The first
configuration, the so-called “fixed configuration”, consists
of producing reforecasts for all past dates once during the
lifetime of a given model version. In this case, a new set of
reforecasts is produced with each new model version. The
second configuration, known as “on-the-fly configura-
tion”, consists of producing reforecasts at the same time as
the real-time forecasts, which means that each reforecast
refers to a real-time forecast.

The reforecasts of Z500 were collected from the S2S
database for two models: CNRM and ECMWF (Vitart et al.,
2017). The ECMWF reforecast is produced “on the fly”
and it is composed of an 11-member ensemble covering
the past 20 years (Vitart et al., 2019). As initial condi-
tions, the ECMWF reforecast uses the ECMWF Reanalysis
v5 (ERA5) (Hersbach et al., 2020) and Ocean Reanalysis
System 5 ocean initial conditions (Hersbach et al., 2020).
The CNRM reforecasts are produced with the fixed con-
figuration (Ardilouze et al., 2021; Batté & Déqué, 2016).
The CNRM reforecast ensemble is composed of 10 mem-
bers initialized each week over the 1993–2017 period. The
CNRM model uses as initial conditions ERA5 for atmo-
sphere and land surface and MERCATOR-OCEAN ocean
reanalyses. Both reforecasts feed the S2S database weekly.
We considered two models produced with similar prop-
erties coupled with ocean and sea-ice models. The main
characteristics of the ECMWF and CNRM models are
shown in Table 1.

We used two different precipitation databases for veri-
fication purposes. Daily observation data (i) at the station
scale from the European Climate Assessment & Dataset
(ECA&D) (Klein Tank et al., 2002) served as a reference for
four different stations in Europe (Berlin, Orly, Toulouse,
Madrid), and (ii) data from E-OBS (Cornes et al., 2018) in
order to test the forecast skill of our model over Europe.
E-OBS data are available in a daily range from 1950 to
2022. We regridded the E-OBS data to a resolution of 1.5◦ ×
1.5◦ to comply with the reforecast horizontal resolution.
We used the S2S precipitation forecast from the ECMWF
model to verify the forecast skill of our model (Vitart et al.,
2019). We considered daily data from January to Decem-
ber from 2015 to 2021 at different lead times. Data were
extrapolated for each station studied and bias corrected
according to the climatology of each lead time.

3 METHODOLOGY

The goal of this study is to simulate forecast ensembles
of N = 100 members for European precipitation at the
subseasonal lead time (from 2 to 4 weeks). Our methodol-
ogy enhances the available hindcast ensembles to N = 100
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4 KROUMA et al.

T A B L E 1 Characteristics of the European Centre of Medium-range Weather Forecasts (ECMWF) and Centre National de la Recherche
Météorologique (CNRM) subseasonal-to-seasonal ensemble reforecasts.

Model Model version Period Horizontal resolution (km) Size Ocean resolution Sea ice

ECMWF CY47R2 2001–2021 15–31 11 0.25◦, 75 levels Active

CNRM CNRM-CM 6.1 1993–2017 50 10 0.25◦, 75 levels Active

members through a random sampling of circulation ana-
logues selected separately from the ECMWF and CNRM
reforecasts’ ensembles. The following subsections explain
how the circulation analogues are computed from refore-
casts of the ECMWF and CNRM, and how the random
sampling (or SWG) is performed.

3.1 Data processing and analogue
dataset

The first step in our forecasting process is to define the
analogues of Z500. An analogue is a date where the con-
figuration of the atmospheric circulation is similar to a
selected day t (Krouma et al., 2022; Yiou, 2014). To define
an analogue, we apply two rules: the calendar distance
between t and its analogues should not exceed 30 calen-
dar days, and an analogue of t should be in a different year
than t. Our selection criterion is the Euclidean distance,
which we compute between Z500 at a day t and its ana-
logue day t′. Then, for each day, we keep the K analogues
with the minimum Euclidean distance. To find analogues
of the Z500(x, t) field, the Euclidean distance is computed
as follows:

D(t, t′) =

[∑
x

||Z500(x, t) − Z500(x, t′)||2
]1∕2

, (1)

where x is a spatial index.
To define analogues, some parameters need to be

defined, such as the geographical region. We determined
analogues over the region with coordinates 30◦W–2◦E,
40◦–60◦N defined by Krouma et al. (2022) as an optimal
region to compute analogues for precipitation forecast in
Europe. In this study, we keep K = 20 best analogues as in
Krouma et al. (2022). We also choose to use analogues only
from Z500 to ensure a fair comparison with our previous
work (Krouma et al., 2022) and to ensure that the forecast
skill improvement is related to the use of the reforecast
ensembles and not related to other atmospheric variables.

Before defining the analogues, we start by verifying the
spread of the reforecast ensemble of ECMWF and CNRM
on the fifth day. The aim is to verify the spread of the
ensemble and check whether we can use the whole ensem-
ble to compute analogues. We computed the Euclidean

distance between the members of each ensemble. Then,
we compared it separately to the distance between the ana-
logues of each model (Figure 1). We computed analogues
from the first and eleventh (or tenth) members, and the
ensemble mean (Figure 1a–c). The analogues were com-
puted for the 11 (or 10) members, but for brevity’s sake,
and as the conclusion is the same, we choose to show the
comparison between the analogues of the ensemble mean
and the first and last members.

The distance between the 11 members of the ECMWF
reforecast of Z500 for 5 days ahead varies between 169 m
and 175 m (Figure 1b). The analogues of the ensemble
mean are closer than the analogues of the first and last
members. For the ensemble reforecast of the CNRM, the
maximum distance between the 10 members is 184 m
(Figure 1d). The analogues of the ensemble mean show an
average distance of 259 m compared with the analogues of
the first and tenth members. We conclude that the maxi-
mum distance between the ECMWF or CNRM ensembles
members is smaller than the average distance between the
analogues, as shown in Figure 1.

The ensemble spread is small enough compared with
the distance between the analogues, plus the use of one
member of each ensemble or of the mean ensemble led to
the same analogues with a smaller distance between ana-
logues. Hence, we decided to use the ensemble mean at
the fifth day to compute the analogues, as illustrated in
Figure 2, instead of using the ensemble members sepa-
rately.

3.2 SWG configuration

The aim of the analogue SWG is to generate random
trajectories based on previously computed analogues
(Yiou, 2014). In order to generate a trajectory for a par-
ticular day t0 in year y0, we produce series of N = 100
simulations until a time t0 + T, with a lead time T rang-
ing from 10 to 35 days. In this article, we make a forecast
for t0 = t + 𝛿. Here, we assume 𝛿 to be 5 days and refer to
ECMWF and CNRM reforecasts 5 days ahead that serve
as input for predicting the average precipitation between
t0 and t0 + T. This approach is based on the analogues of
the atmospheric circulation. For the sake of conciseness,
we refer to T as the lead time owing to its value being
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F I G U R E 1 Comparison between the distance between the analogues computed from the first and last members and the ensemble
mean of the (a) European Centre of Medium-range Weather Forecasts (ECMWF) and (c) Centre National de la Recherche Météorologique
(CNRM) reforecasts and the distance between the members of the ensembles of (b) ECMWF and (d) CNRM ensemble members at 5 days
ahead. HC, hindcast. [Colour figure can be viewed at wileyonlinelibrary.com]

greater than zero and our focus on averages beyond t0.
Nonetheless, it is essential to note that T and 𝛿 are distinct
quantities.

To produce a single trajectory, we follow the procedure
outlined in Krouma et al. (2022). Beginning on day t0, we
randomly select an analogue t′k among the K = 20 best ana-
logues for day t0 + 1. The random selection of analogues of
the day t0 + 1 is carried out using weights that are propor-
tionate to the calendar difference between t0 and analogue
dates in order to ensure that time progresses (Yiou, 2014).

We also exclude analogue dates with years that are equal
to y0. This rule is important for the next iterations in order
to produce a hindcast simulation. We then replace t0 with
the selected analogue of t′k and repeat the operation T
times. Excluding analogues in year y0 from the selection
ensures that we do not use information from the T days
that follow t0.

The method involves conducting hindcast simulations
by selecting analogues of a specified time period, which are
then replaced with the initial time interval. This is repeated
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6 KROUMA et al.

F I G U R E 2 Schematic to illustrate the hindcast–stochastic weather generator (HC–SWG) forecast procedure at a day t0 for a lead time
of T days. The starting point is the European Centre for Medium-range Weather Forecasts or Centre National de Recherches Météorologiques
reforecasts ensemble members of Z500 at 𝛿 = 5 ays and the output is the ensemble members of precipitation at a lead time T. This illustration
shows the HC–SWG process to generate one trajectory for a day t0. S2S, subseasonal to seasonal. [Colour figure can be viewed at
wileyonlinelibrary.com]

T times. To ensure the exclusion of analogues in year y0
from the selection, their corresponding information from
the T-day period after t0 is excluded. Subsequently, the
simulated precipitation corresponds to the next selected
analogue, t′k+1. The analogues are resampled each day
using 20n potential trajectories, where n is the length of the
simulated sequence. This process produces a hindcast ran-
dom trajectory between t0 and t0 + T. Then, t0 is shifted by
Δt ≈ T∕2 days and the ensemble simulation is repeated.
This provides a set of ensemble forecasts with analogues.

The aforementioned procedure is repeated N = 100
times to simulate N = 100 trajectories from t0 to t0 + T.
The daily precipitation of each trajectory is time averaged
between t0 and t0 + T. Hence, we obtain an ensemble of
N = 100 forecasts of the average precipitation for a day t0
and lead time T.

The forecasts of precipitations based on analogues of
atmospheric circulation Z500 from the ensemble mean of
the CNRM and ECMWF reforecasts are started everyΔt ≈
T∕2 days between January 1, 1993, and December 31, 2017,
using the CNRM reforecast and between January 1, 2002,
and December 31, 2021, using the ECMWF reforecast.
This yields a stochastic ensemble hindcast of precipitation
and atmospheric circulation (Z500) for the ECMWF and
CNRM reforecasts (Table 2).

The added value of this study compared with the pre-
vious study (Krouma et al., 2022), where the atmospheric
circulation from reanalyses was used, is that we consider

T A B L E 2 Data split for training and verification.

Training
Test/
verification

Verification vs
ECMWF forecast

ECMWF 2002–2014 DJF, JJA 2015–2021

CNRM 1993–2014 DJF, JJA 2015–2018

Abbreviations: CNRM, Centre National de Recherches Météorologiques;
DJF, December–February; ECMWF, European Centre for Medium-range
Weather Forecasts; JJA, June–August.

Z500 from the reforecasts of S2S models and at 𝛿 = 5 days
ahead instead of 𝛿 = 0 days as in Krouma et al. (2022),
to forecast precipitation beyond 5 days. This means that
the circulation analogues calculated in this study are ana-
logues of 5 days ahead (Figure 2). Consequently, the simu-
lations will be called “HC–SWG” forecasts.

3.2.1 Example of the forecast process

To illustrate the procedure, we start from the 11 (or 10)
reforecast members of Z500, 𝛿 = 5 days ahead, to get an
ensemble forecast of precipitation, as shown in Figure 2.
For a given day t0 = February 3, 2003, we compute the
ensemble average of the Z500 reforecast (either ECMWF
or CNRM). Then, we compute analogues from the ensem-
ble average at a day t0 = February 3, 2003, and we keep
K = 20 best analogues of Z500. For a lead time T = 3 days,
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Days from January to December of 2003

P
 M

a
d

ri
d

 (
m

e
a

n
 1

5
 d

a
y
s
)

0
2

0
4

0
6

0

5 30 55 80 105 130 155 185 210 235 260 285 310 335 365

obs

simu

q95

q5

HC−SWG (ECMWF)

F I G U R E 3 Time series of the simulations (red line), observations (black line), and the 5th and 95th quantiles of simulations (dashed
grey lines) for precipitation over Madrid at a lead time T = 15 days for 2003 using the hindcast–stochastic weather generator (HC–SWG) with
hindcast of the European Centre for Medium-range Weather Forecasts (ECMWF) [Colour figure can be viewed at wileyonlinelibrary.com]

we randomly select an analogue from the 20 analogues
of Z500 at t0 + 1. For instance, the first best analogue for
t0 = February 3, 2003 is t′k = January 19, 2007. We repeat
this operation 100 times. Then, for each analogue, we
consider the corresponding amount of precipitation either
from E-OBS or ECA&D data. This way, we construct the
first trajectory of precipitation, as shown in Figure 2. We
generate 100 trajectories of precipitation using the same
procedure. Hence, we obtain 100 samples of average pre-
cipitation between t0 and t0 + T for the defined day t0 and
at T = 3 days.

As an example, we show the time series of the simula-
tions and observations of precipitation over Madrid within
15 days for 2003 in Figure 3. It shows the mean of the
100 simulations (forecast of precipitation) and the obser-
vations for lead times of T = 15 days for the whole year. We
notice that the HC–SWG reproduces precipitation fluctu-
ations within 15 days as it gets the high and low values of
precipitation for the whole year. We can also see that all the
values are covered, as shown by the 5th and 95th quantiles
(dashed grey lines in Figure 3).

3.3 Assessment of the forecast quality

In order to evaluate the forecast skill of our model, we
employed probabilistic skill metrics, including rank cor-
relation, CRPS, and ROC curve analysis (Wilks, 2011).
Temporal rank correlation was computed by assessing
the correlation between observed precipitation data and
the median derived from 100 simulations. Furthermore,
the CRPS is used as a quadratic metric to gauge the

disparities between the forecasted cumulative distribution
function and the empirical cumulative distribution func-
tion derived from the observed data (Wilks, 2011; Zamo &
Naveau, 2018). The CRPS is defined by

CRPS(P, xa) = ∫
+∞

−∞
(P(x) −(x − xa))2 dx, (2)

where xa is the observed precipitation in [t0, t0 + T], P is the
cumulative distribution function of x of the ensemble fore-
cast, and  represents the Heaviside function ((y) = 1
if y ≥ 0, and(y) = 0 otherwise). A perfect forecast yields
CRPS = 0.

As the CRPS value depends on the unit of the vari-
able to be predicted, it is useful to normalize it with the
CRPS value of a reference forecast, which can be obtained
by a persistence or climatology hypothesis. The continu-
ous ranked probability skill score (CRPSS) is defined as
a fraction of improvement over such a reference forecast
(Hersbach, 2000). We compute the CRPSS with reference
values of the CRPS:

CRPSS = 1 − CRPS
CRPSref

, (3)

where CRPS is the average of the CRPS of the SWG fore-
cast and CRPSref is the average of the CRPS obtained by the
reference forecast.

As a reference, we used climatology, persistence, and
model forecasts. The persistence forecast consists of using
the average value between t0 − T and t0 for a specific
year. Meanwhile, the climatological forecast is derived
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8 KROUMA et al.

from the long-term average between t0 and t0 + T. To
account for natural variability, we introduce randomness
into both the persistence and climatological forecasts by
introducing small white Gaussian noise. We estimate the
standard deviation of this noise through bootstrapping
over extended time intervals, denoted as T. We show an
example of the learned values of the standard deviation in
Figure A2 (see also Appendix A). Additionally, we incor-
porate the precipitation forecast from the ECMWF model
as a third CRPS reference.

CRPSS values fall within the range of negative infin-
ity to 1. A value of CRPSS > 0 indicates that the fore-
cast demonstrates improvement over the reference. When
comparing the HC–SWG forecasts with the ECMWF pre-
cipitation forecast, we opted for the “fair CRPSS” outlined
in the literature (Ferro, 2007, 2014). The fair CRPSS fac-
tors in the difference in ensemble sizes, as we generate 100
members compared with ECMWF’s 51 members in our
analysis.

The CRPS can be decomposed into three parts: relia-
bility (Re), resolution (Res), and uncertainty (Unc) (Hers-
bach, 2000):

CRPS = Re − Res +Unc. (4)

The reliability Re tests the capacity of the ensemble to
generate a cumulative distribution function that has, on
average, the desired statistical property (Wilks, 2011). The
reliability is sensitive to the average spread of the ensemble
and biases in the forecast. The model is perfectly reliable
when Re = 0 (Hersbach, 2000). The uncertainty U is the
CRPS based only on the sample climatology (Wilks, 2011).
Resolution Res represents the difference with climatology.
A positive resolution indicates that the model’s perfor-
mance is better than the climatology (Wilks, 2011). In
our analysis, we focus more on the interpretation of Re.
Indeed, that helps to understand the spread of the ensem-
ble forecast.

The ROC curve is a graphical representation that illus-
trates the trade-off between false alarms and positive hits
in a forecast. This curve serves as a reference point for
assessing forecast skill. When the ROC curve lies along the
diagonal line it reflects a random classifier with no skill.
If the ROC curve falls below the diagonal line it indicates
poor forecasting skill; conversely, if it rises above the diag-
onal line it signifies good skill. In other words, the forecast
has the potential to distinguish between successful predic-
tions and false alarms (Fawcett, 2006).

The ROC curve is a valuable tool for quantifying dis-
crimination skill, which measures the model’s capacity
to differentiate between binary classes (Fawcett, 2006;
Krouma et al., 2023). The area under the curve (AUC)

is a metric used to quantify this discrimination skill. A
higher AUC value signifies a greater ability of the fore-
cast model to distinguish between precipitation events
and non-events (Fawcett, 2006; Toth et al., 2003). In our
study, we assess the discrimination skill of our forecast
for two different classifications of precipitation events. We
consider a first classification for precipitation events and
non-events by considering

• precipitation P < 1 mm to be a non-event, and
• P ≥ 1 mm to be an event of precipitation.

A 1 mm threshold to define precipitation events is
commonly employed in climate studies owing to its estab-
lished relevance and overall use. Other studies also sup-
port our choice: Chen et al. (2021) indicate that climate
models often show an unrealistic bias towards drizzle;
and Frei et al. (2006) suggested that there is no dif-
ference when lower thresholds are applied, and in our
previous study Krouma et al. (2022) we used the same
threshold to establish the relation between precipitation
and Z500.

We also evaluate our model’s capacity to detect extreme
precipitation events. We define extreme precipitation as
precipitation that exceeds the 90th percentile (Rivoire
et al., 2023). We compute the empirical 90th percentile
after excluding precipitation values below 1 mm. Our
binary classification for extremes is defined as follows:

• P ≥ q90 is a non-event;
• P > q90 is an extreme event of precipitation.

We calculated the ACC to compare the HC–SWG and
ECMWF precipitation forecasts. The ACC is a determinis-
tic score commonly used to verify spatial fields (Kam et al.,
2021; Peng et al., 2013). It represents the spatial correla-
tion that we computed between the ensemble mean of the
HC–SWG forecast anomalies and the ensemble mean of
the ECMWF precipitation forecast anomalies. The anoma-
lies are computed with respect to the climatology of each
ensemble forecast of precipitation. ACC values of 1 indi-
cate a perfect association of forecast anomalies with the
observation anomalies. Values <1 indicate weaker associ-
ation (Peng et al., 2013).

ACC =
∑n

i=1(predi − pred)(obsi − obs)√∑n
i=1(predi − pred)2

√∑n
i=1(obsi − obs)2

, (5)

where obs is the observed precipitation and pred is the
forecasted precipitation. ACC was computed separately for
the HC–SWG and the ECMWF precipitation forecast.
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KROUMA et al. 9

4 RESULTS

4.1 Evaluation of the forecast of the
precipitation using HC–SWG in Europe

We first evaluate the HC–SWG forecast of the precip-
itation averages t0 to T over Europe using the CRPSS
with respect to persistence and climatology at each T. We
make two separate forecasts using the HC–SWG based
on analogues of Z500 computed from the ensemble mean
of the ECWMF and CNRM S2S reforecast for 5 days
ahead for the period between respectively 2002–2021 and
1993–2017. In this article, we choose to show skill scores
for December–February (DJF) and June–August (JJA) for
the sake of brevity. The computations of the CRPS were
made using observations of precipitation from E-OBS
(Haylock et al., 2008).

We find that the HC–SWG forecasts show positive
improvement against persistence and climatology in dif-
ferent European locations in DJF and JJA (positive values
of CRPSS). We notice that the CRPSS for the HC–SWG
forecasts using analogues from the ECMWF reforecast has
higher scores against persistence and climatology than
using analogues from the CNRM reforecast. The CRPSS
against persistence is higher in the summer, in particu-
lar in July in southwest Europe (Figure 4). However, for
the winter, the CRPSS against persistence is higher for
northern Europe, mainly in France and Germany. The
CRPSS for the HC–SWG forecasts using analogues of the
CNRM reforecast still shows a positive improvement for
the different locations with smaller values of 0.2 to 0.3
(Figure 4). The higher skill values are also obtained in
southern Europe. The difference in the HC–SWG forecast
skill using the ECMWF and CNRM reforecast could be
mainly related to the difference in the configuration of the
two dynamic models and the resolution of each model.
Similar results have been found by Ardilouze et al. (2021)
for 2 m temperature over Europe, where scores highlighted
a better performance of the ECMWF over CNRM for every
lead time (weeks).

4.2 Evaluation of the forecast at the
station level

We evaluate the forecast of precipitation using the
HC–SWG at the station level for Orly, Berlin, Toulouse, and
Madrid. The motivation behind choosing those particular
stations despite the availability of precipitation observa-
tions all over Europe is to ensure a comparison with the
previous work Krouma et al. (2022). The computations of
the CRPS were made using observations of precipitation
from ECA&D databases.

At a local scale, we find that the CRPSS shows a positive
improvement for T ≤ 35 days for the different locations
studied for both winter (DJF) and summer (JJA) seasons,
as shown in Figure 5 for the HC–SWG forecast using ana-
logues of the ECMWF reforecast. We notice that the CRPSS
against persistence is higher for Madrid and Toulouse,
in particular for JJA, which is consistent with the result
in Section 4.1. We notice that the CRPSS against persis-
tence is stable for the four stations in DJF. However, the
CRPSS against the climatology decreases with lead time
but is still positive within 35 days. This indicates that the
HC–SWG performs better than persistence for the different
lead times. We argue the increasing of the CRPSS at a lead
time of 35 days using the decomposition of the CRPS, as
represented in Figure 9. Indeed, we find that the HC–SWG
forecast has small reliability values for the different lead
times and stations. This confirms the good performance
of the HC–SWG. However, we notice that the reliability
increases from T = 25 days in Madrid and Berlin com-
pared with the rest of the areas studied, which can explain
the highest CRPSS with respect to persistence. This could
be related to a larger spread of the ensemble forecast of
the HC–SWG from T = 25 days. Similar results were found
for the HC–SWG forecast using analogues of the CNRM
reforecasts (Figure A1).

4.3 Comparison of HC–SWG forecasts
derived from CNRM or ECMWF

We compare the performance of the HC–SWG using ana-
logues of the ECMWF and CNRM ensemble reforecasts at
the station level. We notice that the CRPSS for both sets
of HC–SWG forecasts and the four studied areas shows a
positive improvement over the climatology (Figure A1).

Although the performance of the HC–SWG using ana-
logues computed from ECMWF or CNRM ensemble mean
reforecasts of Z500 hPa for 𝛿 = 5 days ahead is different at
the European level, we found a comparable performance
and skill scores when we compare them at the station level.
That may be related to some reasons related to the config-
uration of the models or even to specific regions where the
models perform differently from one region to another, as
shown by Hewson and Pillosu (2021).

The HC–SWG shows stable CRPSS values against the
climatology (Figure A1). The CRPSS values decreases with
T against climatology. Comparing the correlation between
the average of the 100 simulations of the HC–SWG and
the observations (ECA&D), we notice a tiny difference in
the correlation between the two forecasts, as illustrated in
Figure 6.

When comparing the forecast skill of the HC–SWG
with that of the SWG in Krouma et al. (2022), we find
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F I G U R E 4 Continuous rank probability skill score (CRPSS) with respect to persistence and climatology for the forecast of the
European precipitation with the hindcast–stochastic weather generator (HC–SWG) forecast using analogues of European Centre of
Medium-range Weather Forecasts (ECMWF) and Centre National de la Recherche Météorologique (CNRM) dynamical models for
December–February (DJF) and June–August (JJA) for a lead time of 10 days. [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 5 Continuous rank probability skill score (CRPSS) with respect to climatology in Europe for the hindcast–stochastic weather
generator (HC–SWG) forecast using European Centre of Medium-range Weather Forecasts (ECMWF) dynamical model for
December–February (DJF) and June–August (JJA). [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 6 Comparison of the rank correlation between the hindcast (HC)–stochastic weather generator forecast using analogues of
the European Centre of Medium-range Weather Forecasts (ECMWF) and Centre National de la Recherche Météorologique (CNRM)
reforecasts for all lead times and for the different studied stations for December–February (DJF) and June–August (JJA). [Colour figure can
be viewed at wileyonlinelibrary.com]
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12 KROUMA et al.

T A B L E 3 Comparison between the continuous ranked
probability skill score (CRPSS) with respect to the climatology of the
hindcast (HC)–stochastic weather generator (SWG) and the SWG
in Krouma et al. (2022) in June–August for T = 10 and 20 days.

CRPSS

T = 10 days T = 20 days

Location HC–SWG SWG HC–SWG SWG

Orly 0.38 0.28 0.38 0.2

Madrid 0.58 0.42 0.55 0.38

Berlin 0.35 0.32 0.30 0.22

Toulouse 0.30 0.58 0.50 0.31

Note: The blod was used to indicate the values of the CRPSS from the
HC-SWG.

that considering Z500 analogues from the ECMWF and
CNRM S2S ensemble mean reforecast for 5 days ahead
helped to improve the precipitation forecast for T up to
35 days in different locations in Europe. The forecast at
the station level with the SWG in Krouma et al. (2022, e.g.,
fig. 4) gave a good forecast skill with respect to climatology
and persistence for T up to 10 days; and the CRPSS was
higher during the DJF, with values of CRPSS with respect
to climatology and persistence ranges of respectively
[0.57, 0.48] and [0.6, 0.42] (Krouma et al., 2022). However,
the CRPSS decreases considerably during JJA with the
SWG, as shown in Table 3. With the HC—SWG, the CRPSS
with respect to the climatology and the persistence shows
a positive improvement for both seasons DJF and JJA and
stays stable for the different lead times (Figure A1 and
Table 3). For instance, the HC–SWG forecasts for Berlin
are showing good skill (CRPSS against persistence and
climatology) for the different lead times using analogues
of Z500 from ECMWF and CNRM reforecasts compared
with the SWG forecast of precipitation in Berlin based on
analogues of Z500 computed from reanalyses (Table 3)
(Krouma et al., 2022, fig. 4).

Next, we compared the ROC curves for the HC–SWG
forecasts based on analogues of Z500 from ECMWF and
CNRM dynamical models for the different areas studied
(Berlin, Madrid, Orly, Toulouse) and for lead times going
from 10 to 35 days. The ROC curve helps to determine the
discrimination skill of the HC–SWG. We considered an
event of precipitation when the daily amount of precipi-
tation is above P ≥ 1 mm; otherwise, there is a non-event
(Figure 7a). We noticed that the HC–SWG is able to distin-
guish between events and non-events of precipitation for
the different areas studied until T = 15 days (Figure 7a).
For Madrid, we notice that the HC–SWG is able to distin-
guish between precipitation events and non-events until
35 days. We found that the HC–SWG forecasts from ana-
logues of ECMWF or CNRM dynamical models show

the same behaviour except for Berlin, where we noticed
that the discrimination skill persists until 25 days using
analogues of the ECMWF model. The AUC values range
between 0.77 and 0.58 at T = 15 days (Figure 7a). The
HC–SWG keeps its skill to distinguish between events and
non-events of precipitation as the AUC values are over
0.5; that is, above the diagonal of the ROC curve. We
notice that the positive rate is 0.85 for 10 days for Madrid,
Orly, Toulouse, and Berlin using analogues of ECMWF or
CNRM, but it decreases differently with lead time and from
one station to another.

In addition, we verified the discrimination skill of
the HC–SWG using the analogues of both ECMWF and
CNRM models for extreme precipitation (Figure 7b). For
T = 10 days, the AUC values range between 0.67 (Madrid)
and 0.57 (Berlin), indicating that the HC–SWG conserves
its capacity to distinguish between non-events of extreme
precipitation (P < q90) and events of extreme precipitation
(P ≥ q90).

We assessed the statistical significance of the AUC in
both cases using the Mann–Whitney test (Wilks, 2011),
which we describe in Appendix B. We found that the AUC
of the HC–SWG using the ECMWF reforecast is significant
until T = 25 days for Madrid, Orly, and Berlin (Table B1).
For extreme precipitation, the discrimination skill is sig-
nificant until 10 days for all stations and until T = 15 days
with the ECMWF reforecast for Madrid and Orly, as high-
lighted in Table B1.

4.4 Comparison of HC–SWG
and ECMWF precipitation forecast

We compared the HC–SWG precipitation forecasts with
the ECMWF precipitation forecast by computing the fair
CRPSS as shown in Equation (3). We used the ECMWF
precipitation forecast as a reference to the HC–SWG fore-
casts. Positive values indicate an improvement of the
HC–SWG forecast over the ECMWF or the CNRM precipi-
tation forecasts. We choose to compare the HC–SWG fore-
cast with the ECMWF precipitation forecast up to 25 days
as the AUC values are mainly significant until T = 25 days,
as shown earlier (see also Appendix B).

For the different areas studied, we compared the
CRPSS of the HC–SWG based on the ECMWF or CNRM
reforecast with the CRPSS of the ECMWF precipitation
forecast, both against the climatology (see Figure A1). We
found that the CRPSS of the HC–SWG using either ana-
logues from ECMWF or CNRM reforecasts is higher than
the CRPSS against the climatology of the ECMWF fore-
cast of the precipitation, in particular for Berlin and Orly
(Figure A1a,d).

The comparison shows that the HC–SWG improves
the precipitation forecast up to 25 days with respect to the
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F I G U R E 7 Area under the curve (AUC) for Orly, Madrid, Toulouse, and Berlin for hindcast (HC)–stochastic weather generator (SWG)
precipitation forecast based on European Centre of Medium-range Weather Forecasts (ECMWF; solid line with square) and Centre National
de la Recherche Météorologique (CNRM; dash line with circle) reforecasts. (a) AUC for precipitation considering 1 mm as a threshold; (b)
AUC for extreme precipitation that exceeds the 90th quantile. The dashed grey line represents the diagonal of the ROC curve (AUC = 0.5).
[Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E 8 Continuous rank probability skill score (CRPSS) between the European Centre of Medium-range Weather Forecasts
(ECMWF) precipitation forecast and the hindcast–stochastic weather generator (HC–SWG) forecasts based on the ECMWF and Centre
National de la Recherche Météorologique (CNRM) reforecasts. The CRPSS is computed between the HC–SWG and a reference, in this case
the ECMWF precipitation forecast. [Colour figure can be viewed at wileyonlinelibrary.com]

ECMWF precipitation forecast by using either the CNRM
or ECMWF analogues of Z500. As shown in Figure 8, we
found that the HC–SWG forecast of precipitation based on
analogues of ECMWF (Figure 8a) and CNRM (Figure 8b)

reforecasts of Z500 is more skilful than the ECMWF
precipitation forecast for different lead times and for the
locations studied, except for Toulouse and Madrid respec-
tively at a lead time of 10 and 25 days. The HC–SWG
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F I G U R E 9 Comparison between the continuous ranked probability score (CRPS) reliability of the hindcast (HC)–stochastic weather
generator (SWG) forecasts based on European Centre of Medium-range Weather Forecasts (ECMWF) reforecasts and the CRPS reliability of
the ECMWF precipitation forecast. [Colour figure can be viewed at wileyonlinelibrary.com]

forecasts based on analogues of the CNRM reforecasts of
Z500 show no improvement for Berlin for T < 15 days.
The ECMWF precipitation forecast shows a better skill
for Madrid at 25 days compared with the HC–SWG fore-
cast. Moreover, we notice that the improvement of the
HC–SWG using analogues of Z500 of the ECMWF refore-
casts is higher than by using CNRM reforecasts.

To better explain these results, we compared the CRPS
reliability of the HC–SWG forecasts of precipitation using
the ECMWF and CNRM reforecasts with the CRPS reli-
ability of the ECMWF precipitation forecast (Figure 9).
We found that the HC–SWG forecast is more reliable for
the different lead times and stations compared with the
ECMWF precipitation forecast. This confirms the good
performance of the HC–SWG compared with the numer-
ical model. However, we notice that the reliability of the
ECMWF precipitation forecast is lower than that of the
HC–SWG forecast in Madrid at T = 25 days, which can
explain the negative CRPSS of the HC–SWG at 25 days for
Madrid with respect to the ECMWF precipitation forecast.
More results about the CRPS decomposition and compar-
ison are detailed in Appendix C.

Both the HC–SWG and the SWG in (Krouma et al.,
2022, tab. 6) show comparable improvement in the forecast
of precipitation compared with the ECMWF precipitation

forecast. The added value of the HC–SWG is that the
forecast is initiated at 𝛿 = 5 days ahead compared with
the SWG in Krouma et al. (2022), where reanalyses were
used to define analogues at 𝛿 = 0. Also, the HC–SWG can
forecast precipitation for further lead times T and with
better skill (Table 3) compared with the SWG in Krouma
et al. (2022).

To confirm the forecast skill of the HC–SWG pre-
cipitation forecast either by using the ECMWF or the
CNRM reforecast against the ECMWF precipitation fore-
cast, we computed the ACC for the anomalies of the
ensemble mean of the HC–SWG and ECMWF precipi-
tation forecasts (Figure 10). For the four regions stud-
ied, we noticed that the ACCs of the HC–SWG using the
ECMWF or CNRM reforecast are comparable except for
Orly (Figure 10a). The ACC of the HC–SWG for the differ-
ent areas studied decreases with lead times T. Comparing
it with the ACC of the ECMWF precipitation forecast, we
found that the ACCs of the HC–SWG lead times rang-
ing from T = 10 to T = 25 days are higher. Even if the
ACC HC–SWG values are lower than 1, which does not
indicate a perfect affinity with the observations, they out-
perform the ACC values of the ECMWF precipitation fore-
cast, which shows negative or close to zero values at some
lead times.
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F I G U R E 10 Comparison between anomaly correlation coefficient (ACC) of the European Centre of Medium-range Weather Forecasts
(ECMWF) precipitation forecast and the hindcast (HC)–stochastic weather generator (SWG) forecasts based on the ECMWF and Centre
National de la Recherche Météorologique (CNRM) reforecasts. [Colour figure can be viewed at wileyonlinelibrary.com]

5 CONCLUSION

The use of the S2S ECMWF and CNRM ensemble mean
reforecasts of the geopotential height at 500 hPa for 5 days
ahead helped to improve statistical features of the precip-
itation forecast over Europe with an SWG. The HC–SWG
confirmed its capacity to forecast precipitation for up
to 35 days in Europe and at the station level. However,
the forecast skill differs from one region to another and
remains higher over southernmost locations for either
summer or winter. The SWG based on analogues cir-
culation has been used in previous studies (Krouma
et al., 2022, 2023; Yiou & Déandréis, 2019) to fore-
cast temperature, precipitation, and the Madden–Julian
oscillation. In this version, the HC–SWG confirmed the
capacity of the SWG and analogues circulation to fore-
cast precipitation at a local scale similar to the SWG in
Krouma et al. (2022), showing good skill scores in dif-
ferent regions despite the variety of the local weather
and for a longer lead time of 35 days compared with
the 10 days in Krouma et al. (2022). The HC–SWG con-
firmed its capacity to distinguish between events and
non-events of precipitation as well as extreme precipi-
tation for a lead time of at least 10 days. In addition,
the comparison with the ECMWF precipitation forecast

confirmed the performance of the HC–SWG forecasts for
T = 25 days.

Comparing the HC–SWG precipitation forecast with
the SWG precipitation forecast in Krouma et al. (2022), we
also noticed the added value of using the analogues com-
puted from reforecasts of Z500 from dynamical models at
𝛿 = 5 days instead of using reanalyses of the atmospheric
circulation with 𝛿 = 0.

Combining dynamical models with the SWG allowed
the improvement of the precipitation forecast to the sub-
seasonal lead time. This work highlights the contribution
of dynamical models with a correct initialization (Zuo
et al., 2016) to get a skilful forecast. These results can be
considered as a starting point to implement an operational
forecast from the HC–SWG at the subseasonal lead time.
This can help to verify the forecast skill of the HC–SWG in
real time. The HC–SWG can also be tested to forecast other
meteorological variables in different regions of the globe.
This can help to improve forecasts and verify the capacity
of our forecasting tool.

We used the ensemble mean of the Z500 for 5 days
ahead to forecast the precipitation. This approach showed
a capacity to improve the European precipitation fore-
cast. However, this approach must be verified and adjusted
while using the atmospheric circulation for more 𝛿 days
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ahead, like 10 or even more. The verification would depend
on the atmospheric circulation field, its forecast skill at
different lead times, and the ensemble member’s quality,
which would help avoid smoothing data and getting wrong
analogues.
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APPENDIX A. STANDARD DEVIATION OF
LEARNED VALUES OF THE CLIMATOLOGY
FORECAST FOR DIFFERENT LEAD TIMES

As explained in Section 3, the added noise to the per-
sistence and climatology forecast is estimated using the
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F I G U R E A1 Comparison of the continuous ranked probability skill score (CRPSS) with respect to the climatology of the European
Centre of Medium-range Weather Forecasts (ECMWF) forecast (yellow line) and hindcast (HC)–stochastic weather generator forecast using
analogues of the ECMWF (blue line) and Centre National de la Recherche Météorologique (CNRM; red line) reforecasts for all lead times and
for the different areas studied in winter (December–February, DJF). [Colour figure can be viewed at wileyonlinelibrary.com]
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F I G U R E A2 Boxplots of the standard deviation values of the learned values for the climatology for different lead times T = 10, 15,
and 25 days for the different stations: (a) Madrid, (b) Toulouse, (c) Berlin, and (d) Orly. [Colour figure can be viewed at wileyonlinelibrary.com]

extended time interval equal to T. The added noise is
helpful, as there are truncation errors in observations that
make the empirical distribution discrete rather than con-
tinuous. It also helps to induce variability in the persis-
tence and the climatology baselines. Figure A2 presents
the boxplots of the standard deviation of the learned val-
ues for climatology forecast at different lead times for the
studied stations Madrid, Toulouse, Berlin and Orly.

The standard deviations of the CRPS values decrease
with lead time for Madrid, Toulouse, and Berlin
(Figure A2a,b,d) and remain stable for Orly, near relatively
small values (Figure A2c). This shows that the forecast
sample size decreases with longer lead times T, which is
related to the average forecast provided by the HC–SWG
between t0 and [t0,T]. This helps to make the forecast skill
of the HC–SWG better over time.

APPENDIX B. STATISTICAL SIGNIFICANCE
OF THE AUC FOR HC–SWG PRECIPITATION
FORECAST FOR DIFFERENT LEAD TIMES

We evaluated the discrimination skill of the HC–SWG
forecast of European precipitation using the AUC,

as described in Section 3.3. We assessed the statistical
significance of the AUC of the HC–SWG forecasts with
the ECMWF and CNRM reforecasts against the AUCobs.
The AUCobs depends on the event and non-event of
precipitation in the observations.

To define the AUCobs is computed as follows
(Wilks, 2011, Chap. 7):

AUCobs =
1 − U

n1 × n2
, (B1)

where n1 is the event of precipitation on the observa-
tions, n2 is the non-event of precipitation, and U is
the Mann–Whitney variable defined from n1 and n2
(Wilks, 2011, Chap. 7). The interpretation of this sig-
nificance test is as follows: if AUCSWG > AUCobs, the
AUC value of the SWG is significant, otherwise it is not
significant.

We applied this test for the event and non-event
of precipitation where (precipitation events are above
P ≥ 1 mm and non-event with precipitation below
P ≥ 1 mm) as shown in Table B1 and extreme precipitation
(where extreme precipitation events are above P ≥ q90 and
non-event with precipitation below P ≥ q90 ) as illustrated
in Table B2.
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T A B L E B1 Significance test for area under the receiver operating characteristic curve (AUC) of Orly, Madrid, Toulouse, and Berlin for
hindcast–stochastic weather generator forecast for non-event of precipitation (<1 mm) and event of precipitation (>1 mm) based on
European Centre of Medium-range Weather Forecasts (ECMWF; AUCECMWF) and Centre National de la Recherche Météorologique (CNRM;
AUCCNRM) reforecasts for different lead times.

Lead time (days) AUC Madrid Orly Berlin Toulouse

T = 10 AUCECMWF 0.77 0.64 0.64 0.64

AUCCNRM 0.77 0.64 0.63 0.64

AUCobs 0.52 0.51 0.52 0.51

T = 15 AUCECMWF 0.69 0.56 0.54 0.56

AUCCNRM 0.69 0.55 0.51 0.56

AUCobs 0.53 0.52 0.52 0.52

T = 25 AUCECMWF 0.6 0.53 0.53 0.51

AUCCNRM 0.61 0.51 0.50 0.51

AUCobs 0.54 0.53 0.53 0.53

T = 35 AUCECMWF 0.56 0.50 0.50 0.51

AUCCNRM 0.56 0.49 0.49 0.49

AUCobs 0.55 0.54 0.54 0.53

Note: Bold was used to indicate significant values compared to the AUCobs.

T A B L E B2 Significance test for area under the receiver operating characteristic curve (AUC) of Orly, Madrid, Toulouse, and Berlin for
hindcast–stochastic weather generator extreme precipitation forecast based on European Centre of Medium-range Weather Forecasts
(ECMWF) and Centre National de la Recherche Météorologique (CNRM) reforecasts for different lead times.

Lead time (days) AUC Madrid Orly Berlin Toulouse

T = 10 AUCECMWF 0.65 0.59 0.58 0.57

AUCCNRM 0.67 0.58 0.57 0.58

AUCobs 0.52 0.51 0.52 0.52

T = 15 AUCECMWF 0.61 0.58 0.50 0.53

AUCCNRM 0.61 0.51 0.50 0.53

AUCobs 0.54 0.54 0.54 0.54

T = 25 AUCECMWF 0.53 0.50 0.51 0.50

AUCCNRM 0.54 0.50 0.50 0.50

AUCobs 0.55 0.55 0.55 0.56

T = 35 AUCECMWF 0.53 0.50 0.51 0.50

AUCCNRM 0.54 0.49 0.49 0.48

AUCobs 0.57 0.57 0.57 0.57

Note: Bold was used to indicate significant values compared to the AUCobs.

APPENDIX C. DECOMPOSITION OF THE
CRPS FOR THE HC-SWG PRECIPITATION
FORECAST FOR DIFFERENT LEAD TIMES

The CRPS can be decomposed into three parts, as
explained in Section 3.3 and shown in Equation (4).
Table C1 shows the resolution and the reliability val-
ues for the HC–SWG using the ECMWF analogues for
different lead times. Indeed, the resolution tends to be
more independent from the ensemble spread and explains

the predictability better (Hersbach, 2000). The resolution
values of the HC–SWG for the different lead times are
positive, indicating a better performance than the climatol-
ogy. However, they increase with lead times, which could
be related to the HC–SWG’s average precipitation fore-
cast over longer lead times. Figure C1 shows the potential
CRPS (CRPSpot) (Hersbach, 2000), which we computed as
follows:

CRPSpot = Unc − Res. (C1)
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T A B L E C1 Continuous ranked probability score of reliability (Re) and resolution (Res) for the hindcast–stochastic weather generator
for different lead times.

Lead time (days) Re, Res Madrid Orly Berlin Toulouse

T = 10 Re 1.45 2.19 2.22 2.10

Res 4.60 3.93 6.30 9.51

T = 15 Re 2.18 2.91 3.12 2.96

Res 4.93 5.83 3.37 5.27

T = 25 Re 3.16 3.8 4.32 4.35

Res 3.01 4.16 2.95 6.60
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F I G U R E C1 Comparison between the potential continuous ranked probability score (CRPSpot) of the hindcast (HC)–stochastic
weather generator (SWG) forecasts based on European Centre of Medium-range Weather Forecasts (ECMWF) reforecasts and the ECMWF
precipitation forecast. CRPSpot includes the resolution and the uncertainty of the continuous ranked probability score. [Colour figure can be
viewed at wileyonlinelibrary.com]

We decided to look at the CRPSpot to better understand
the forecasts’ performance. Comparing the CRPSpot of the
HC–SWG with the CRPSpot of the ECMWF (Figure C1),
we noticed that the CRPSpot of the ECMWF decreases
with lead time for the different locations studied. However,
the CRPSpot of the HC–SWG tends to increase with lead

times. This can be explained in different ways. It can be
related to the average forecast provided by the HC–SWG
between t0 and [t0,T], which leads to filtering out more
noise with longer lead times, to the variance in the data due
to outliers, or to the relatively small size of the verification
periods as indicated.
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