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Abstract

This paper introduces a novel approach to evaluate
the reliability of Neural Networks (NNs) by inte-
grating adversarial attacks with Importance Sam-
pling (IS), enhancing the assessment’s precision
and efficiency. Leveraging adversarial attacks to
guide IS, our method efficiently identifies vulner-
able input regions, offering a more directed alter-
native to traditional Monte Carlo methods. While
comparing our approach with classical reliability
techniques like FORM and SORM, and with clas-
sical rare event simulation methods such as Cross-
Entropy IS, we acknowledge its reliance on the
effectiveness of adversarial attacks and its inabil-
ity to handle very high-dimensional data such as
ImageNet. Despite these challenges, our compre-
hensive empirical validations on the datasets the
MNIST and CIFAR10 demonstrate the method’s
capability to accurately estimate NN reliability for
a variety of models. Our research not only presents
an innovative strategy for reliability assessment in
NNs but also sets the stage for further work exploit-
ing the connection between adversarial robustness
and the field of statistical reliability engineering.

1 INTRODUCTION

In the fast-evolving landscape of Deep Learning, ensuring
the robustness and reliability of Neural Networks (NNs) is
paramount, particularly for critical decision-making appli-
cations. This work introduces a simple approach for estimat-
ing the local robustness of trained Neural Networks against
uncertainties. We propose a method that amalgamates adver-
sarial attacks with Importance Sampling (IS), an established
technique in Statistical Reliability Engineering. Adversarial
attacks, traditionally aimed at uncovering NN vulnerabili-
ties, are repurposed in our methodology as a strategic guide

for the IS process. This approach identifies of the most error-
prone regions in the input space, thus directing the sampling
process contrary to the Crude Monte Carlo method.

A key contribution of this research is the comparative analy-
sis of our method with classical techniques from the field of
Statistical Reliability Engineering [Der Kiureghian, 2022].
These techniques include the First Order Reliability Method
(FORM), Second Order Reliability Method (SORM), and
Line Sampling [Koutsourelakis et al., 2004], which have not
been extensively applied to DNNs in very high-dimensional
spaces, a gap our study aims to fill.

In addition, we compare this IS estimator to classical rare
event simulation algorithms. These include Cross-entropy-
based Adaptive Importance Sampling (CE-AIS) [Rubinstein
and Kroese, 2016] and Adaptive Multilevel Splitting (AMS)
[Au and Beck, 2001] methods. We show that the proposed
method is more efficient and faster than these techniques for
various architectures and datasets.

However, this novel estimator is not without limitations. Its
effectiveness is inherently tied to the efficiency of adversar-
ial attacks; it can only be as good as the adversarial attacks
it relies on. Moreover, the occurrence of weight degeneracy
in extremely high-dimensional data, such as ImageNet data
where d = 150528, restricts the applicability of this method.
These constraints highlight the need for a continuum of so-
lutions from fast methods, like the one proposed here, to
more advanced but slower methods for complex settings.

This paper delves into the intricacies of integrating adver-
sarial attack strategies within the IS framework, addressing
both the algorithmic challenges and the theoretical aspects.
We focus on adapting these strategies for high-dimensional
reliability analysis in NNs, confronting computational and
conceptual hurdles. We validate our approach through em-
pirical studies and experiments on a variety of deep learn-
ing models using the computer vision datasets MNIST and
CIFAR10. These evaluations demonstrate the method’s effi-
cacy in rapidly estimating NN reliability and shed light on
failure patterns in these high-dimensional models.
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2 PROBLEM STATEMENT AND
RELATED WORK

Certified robustness refers to the ability of a neural network
to consistently classify inputs correctly within a specified
range of perturbations. Unlike empirical robustness, which
is tested through experiments and simulations, certified ro-
bustness provides theoretical assurances, ensuring that the
network’s predictions remain unchanged for perturbations
below a certain magnitude. Various approaches have been
developed to certify the robustness of neural networks.

Complete Verification provides formal guarantees of robust-
ness by exhaustively analyzing all possible perturbations
within a given range. Katz et al. [2017] proposed the first
exact verification method for Neural Networks, using tools
from Satisfiability Modulo Theories (SMT). Notably, they
prove in the same work that this is an NP-complete problem.

Incomplete Verification Methods use conservative approxi-
mations. They are computationally efficient but incomplete.
Interval bound propagation and abstract interpretation are
prominent examples Singh et al. [2018].

Probabilistic Assessment resorts to random simulations with
statistical guarantees on the probability of failure under a
certain noise distribution Webb et al. [2019]. Some com-
bines these with formal methods Weng et al. [2019]. Our
method pertains to this family.

2.1 PROBABILISTIC ASSESSMENT

Consider a trained neural network classifier f : [0, 1]d →
[0, 1]C mapping an input to a probability vector for C
classes and a clean input x0 which is well classified:
arg max1≤i≤C fi(x0) = c, where c is the ground truth
class. The question is whether a random perturbation, mod-
eling uncertainties on the input measurement, can cause a
misclassification.

The approach of Webb et al. [2019] is to cast this issue as
a probability measure. Assuming a statistical model of a
random additive perturbation N, the objective is to compute
the probability of failure (i.e. misclassicification). We intro-
duce the random input X = x0 + N whose distribution is
denoted π. The probability of a failure is defined as

PF(π) :=

∫
[0,1]d

1 [h(x) ≥ 0]π(dx), (1)

where h : [0, 1]d → [−1, 1] computes how close an input is
from a misclassification. For instance,

h(x) := max
i∈[1:C],i6=c

fi(x)− fc(x). (2)

h(x) > 0 indicates that x is not classified as class c, the
ground truth of x0.

2.2 RELATED WORKS

Recent machine learning papers dealing with local robust-
ness against uncertainties ignore the literature of Statistical
Reliability Engineering and refer more to works in the field
of Rare Event Simulation. The workhorse is mainly the
Sequential Monte Carlo (SMC) (also knows as Adaptive
Multilevel Splitting (AMS)) family of algorithms [Au and
Beck, 2001, Cérou et al., 2019].

As far as we know, Webb et al. [2019] are the first to use
an SMC simulation to estimate the probability of failure of
deep NNs. Tit et al. [2021] use a variant that is faster but
only predicts whether the probability of failure is below a
critical level. The method has some statistical guarantees
and is efficient since the reported critical level can be as low
as 10−50.

Baluta et al. [2021] use the Crude Monte Carlo simulation
though within a sequential testing scheme [Wald, 1945],
that increases the computational budget adaptively. It comes
with robust non-asymptotical guarantees but in practice only
works for high critical levels, typically greater than 10−3.
These methods need the statistical model of the uncertain-
ties, and also the function h (2) (if working in the input
space) or function G (3) (if working in the U-space) as a
black box.

Tit et al. [2023] propose a new SMC-like algorithm tailored
for NNs: it exploits the gradient ∇G(u) which is easy to
compute for white box NNs thanks to auto-differentation
via backpropagation.

However, all these variants of SMC consume a lot of calls
to the neural network function. Indeed, the total number of
calls is generally on the order of hundreds of thousands for
making a statement about the probability of failure around a
single input x0. In contrast, our method, under assumptions
we detail, gives reliable estimations in a few thousand calls.

3 BACKGROUND

3.1 STATISTICAL RELIABILITY ENGINEERING

The problem stated in (1) is exactly the core issue in Statisti-
cal Reliability Engineering, a domain born in the 70s. Here,
h is a state function of a physical system described by pa-
rameters stored in x. The system is reliable when h(x) ≤ 0,
which is the case around the nominal state x0. The state X
deviates from x0 due to some random uncertainties. The
number of parameters is usually small and the state func-
tion has a close form inherited from the rules of physics.
However, the computation of (1) is difficult because π or
the region {h(x) ≥ 0} is complicated.
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3.1.1 Most Probable Failure Point in the U-space

To get an abstraction from the distribution π, one usually
considers that there exists a bijective isoprobabilistic trans-
formation T that pushes forward the normal distribution to
π. In other words, X = T (U) ∼ π when U ∼ N (0; I).
Examples are the Nataf [1962] and Rosenblatt [1952]
transformations. This rephrases the problem into

PF(π) = E[1 [G(U) ≤ 0]] (3)

where G := −h ◦ T −1.

The following methods approximate the failure event around
the Most Probable Failure Point (MPFP), also called the
design point. It is defined as the point in the U-space with
the highest probability density on the frontier G(u) = 0.
Formally:

u∗ := arg max
u:G(u)=0

φ(u) = arg min
u:G(u)=0

‖u‖2. (4)

In classical applications of Statistical Reliability Engineer-
ing, finding this point is usually not difficult because it
has a closed form or a numerical solution like the HL-
RF algorithm (Hasofer and Lind [1974], Rackwitz and
Flessler [1978]) quickly converges in a low dimensional
space. Sect. 5 shows this is still possible on small-scale
images.

3.1.2 FORM and SORM

The First (resp. Second) Order Reliability Method FORM
(resp. SORM) models G(u) by a linear (resp. quadratic)
function in the neighborhood of u∗. This leads to the fol-
lowing approximations:

P FORM
F := Φ(−‖u∗‖2), (5)

P SORM
F := Φ(−‖u∗‖2)

d−1∏
i=1

(1 + κi)
−1/2. (6)

where (κi)
d−1
i=1 are the eigenvalues of the Hessian matrix of

G at point u∗ restricted to the subspace orthogonal to u∗, de-
noted span(u∗)⊥. The product accounts for the curvatures
of the frontier around u∗, thereby refining the probability
of failure estimate compared to FORM. We illustrate this
phenomenon in section 5, for small-scale images, as it is not
possible to apply form to larger images due to its computa-
tional complexity in O(d2).

3.1.3 Line Sampling (LS)

LS also accounts for curvature, though, without using the
Hessian matrix [Koutsourelakis et al., 2004]. It is a ran-
dom simulation that has advantages for complex and high-
dimensional systems. In a nutshell, it draws random normal

vectors Ui, projects them onto hyperplaneH = span(u∗)⊥

and finds the minimum βi s.t. G(U⊥i + βiu
∗/‖u∗‖) = 0.

See also Figure 1. The final estimator is given by:

P LS
F :=

1

N

N∑
i=1

Φ(−βi). (7)
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Figure 1: Illustration of Line Sampling in R2.

3.1.4 Importance Sampling (IS)

The methods above assume that the design point u∗ is easily
computed. Without this assumption, the Crude Monte Carlo
estimator

PCMC
F :=

1

N

N∑
i=1

1 [G(Ui) ≤ 0] (8)

is a possibility only if the true probability PF is not small
because the relative estimator variance scales as 1/NPF.

Importance Sampling is an alternative estimator:

P IS
F :=

1

N

N∑
i=1

1 [G(Yi) ≤ 0]
φ(Yi)

fY (Yi)
, (9)

where Yi are i.i.d. random vectors whose p.d.f. is denoted
fY and φ is the p.d.f. of the standard normal law. It may
bring a variance reduction if the p.d.f. of Y is similar to the
optimal f?Y (Y) ∝ φ(Y)1 [G(Y) ≤ 0].

Without any prior knowledge about G, it is difficult to figure
out where the region {U|G(U) ≤ 0} is located in the
U-space, hence the shape of the optimal density f?Y . The
Cross-Entropy method makes a progressive exploration of
the space by iteratively sampling random vectors of density
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3.2 ADVERSARIAL EXAMPLES

Adversarial examples are considered a vulnerability of ma-
chine learning classifiers. Given an input x0 well classified
by classifier c(·), the adversarial example is the nearest mis-
classified input:

x? = arg min
x∈[0,1]d:c(x)6=c(x0)

d(x,x0), (11)

where d(x,x0) is a distance between x and x0. For the case
where the classifier is a neural network, the event c(x) 6=
c(x0) can be rephrased as h(x) ≥ 0 (see (2)).

If distance d is the Euclidean norm of x − x0, then the
adversarial example (11) in the U-space is indeed the de-
sign point (4). As far as we know, this connection between
adversarial examples and statistical reliability engineering
has never been made before. This implies that algorithms
from this later domain, like HL-RF designed in the 70s,
could find `2 adversarial examples. This is indeed not the
case due to the high dimensionality of the input space in
modern classification problems. The recent attacks finding
adversarial examples are more efficient.

The Carlini and Wagner [2017] (CW) attack is known for
its precision in scouting adversarial examples with minimal
perturbation. It amounts to solve the Lagrangian formulation
of (4): Define J(u, λ) := ‖u‖2 + λG(u),∀λ ≤ 0 and

u?λ := arg min
x∈[0,1]d

J(u, λ). (12)

This is done with a numerical solver. On top of it, a line
search finds λ? s.t. G(u?λ?) = 0. This attack requires a fair
amount of function G gradient computations. Of note, we
have the following property: 2u?λ + λ∇G(u?λ) = 0, or:

cos (u?λ,∇G(u?λ)) = −1. (13)

The FMNA attack [Pintor et al., 2021] (abbreviation for
"Fast Minimum-norm Adversarial Attack"), focuses on find-
ing the shortest path to the decision boundary, iteratively
refining the input to project it onto the decision boundary.
This method is much faster and almost as precise as CW.

4 PROPOSED METHOD

This paper introduces a simple yet innovative approach to
speed up the reliability estimation of Neural Networks by
integrating adversarial attacks into the framework of Impor-
tance Sampling (IS). This method is built upon the founda-
tions of Statistical Reliability Engineering and especially
MPFP-based Importance Sampling [Melchers and Beck,
2018]. It leverages the strengths of specific adversarial at-
tacks to construct a biased distribution for more effective
sampling. The key lies in using these attacks to shift the
focus of the sampling process towards regions in the input
space where the NN is most vulnerable, thus allowing for a
more accurate estimation of the model’s reliability.

4.1 CONSTRUCTING THE BIASED
DISTRIBUTION

Utilizing these adversarial attacks, we construct a shifted
Gaussian distribution in the U-space (standard normal
space), where the mean of the distribution is adjusted based
on the insights gained from the attack. This results in a bi-
ased distribution that is centered around the region of high
failure probability. The steps for constructing this distribu-
tion are as follows:

Mapping to the U-Space: Transform the evaluation of (1)
into the estimation of (3) as explained in Sect. 3.1.1. In the
U-space, the uncertainties are standard normally distributed.

Generating Adversarial Examples: Employ attacks de-
scribed in Sect. 3.2 to find the adversarial example u? that
highlights the NN’s vulnerable point. Select an attack effi-
cient in high-dimensional spaces and designed to find adver-
sarial examples of minimal norm, like CW or FMNA.

Creating the Biased Distribution: Formulate a Gaussian
distribution in the U-space centered around the adversarial
example, ensuring that the sampling process is concentrated
around the most vulnerable regions of the NN. Run the
Importance Sampling procedure with Yi

i.i.d.∼ N (u?, I).
This means that the ratio appearing in (9) equals

φ(Yi)

fY (Yi)
= exp (‖u?‖2/2−Y>i u

?). (14)

4.2 ASSUMPTIONS

This method relies on the following assumptions:

A1. The design point is unique. This means that u? is a
global minimum of J(u, λ?). If existing, local minima lie
further away from the origin. This means that the probability
of failure is dominated by the probability of sampling U
around this unique design point s.t. G(U) > 0.

A2. The attack finds this design point.
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A3. The frontier locally around the design point u? is not
so curved.

Once the attack produces a point u?, it is easy to check
that it lies on the boundary, i.e. G(u?) = 0, and it is a lo-
cal minimum because (13) holds. However, this does not
prove that u? is the true global minimum. As for assump-
tion A3, if too many random vectors Yi drawn for the IS
lead to G(Yi) ≥ 0, it means that the Importance Sampling
estimation (9) will be zero or dominated by too few sam-
ples. Statisticians say that the efficient number of samples
is too small which provokes a non-reliable estimation. In
conclusion, we have means for controlling that assumption
A3 holds and assumption A2 is partly fulfilled. Yet, it is
impossible to ensure that A1 holds.

5 EXPERIMENTAL RESULTS

5.1 EXPERIMENTAL SETUP

We compare the convergence of different Rare Event Simu-
lation methods: our Adversarial-Attack Driven IS of Sect. 4
(which we abbreviate by ADV-IS), the Line Sampling (LS)
estimator (7), the Cross-Entropy Importance Sampling (CE-
IS) (9) (10), and two estimators based on Sequential Monte
Carlo (SMC) techniques, the Multilevel Splitting [Au and
Beck, 2001] and a Langevin Monte Carlo within an SMC
scheme [Tit et al., 2023], that we note respectively MLS-
SMC and MALA-SMC (MALA stands for Metropolized
Langevin Algorithm). An important parameter for these
SMC methods, in addition to the number of samples N , is
the number T of applications of a transition kernel, which
reduces the dependence between samples. Theoretical guar-
antees are derived under the perfect independence (T =∞).
In practice, T < ∞ has a huge impact on the number of
calls to the NN.

We consider three models across two datasets and apply
uniform noise to different instances. For each instance, we
compute a reference probability of failure P̂Ref

F by using
an expensive IS compute (taking N of the order 106) and
we check a posteriori that all methods converge towards
the same value. In addition to benchmarking the rare event
simulation methods, we compute both the FORM estimate
P FORM

F and, whenever possible, the SORM estimate P SORM
F ,

as defined above, using different search methods. These
estimators are quantitively compared thanks to two metrics:

• The coefficient of variation ∆[·], defined for an estima-

tor P̂F as, ∆[P̂F] =

√
V[P̂F]

E[P̂F]
.

• The relative mean absolute error, note RE[·], define as:
RE[P̂F] = E[|PF − P̂F|] · P−1F .

In practice, we have to estimate these metrics by their em-
pirical counterpart. Moreover, as RE explicitly involves the

Label predicted:7 Label predicted:7 Label predicted:7

Figure 2: Input x0,1 (on the left) and examples of perturba-
tions with uniform noise ε = 0.18.

failure probability, we will use the reference probability
P̂Ref

F as a surrogate. Crucially, for a fair comparison, these
metrics and the complexity of an estimator (gauged by the
number of calls) are measured over the same runs. All exper-
iments were run on a personal laptop, with a 4060RTX GPU.
All the code will be made available publicly on GitHub once
the reviewing will be over.

5.2 MNIST

5.2.1 MLP with two hidden layers

We first compare these methods via experiments on a sim-
ple Multi-Layer Perceptron (MLP) with only 2 hidden lay-
ers (each containing 200 neurons) trained on the MNIST
dataset [LeCun et al., 1990], which will be referred to as
model M1, and on a first instance we note x0,1. We con-
sider an additive noise perturbation, uniform on the `∞
ball of radius ε = 0.18 and centered on x0,1, see Figure
4. This distribution can be mapped to the standard Gaus-
sian law via the isoprobabilistic transform mentioned in
Sect. 3.1.1. At this level of noise, the probability of misclas-
sification is low. Running an expensive simulation we find
that P̂Ref

F ≈ 1.95 · 10−6.

We apply the FORM and SORM methods with three adver-
sarial attacks, the Carlini-Wagner attack, FMNA attack, and
HLRF attacks. Indeed, the dimension is d = 784 for this
dataset and it is possible to manipulate matrices of size d×d
and in particular to evaluate, via auto-differentiation, the
Hessian of G. Table 1 presents the results. At a glance, it is
clear that FORM significantly overestimates the probability
of failure when the FMNA and HLRF attacks find the design
point (4), but underestimates it with the CW attack. This in-
dicates that the decision boundary at u? is not "flat" enough
for a linear approximation to hold. This idea is further rein-
forced by observing that the SORM estimators are indeed
closer to the actual probability of failure. In addition, we
note that, here, the CW attack performed poorly, as its norm
is higher in comparison with that of the two other attacks.
Moreover, the Hessian∇2h = −∇2G has both positive and
negative eigenvalues at the CW point, whereas it only has
non-positive eigenvalues at the other attack points.

We next, look at the convergence of the statistical methods
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Table 1: FORM/SORM estimations of P̂Ref
F ≈ 1.95 · 10−6

for model M1 and input x0,1, with uniform noise (ε = 0.18).

Attack P FORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 7.2 · 10−8 6.39 · 10−6 −0.69

FMNA 1.17 · 10−4 6.49 · 10−6 −0.995
HLRF 7.53 · 10−5 6.65 · 10−6 −0.977

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 5.26 −4.1 · 10−5 0.19

FMNA 3.68 −1.4 · 10−5 0.16
HLRF 3.79 −2.0 · 10−2 0.01

with respect to the average number of calls, noted N̄calls. In
Figure 5 we see that all methods seem to converge towards
the reference probability as the average number of calls
increases, though their convergence rate differs. In particular,
the Sequential Monte Carlo methods, MALA-SMC and
MLS-SMC, converge noticeably slower than the LS and
ADV-IS methods. The cross-entropy (CE) IS method has
a significant overhead as it must first converge towards a
good parameter θ, before exploiting its final distribution
to compute an estimate of PF. We focus on the IS and LS
methods in Figure 6, comparing their speed of convergence
for different adversarial attacks. These figures are obtained
by: running each method 400 times (with different random
seeds to obtain standard errors) using a given number of
samples N and repeating the same operation for increasing
values of N . For example, we ran the ADV-IS for values of
N in the range {100, 1000, 10000, 50000, 100000}.

Finally, we give the best performance of each algorithm
(with respect to the number of samples used) in terms of
the coefficient of variation multiplied by a measure of the

Carlini-Wagner Attack 
 Prediction: 3

FMNA Attack 
 Prediction:3 

HLRF Attack 
 Prediction: 3

Figure 3: Adversarial attacks for model M1 on input x0,1.
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Figure 4: Eigenvalues of the Hessian of h at the CW attack
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HLRF attack (on the right).
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Figure 6: Convergence of IS and LS with different attacks.

computational burden. In practice, we use either the number
of calls to the model N̄calls (i.e. the metric ∆̂2[P̂F]× N̄calls),
or the duration of the simulation in seconds (i.e. the metric
∆̂2[P̂F]× time). Table 2 reports the results where Nbest de-
notes the number of samples that gave the best performance
in terms of the metric ∆̂2[P̂F]× N̄calls. All metrics reported
in this table pertain to the ADV-IS method outperforms all
other methods, for both metrics mentioned above. The CE-
IS method also obtains good performance, for a relatively
low number of samples Nbest used for estimation. However,
the total number of calls needed for CE-IS is in the order of
hundreds of thousands.

5.2.2 MLP with four hidden layers

We now consider a similar MLP architecture with four hid-
den layers (each hidden layer containing 200 neurons), de-
noted M2. Simulation results for the FORM and SORM
algorithms are given in the Appendix. Overall, these re-
sults support the idea that the decision boundaries of neural
networks do not appear to be (locally) flat enough to be accu-
rately approximated by hyperplanes, as the FORM method
tends to overestimate the probability by an order of 10 or
more. In contrast, the SORM method shows promising re-
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Table 2: Best performance of estimators of PF for the model
M1 and input x0,1, with uniform noise (ε = 0.18).

Method Nbest time (sec.) RE[P̂F]
ADV-IS 5 · 104 5 · 10−2 2.5 · 10−2

CE-IS 3 · 104 2.3 · 10−1 4.3 · 10−2

LS 50 4.3 · 10−2 2.1 · 10−1

MALA 256 2.0 · 10−1 2.1 · 10−1

MLS 1024 2.5 · 10−2 2.6 · 10−1

∆̂2[P̂F]× N̄calls ∆̂2[P̂F]× time N̄calls

ADV-IS 48 4.8 · 10−5 5 · 104

CE-IS 460 7 · 10−4 1.5 · 105

LS 77 2.9 · 10−3 1200
MALA 3000 1.5 · 10−2 4 · 104

MLS 6200 2.7 · 10−3 5.7 · 104

sults, with the caveat that it systematically underestimates
the probability of failure, which can be problematic when
considering safety-critical applications. Focusing now on
statistical estimators, we study their empirical convergence,
for two images x0,1 and x0,2, with similar perturbations as
in the previous section, i.e. uniform noise on `∞ balls of
radius ε = 0.18. Simulation results are reported in Figure 8.

Like in previous experiments, the SMC-based algorithms
converge much slower than both LS and the adversarial-
attack-driven IS algorithm, though the gap is slightly less
important in the case of input x0,3, which has a higher
probability of failure, leading in particular to less dramatic
underestimation of the MLS algorithm when using a smaller
number of samples. Interestingly, in this example, the MLS
algorithm, which is a black-box method, seems to slightly
outperform the MALA-SMC algorithm that uses gradient
information Tit et al. [2023].
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Figure 7: Convergence of the estimators w.r.t. the number
of calls to the model M2, on the input x0,2
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Figure 8: Convergence of different estimators w.r.t. the num-
ber of calls to the model M2, on the input x0,3

Table 3: FORM/SORM estimations of PF ≈ 2.4 · 10−7 for
the custom CNN model, with uniform noise (ε = 0.03).

Attack P FORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 3.91 · 10−5 NA −0.97

FMNA 5.22 · 10−5 NA −0.985
HLRF 2.16 · 10−5 NA −0.965

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 3.95 −1.2 · 10−4 1.49

FMNA 3.88 −8.0 · 10−5 0.23
HLRF 4.09 −8.1 · 10−2 0.03

5.3 CIFAR10

We move on to the CIFAR10 dataset, which is more chal-
lenging for rare event simulation as the dimension of each
input is d = 322 × 3 = 3072. We run experiments on a
custom convolutional neural network, which contains four
convolutional layers, followed by two dense layers and con-
tains in total of 476 278 scalar parameters.

As before, we applied the FORM algorithm using different
adversarial attacks, and the associated results are reported
in Table 3. However, it is not possible to apply the SORM
algorithm, as it required too much memory capacity and
computing power.

We next focus on the simulation algorithms’ performance.
Again, we primarily compare the LS and adversarial-attack-

Pred. label: Automobile Pred. label: Automobile Pred. label: Automobile

Figure 9: Clean input of the CIFAR10 dataset (on the left)
and copies perturbed with Gaussian noise (σ = 0.02).
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driven IS algorithm to sequential Monte Carlo methods used
in the literature [Webb et al., 2019, Tit et al., 2023]. The
associated results are reported in Figure 10 below.
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Figure 10: Convergence of different estimators w.r.t. the
number of calls to the CNN.

We obtain similar results to that obtained for MNIST data:
Our method and Line Sampling converge in a few thousand
calls whereas state-of-the-art SMC algorithms require a
few hundreads thousands of calls to obtain similar standard
errors. That being said, the performance gap is somewhat
smaller, a fact we attribute to the curse of dimension (COD),
leading to weight degeneracy in Importance Sampling [Li
et al., 2005].

Figure 11 compares the performance of the adversarial at-
tacks. We notice again very small differences in terms of
performance for the FMNA and HLRF algorithms. This
means that the HLRF algorithm we have implemented for
Neural Networks proves to be a powerful adversarial attack.
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Figure 11: Convergence of different estimators w.r.t. the
number of calls to the CNN.

6 CONCLUSION

In conclusion, through extensive empirical analysis, we
showed that the proposed algorithm outperforms, in terms of

speed and computational efficiency, state-of-the-art methods
for Neural Network reliability assessment, for moderately
high dimensional datasets such as MNIST and CIFAR10.
However, as mentioned above, a crucial limitation of our ap-
proach, compared to the sequential Monte Carlo approach,
is the inability to handle very high-dimensional data. In-
deed, while their algorithm is slower, Tit et al. [2023] show
that it can efficiently estimate probabilities of failure on
the ImageNet dataset. This limitation is directly linked to
weight degeneracy, which becomes very difficult to handle
when the problem dimension, d, is of the order of hundreds
of thousands or more. Developing a hybrid approach be-
tween ours and splitting techniques, which has been done
for another type of reliability problem Jacquemart-Tomi
et al. [2013], is a promising avenue for future research.
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A ADDITIONAL SIMULATION RESULTS FOR FORM AND SORM

We report below additional results for the FORM and SORM methods.

Table 4: FORM/SORM estimations of PF ≈ 1.69 · 10−8 for the model M2 and input x0,2, with uniform noise (ε = 0.18).

Attack P FORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 1.74 · 10−5 6.88 · 10−9 −0.95

FMNA 3.17 · 10−5 6.12 · 10−9 −0.996
HLRF 1.89 · 10−5 7.56 · 10−9 −0.97

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 4.14 −2.1 · 10−5 1.05

FMNA 4.0 −1.9 · 10−5 0.25
HLRF 4.12 −2.3 · 10−2 0.01
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Table 5: FORM/SORM estimations of PF ≈ 8.1 · 10−3 for the model M2 and input x0,3, with uniform noise (ε = 0.18)

Attack P FORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 3.22 · 10−2 5.23 · 10−3 −0.95

FMNA 3.84 · 10−2 5.37 · 10−3 −0.988
HLRF 3.29 · 10−2 5.35 · 10−3 −0.957

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 1.85 −1.0 · 10−5 0.9

FMNA 1.77 −1.1 · 10−5 0.01
HLRF 1.84 −1.8 · 10−2 0.16

Table 6: FORM/SORM estimations of PF ≈ 9.92 · 10−6 for the model M2 and input x0,1, with uniform noise (ε = 0.18).

Attack P FORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 6.64 · 10−4 4.66 · 10−6 −0.96

FMNA 8.45 · 10−4 3.83 · 10−6 −0.993
HLRF 7.36 · 10−4 6.53 · 10−6 −0.96

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 3.21 −1.9 · 10−5 1.07

FMNA 3.14 −2.5 · 10−5 0.30
HLRF 3.18 −2.1 · 10−2 0.05

Table 7: FORM/SORM estimations of PF ≈ 5.7 · 10−6 for the custom CNN model, with gaussian noise (σ = 0.02).

Attack P FORM
F P SORM

F cos(ũ∗,∇G(ũ∗))
CW 3.91 · 10−5 NA −0.96

FMNA 5.22 · 10−5 NA −0.985
HLRF 2.16 · 10−5 NA −0.973

‖ũ∗‖2 G(ũ∗) Time (in sec.)
CW 3.95 −3.7 · 10−5 1.49

FMNA 3.88 −8.0 · 10−4 0.23
HLRF 4.09 −1.9 · 10−2 0.03
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