

Towards a novel quantitative approach for rockfall hazard assessment

<u>Arthur F. Rossignol¹, Rémy Martin², Dr. Franck Bourrier³</u>

¹ École polytechnique, Polytechnic Institute of Paris, Palaiseau, France
 ² French National Forests Office, RTM Service, Northern Alps Agency, Grenoble, France
 ³ University Grenoble-Alpes, INRAE, Grenoble, France

ISL 2024 • Chambéry (France) • 11.07.2024

Brief overview

Main objective: providing a few contributions and food for thoughts about theoretical methodologies and current practices in rockfall hazard quantification

Outline:

- □ Theoretical background and probabilistic approach
- □ Concepts of partial and global reach probabilities
- Small probabilities' approximation
- □ Two examples
- Some remarks on the method
- Outlook and perspectives

Initial framework

Consider n sources labeled $S_1, ..., S_n$

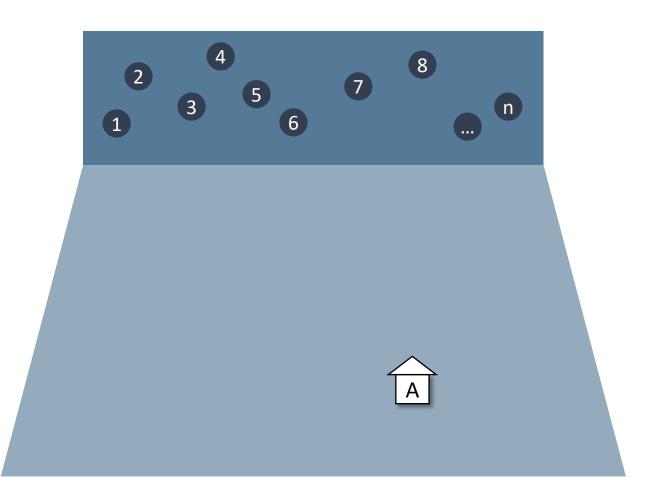
Consider an at-risk element labeled A

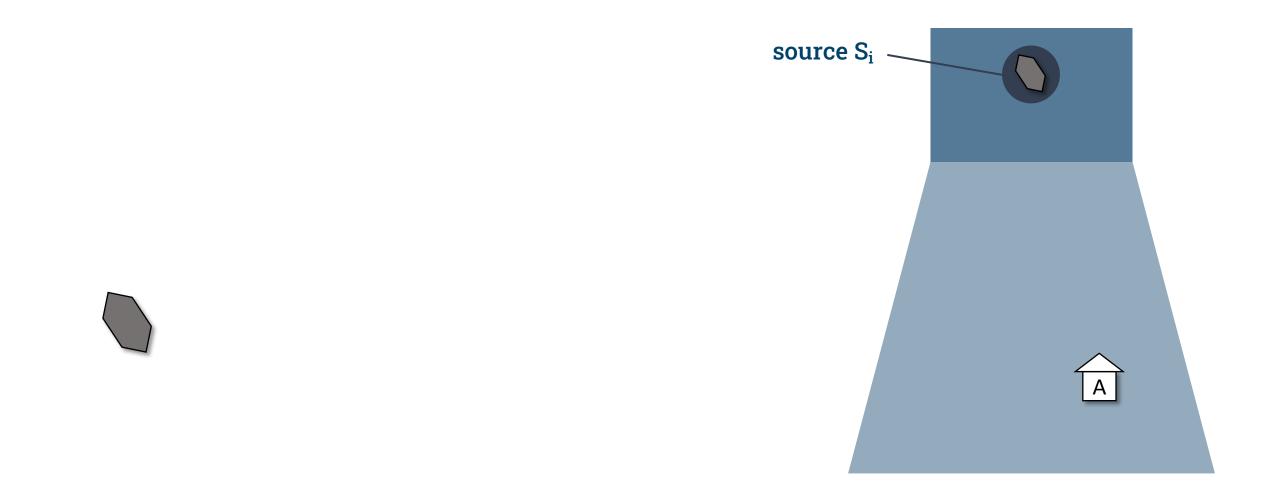
Rock fragmentation is neglected

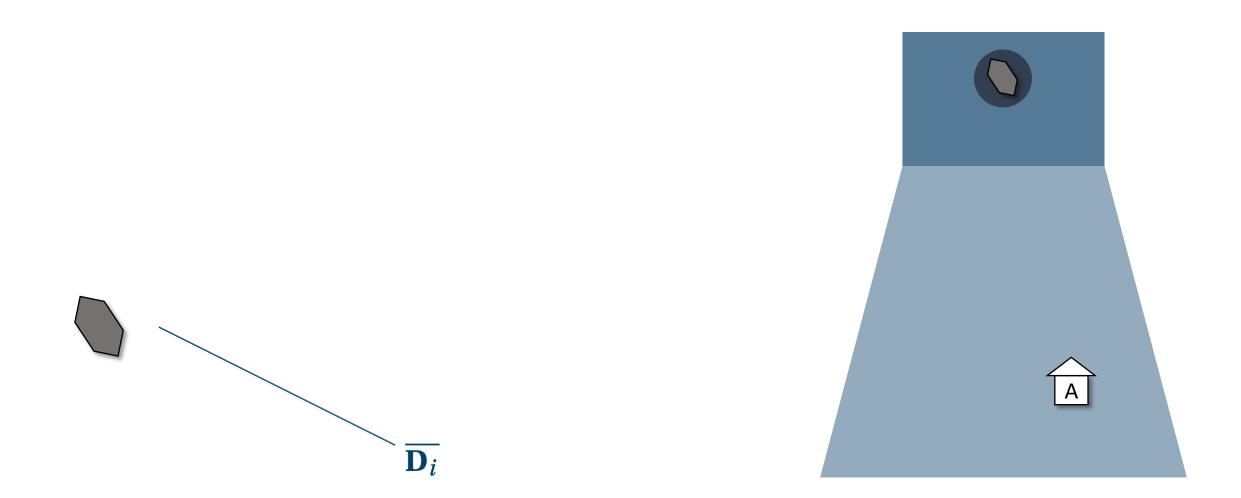
Set an arbitrary time period T

Assume that a source can release one rock only one time (after "activation", the source is "switched off")

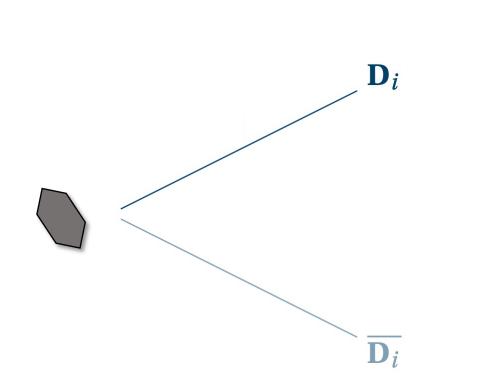
2

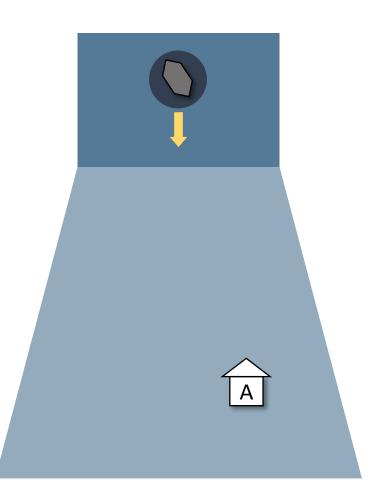


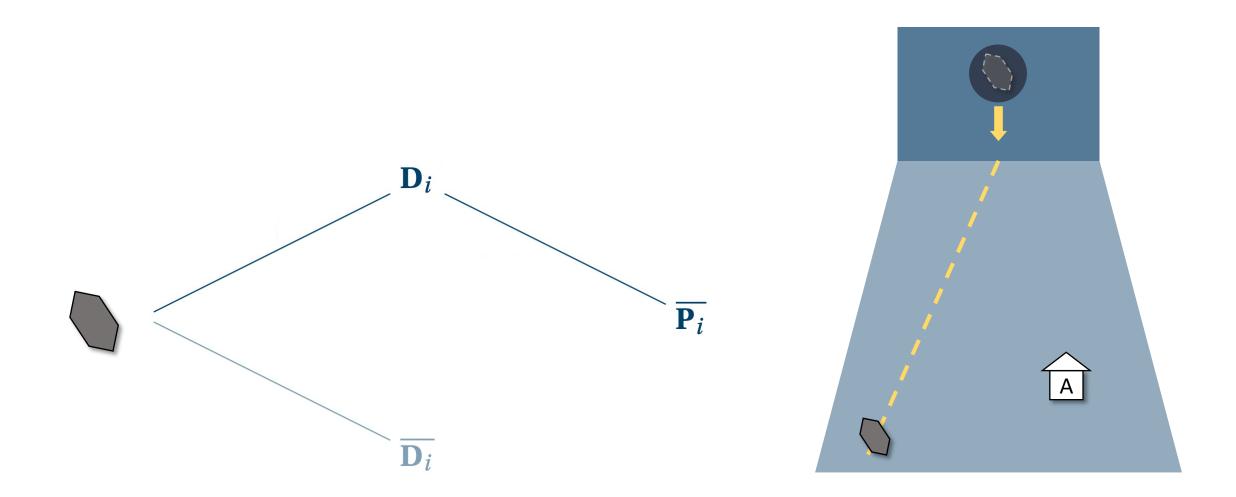




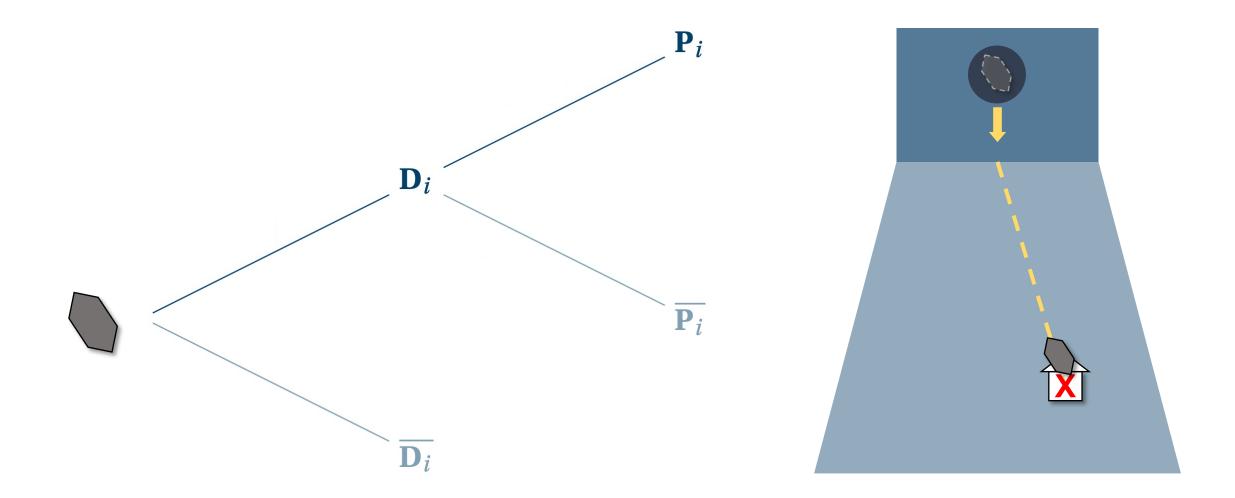
3



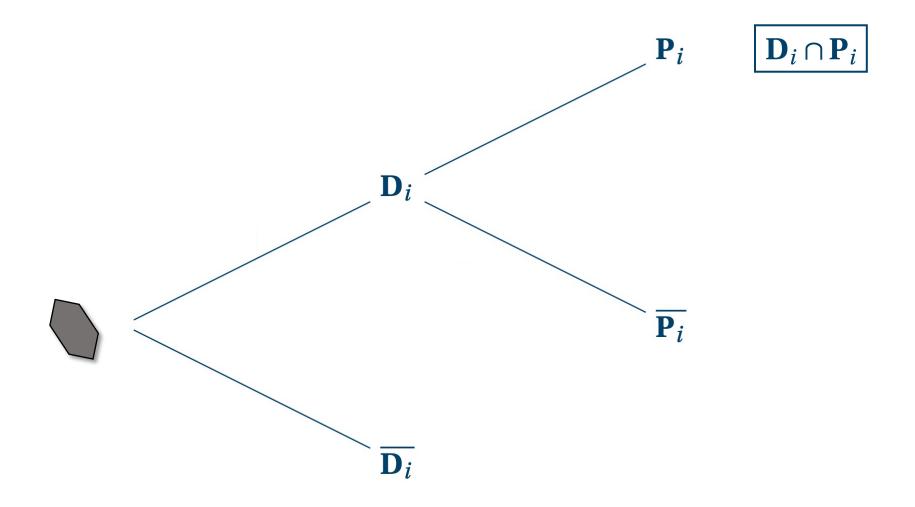


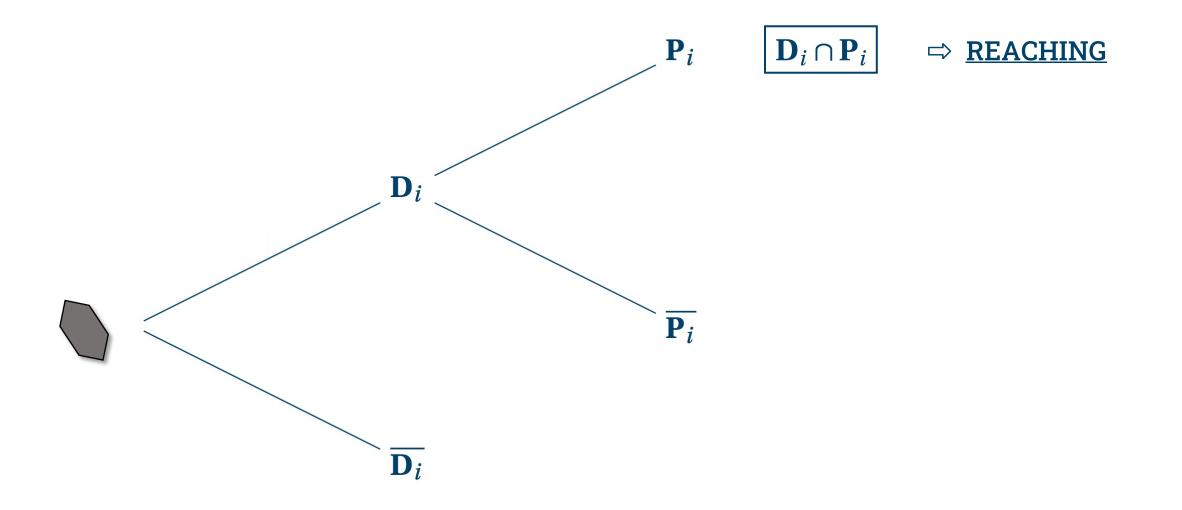


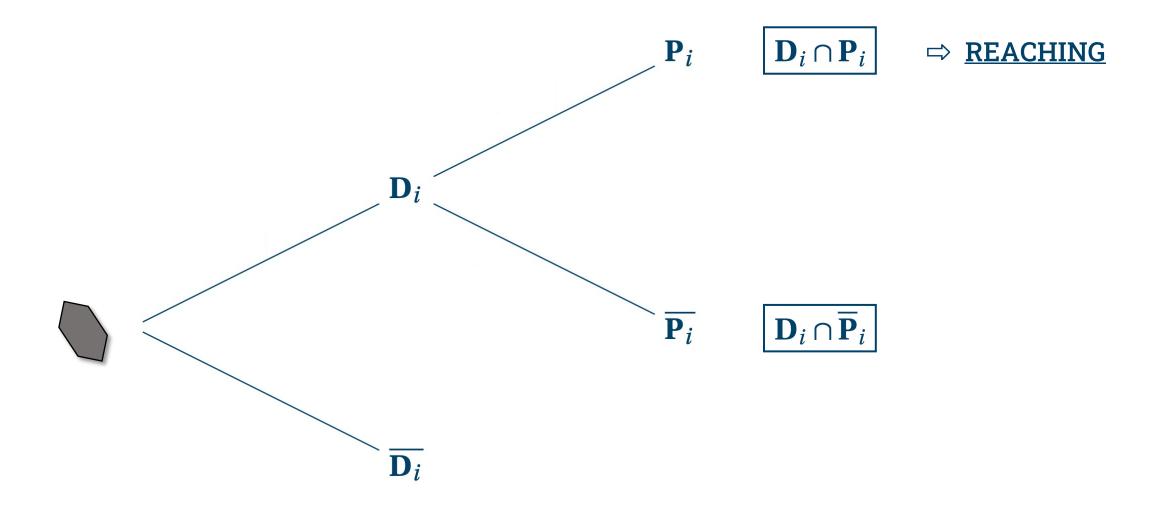
3

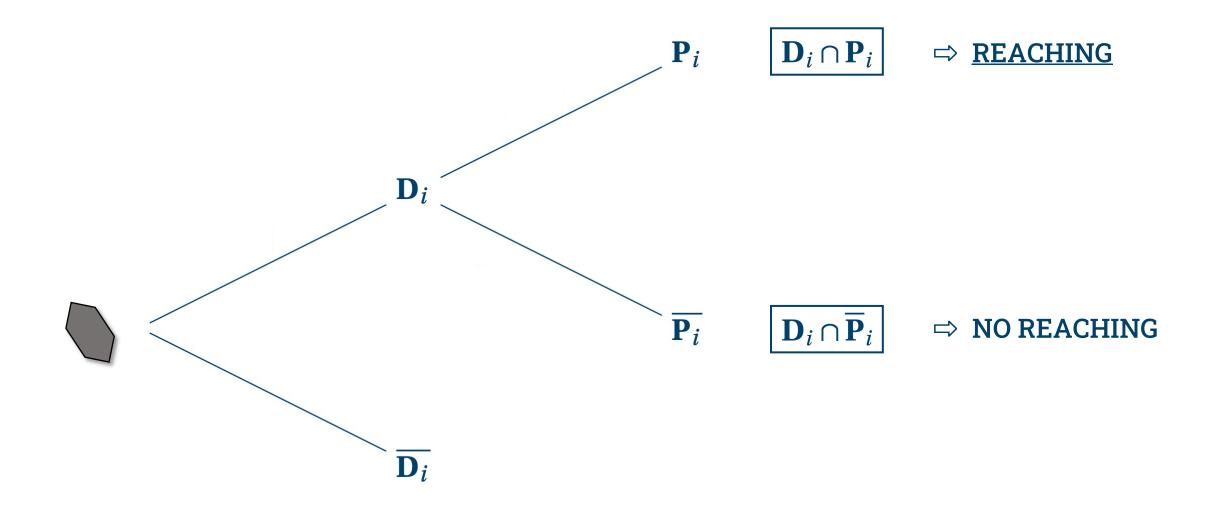


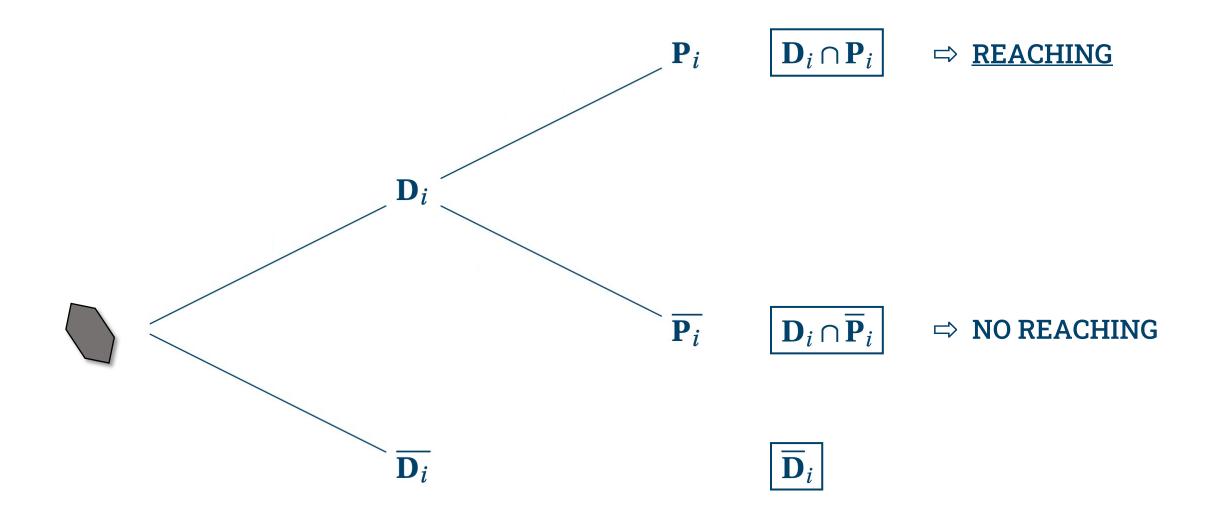
3

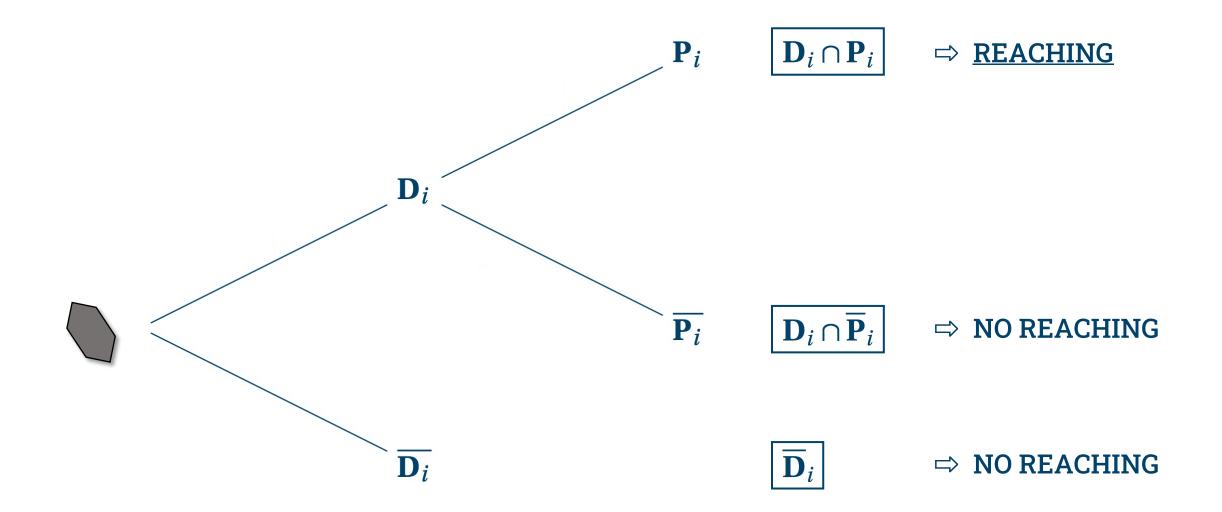


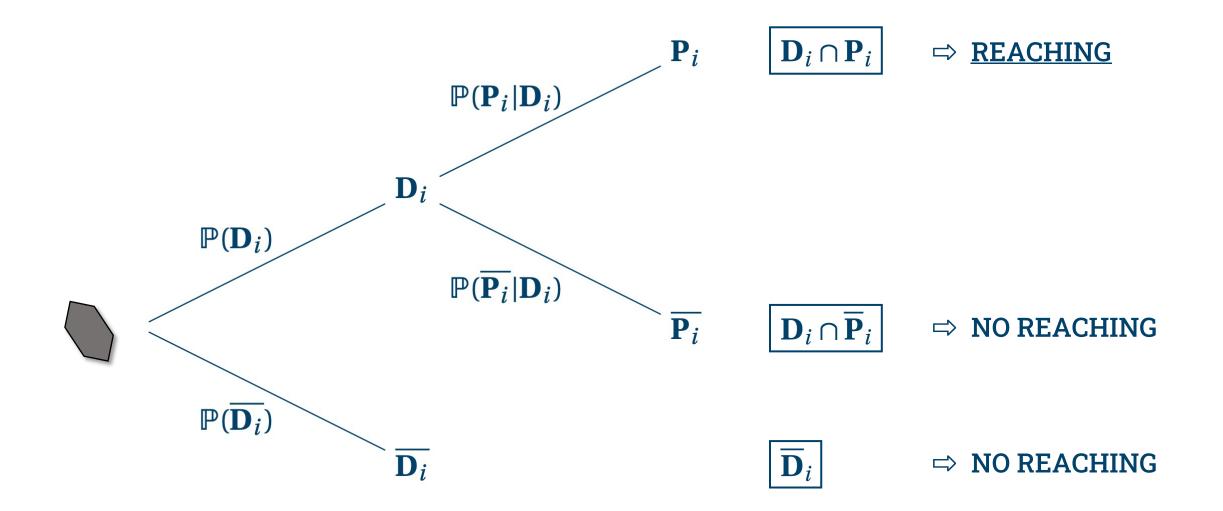












Expressing the reach probability using a conditional probability

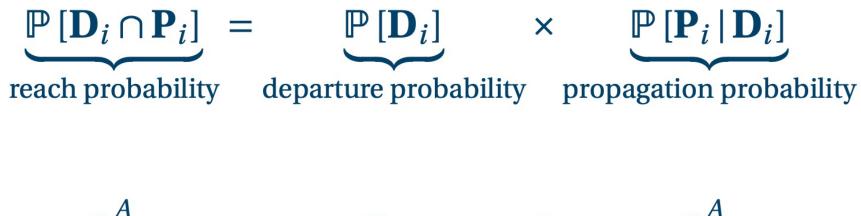
Reaching of A from S_i = departure from S_i + propagation from S_i towards A

$\mathbb{P}\left[\mathbf{D}_{i} \cap \mathbf{P}_{i}\right] = \mathbb{P}\left[\mathbf{D}_{i}\right] \times \mathbb{P}\left[\mathbf{P}_{i} \mid \mathbf{D}_{i}\right]$

Expressing the reach probability using a conditional probability

$$\underbrace{\mathbb{P}\left[\mathbf{D}_{i} \cap \mathbf{P}_{i}\right]}_{\text{reach probability}} = \mathbb{P}\left[\mathbf{D}_{i}\right] \times \mathbb{P}\left[\mathbf{P}_{i} \mid \mathbf{D}_{i}\right]$$

$$\underbrace{\mathbb{P}\left[\mathbf{D}_{i} \cap \mathbf{P}_{i}\right]}_{\text{reach probability}} = \underbrace{\mathbb{P}\left[\mathbf{D}_{i}\right]}_{\text{departure probability}} \times \mathbb{P}\left[\mathbf{P}_{i} \mid \mathbf{D}_{i}\right]$$



 $p_{r,i}^A = p_{d,i} \times p_{p,i}^A$

Each single source S_i generates a "partial hazard" with respect to the at-risk element A

Each single source S_i generates a "<u>partial</u> hazard" with respect to the at-risk element A

Hazard from a single source \Rightarrow <u>partial</u> reach probability $\mathbb{P}[\mathbf{D}_i \cap \mathbf{P}_i] = p_{r,i}^A$

Each single source S_i generates a "<u>partial</u> hazard" with respect to the at-risk element A

Hazard from a single source \Rightarrow <u>partial</u> reach probability $\mathbb{P}[\mathbf{D}_i \cap \mathbf{P}_i] = p_{r,i}^A$

The n sources $S_1,...,S_n$ generate together a "global hazard" with respect to the at-risk element A

Each single source S_i generates a "<u>partial</u> hazard" with respect to the at-risk element A

Hazard from a single source \Rightarrow <u>partial</u> reach probability $\mathbb{P}[\mathbf{D}_i \cap \mathbf{P}_i] = p_{r,i}^A$

The n sources $\mathsf{S}_1,...,\mathsf{S}_n$ generate together a "global hazard" with respect to the at-risk element A

Hazard from all sources \Rightarrow global reach probability \mathbb{P}_r^A

Each single source S_i generates a "partial hazard" with respect to the at-risk element A

Hazard from a single source \Rightarrow <u>partial</u> reach probability $\mathbb{P}[\mathbf{D}_i \cap \mathbf{P}_i] = p_{r,i}^A$

The n sources $\mathsf{S}_1,...,\mathsf{S}_n$ generate together a "global hazard" with respect to the at-risk element A

Hazard from all sources \Rightarrow global reach probability \mathbb{P}_r^A

 \Rightarrow aim: expressing \mathbb{P}_r^A as a combination of the $\mathbb{P}[\mathbf{D}_i \cap \mathbf{P}_i] = p_{r,i}^A$

$$\bigcap_{i=1}^{n} \left(\overline{\mathbf{D}_{i} \cap \mathbf{P}_{i}} \right) = \bigcup_{i=1}^{n} \left(\mathbf{D}_{i} \cap \mathbf{P}_{i} \right)$$

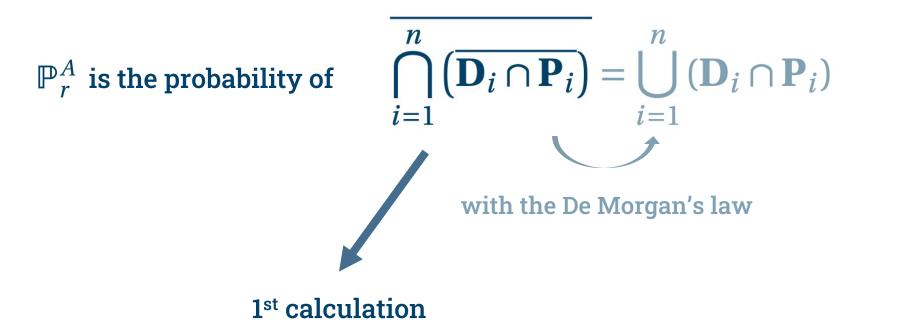
event "reaching of element A by (at least) a rock coming from the sources S₁,...,S_n"

 \mathbb{P}_r^A is the probability of

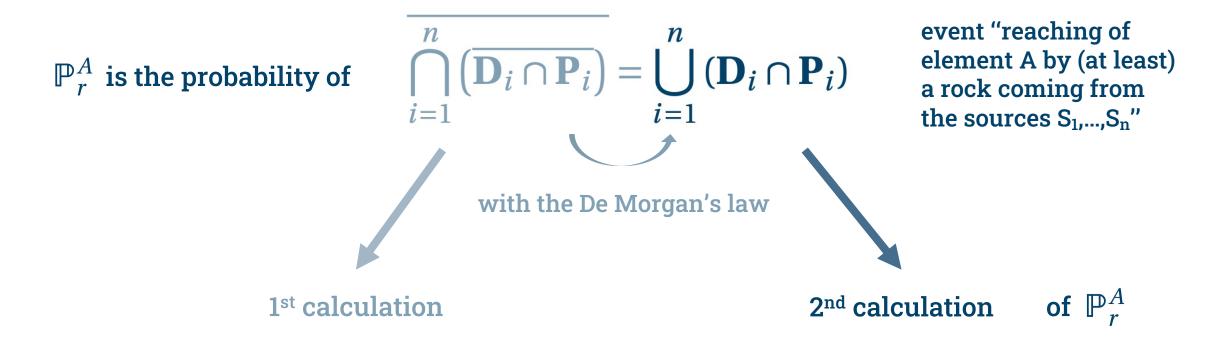
> event "reaching of element A by (at least) a rock coming from the sources S₁,...,S_n"

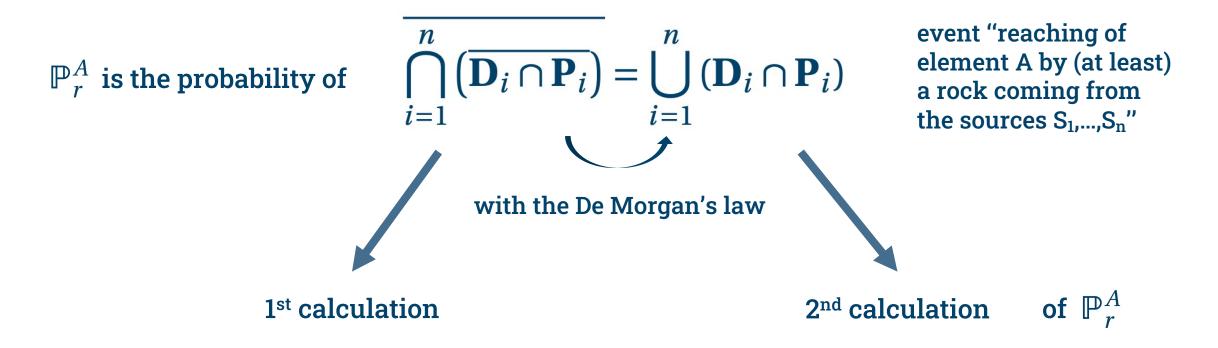
 \mathbb{P}_r^A is the probability of $\bigcap_{i=1}^n (\overline{\mathbf{D}_i \cap \mathbf{P}_i}) = \bigcup_{i=1}^n (\mathbf{D}_i \cap \mathbf{P}_i)$

with the De Morgan's law



event "reaching of element A by (at least) a rock coming from the sources S₁,...,S_n"



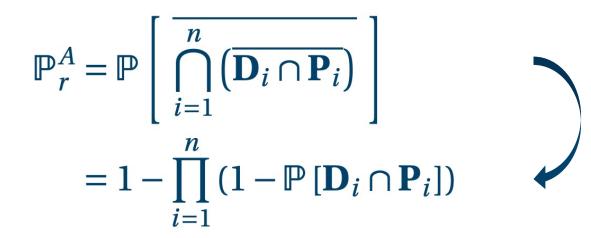


7

Determination of the global reach probability: 1st calculation

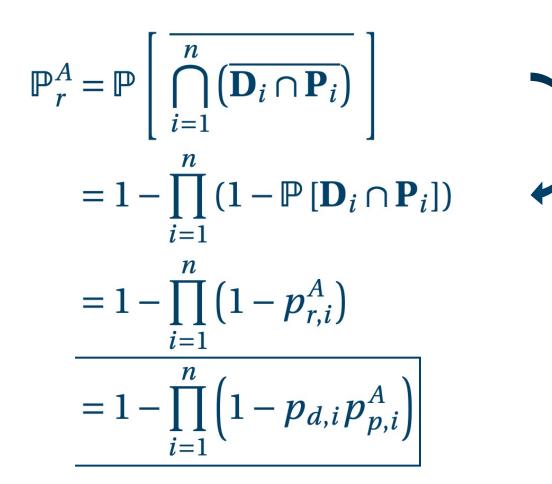
$$\mathbb{P}_r^A = \mathbb{P}\left[\begin{array}{c} \overline{\bigcap_{i=1}^n (\mathbf{D}_i \cap \mathbf{P}_i)} \\ i = 1 \end{array} \right]$$

Determination of the global reach probability: 1st calculation



this step requires a hypothesis of mutual independence of the events $\overline{\mathbf{D}_i \cap \mathbf{P}_i}$

Determination of the global reach probability: 1st calculation



this step requires a hypothesis of mutual independence of the events $\overline{\mathbf{D}_i \cap \mathbf{P}_i}$

8

Determination of the global reach probability: 2nd calculation

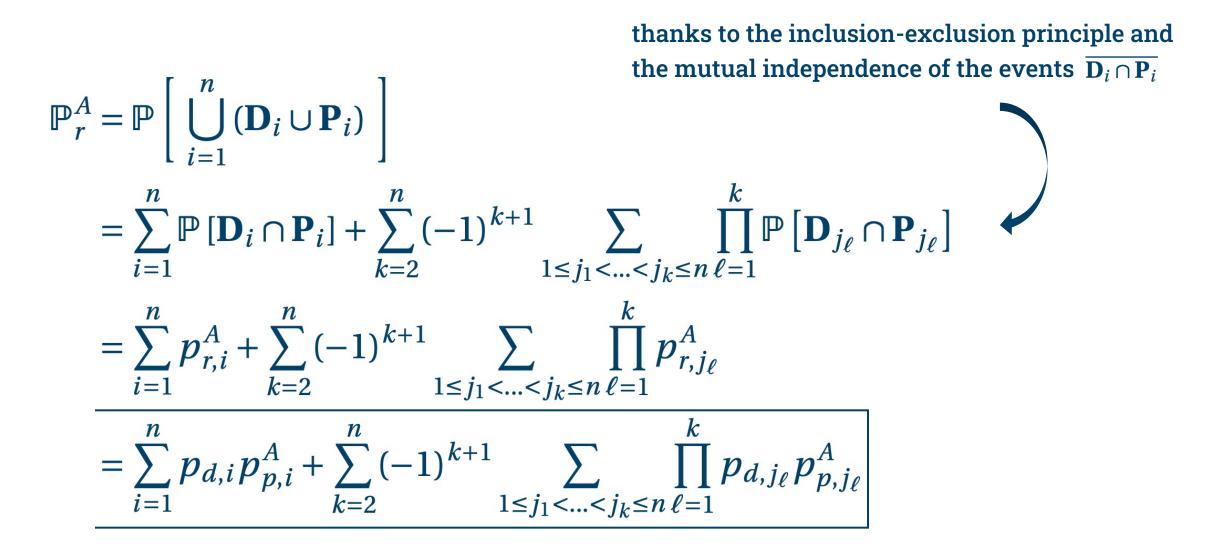
$$\mathbb{P}_r^A = \mathbb{P}\left[\bigcup_{i=1}^n \left(\mathbf{D}_i \cup \mathbf{P}_i\right)\right]$$

Determination of the global reach probability: 2nd calculation

$$\mathbb{P}_{r}^{A} = \mathbb{P}\left[\bigcup_{i=1}^{n} (\mathbf{D}_{i} \cup \mathbf{P}_{i})\right]$$

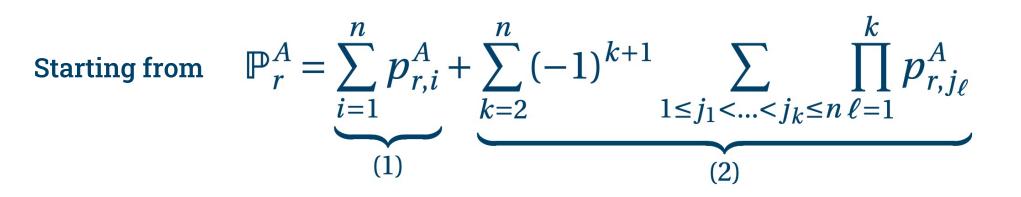
$$= \sum_{i=1}^{n} \mathbb{P}\left[\mathbf{D}_{i} \cap \mathbf{P}_{i}\right] + \sum_{k=2}^{n} (-1)^{k+1} \sum_{1 \le j_{1} < \dots < j_{k} \le n} \prod_{\ell=1}^{k} \mathbb{P}\left[\mathbf{D}_{j_{\ell}} \cap \mathbf{P}_{j_{\ell}}\right]$$

Determination of the global reach probability: 2nd calculation



9

Small probabilities' approximation



we want a condition ensuring that (2) is negligeable with respect to (1), i.e. $(2) \ll (1)$

Small probabilities' approximation

Starting from
$$\mathbb{P}_{r}^{A} = \sum_{\substack{i=1\\(1)}}^{n} p_{r,i}^{A} + \sum_{\substack{k=2\\k=2}}^{n} (-1)^{k+1} \sum_{\substack{1 \le j_{1} < \dots < j_{k} \le n \ \ell = 1}}^{n} \prod_{\ell=1}^{k} p_{r,j_{\ell}}^{A}$$

we want a condition ensuring that (2) is negligeable with respect to (1), i.e. (2) \ll (1)

$$\Rightarrow$$
 condition: $\forall i \in \{1, n\}, p_{r,i} \ll \frac{1}{n}$ (partial reach probabilities "very small")

Small probabilities' approximation

Starting from
$$\mathbb{P}_{r}^{A} = \sum_{i=1}^{n} p_{r,i}^{A} + \sum_{k=2}^{n} (-1)^{k+1} \sum_{1 \le j_{1} < \dots < j_{k} \le n} \prod_{\ell=1}^{k} p_{r,j_{\ell}}^{A}$$
(2)

we want a condition ensuring that (2) is negligeable with respect to (1), i.e. $(2) \ll (1)$

 \Rightarrow condition: $\forall i \in \{1, n\}, p_{r,i} \ll \frac{1}{n}$ (partial reach probabilities "very small")

$$\Rightarrow \mathbb{P}_r^A \approx \sum_{i=1}^n p_{d,i} p_{p,i}^A$$

(small probabilities' approximation)

Mutual independence:

$$\mathbb{P}\left[\mathbf{E}_{i} \cap ... \cap \mathbf{E}_{j}\right] = \mathbb{P}\left[\mathbf{E}_{i}\right] \times ... \times \mathbb{P}\left[\mathbf{E}_{j}\right]$$

<u>Mutual independence</u>:

$$\mathbb{P}\left[\mathbf{E}_{i} \cap ... \cap \mathbf{E}_{j}\right] = \mathbb{P}\left[\mathbf{E}_{i}\right] \times ... \times \mathbb{P}\left[\mathbf{E}_{j}\right]$$

- \Rightarrow is necessary to turn the probability of the intersection into the product of probabilities
- ⇒ means that the reaching of at-risk element A by a given source has no impact on the reaching of element A by another source

<u>Mutual independence</u>:

$$\mathbb{P}\left[\mathbf{E}_{i} \cap ... \cap \mathbf{E}_{j}\right] = \mathbb{P}\left[\mathbf{E}_{i}\right] \times ... \times \mathbb{P}\left[\mathbf{E}_{j}\right]$$

- \Rightarrow is necessary to turn the probability of the intersection into the product of probabilities
- ⇒ means that the reaching of at-risk element A by a given source has no impact on the reaching of element A by another source

Mutual exclusivity:

$$\mathbb{P}\left[\mathbf{E}_i \cap \mathbf{E}_j\right] = \mathbf{0}$$

<u>Mutual independence</u>:

$$\mathbb{P}\left[\mathbf{E}_{i} \cap ... \cap \mathbf{E}_{j}\right] = \mathbb{P}\left[\mathbf{E}_{i}\right] \times ... \times \mathbb{P}\left[\mathbf{E}_{j}\right]$$

- \Rightarrow is necessary to turn the probability of the intersection into the product of probabilities
- ⇒ means that the reaching of at-risk element A by a given source has no impact on the reaching of element A by another source

Mutual exclusivity:

$$\mathbb{P}\left[\mathbf{E}_i \cap \mathbf{E}_j\right] = \mathbf{0}$$

- ⇒ is the underlying hypothesis when neglecting the higher-order terms in the small probabilities' approximation
- ⇒ means that the reaching of at-risk element A by a given source cannot occur simultaneously with the reaching of element A by another source

<u>Mutual independence</u>:

$$\mathbb{P}\left[\mathbf{E}_{i} \cap ... \cap \mathbf{E}_{j}\right] = \mathbb{P}\left[\mathbf{E}_{i}\right] \times ... \times \mathbb{P}\left[\mathbf{E}_{j}\right]$$

- \Rightarrow is necessary to turn the probability of the intersection into the product of probabilities
- ⇒ means that the reaching of at-risk element A by a given source has no impact on the reaching of element A by another source

Mutual exclusivity:

$$\mathbb{P}\left[\mathbf{E}_i \cap \mathbf{E}_j\right] = \mathbf{0}$$

- ⇒ is the underlying hypothesis when neglecting the higher-order terms in the small probabilities' approximation
- ⇒ means that the reaching of at-risk element A by a given source cannot occur <u>simultaneously</u> with the reaching of element A by another source

during the time period T

Two formulas: one exact & one approximated

Exact formula:

$$\mathbb{P}_{r}^{A} = 1 - \prod_{i=1}^{n} \left(1 - p_{d,i} p_{p,i}^{A} \right)$$

Two formulas: one exact & one approximated

Exact formula:

$$\mathbb{P}_{r}^{A} = 1 - \prod_{i=1}^{n} \left(1 - p_{d,i} p_{p,i}^{A} \right)$$

Approximated formula:

(small probabilites' approximation)

$$\mathbb{P}_r^A \approx \sum_{i=1}^n p_{d,i} p_{p,i}^A$$

Application in operational context: diffuse hazard

Aim: applying and comparing the formulas using the model of diffuse hazard

Application in operational context: diffuse hazard

Aim: applying and comparing the formulas using the model of diffuse hazard

Discretization of the terrain (DEM):

- at-risk element A \Rightarrow at-risk cell A
- sources $S_1,...,S_n \implies$ source cells $S_1,...,S_n$
- propagation probabilities become surface values

Aim: applying and comparing the formulas using the model of diffuse hazard

Discretization of the terrain (DEM):

- at-risk element A ⇒ at-risk cell A
- sources $S_1,...,S_n \implies$ source cells $S_1,...,S_n$
- propagation probabilities become <u>surface</u> values

Possibility of procedure:

- identifying source zones on the cliff
- determining a typical rock volume (or volume class) to each source zone
- dividing the source zones into source cells of the same resolution
- assigning a departure probability to each source cells
- estimating all propagation probabilites (with rock propagation simulations)
- computing the field of global reach probability

Application in operational context: estimation of departure probabilities

Departure probabilties are related to the time period T (often annual but not necessarily)

Departure probabilties are related to the time period T (often annual but not necessarily)

How to estimate p_d? "Expert-based" opinion, terrain surveys, historical studies, frequency-volume relation, Poisson probabilty law...

Departure probabilties are related to the time period T (often annual but not necessarily)

How to estimate p_d? "Expert-based" opinion, terrain surveys, historical studies, frequency-volume relation, Poisson probabilty law...

Examples of values:1 (or more) departure(s) during T \Rightarrow $p_d = 1$ 1 departure during 10 * T \Rightarrow $p_d = 0.1$ 1 departure during 100 * T \Rightarrow $p_d = 0.01$

Departure probabilties are related to the time period T (often annual but not necessarily)

How to estimate p_d? "Expert-based" opinion, terrain surveys, historical studies, frequency-volume relation, Poisson probabilty law...

Examples of values:1 (or more) departure(s) during T \Rightarrow $p_d = 1$ 1 departure during 10 * T \Rightarrow $p_d = 0.1$ 1 departure during 100 * T \Rightarrow $p_d = 0.01$

⇒ if a source zone, divided into 100 source cells, might produce 8 rocks of a given volume class during T, then the deprature probability of each source cell in the source zone equals 0.08

Application in operational context: estimation of propagation probabilities

Propagation probabilities should be estimated using 3D rock propagation models (e.g., PlatRock, Rockyfor3D, RocPro3D)

Application in operational context: estimation of propagation probabilities

Propagation probabilities should be estimated using 3D rock propagation models (e.g., PlatRock, Rockyfor3D, RocPro3D)

At each at-risk cell of the terrain, we need to know from which source cell come each simulated trajectory actually passing through the considered at-risk cell

Propagation probabilities should be estimated using 3D rock propagation models (e.g., PlatRock, Rockyfor3D, RocPro3D)

At each at-risk cell of the terrain, we need to know from which source cell come each simulated trajectory actually passing through the considered at-risk cell

⇒ compulsory for estimating <u>partial</u> reach probabilities

Propagation probabilities should be estimated using 3D rock propagation models (e.g., PlatRock, Rockyfor3D, RocPro3D)

At each at-risk cell of the terrain, we need to know from which source cell come each simulated trajectory actually passing through the considered at-risk cell \Rightarrow compulsory for estimating <u>partial</u> reach probabilities

Formula for propagation probabilities:

$$p_{p,i}^A = \frac{N_{\mathrm{b},i}^A}{N_{\mathrm{sim},i}}$$

Propagation probabilities should be estimated using 3D rock propagation models (e.g., PlatRock, Rockyfor3D, RocPro3D)

At each at-risk cell of the terrain, we need to know from which source cell come each simulated trajectory actually passing through the considered at-risk cell

⇒ compulsory for estimating <u>partial</u> reach probabilities

Formula for propagation probabilities:

$$p_{p,i}^{A} = \frac{N_{\mathrm{b},i}^{A}}{N_{\mathrm{sim},i}}$$

 number of trajectories
 coming from source cell S_i that reached cell A Propagation probabilities should be estimated using 3D rock propagation models (e.g., PlatRock, Rockyfor3D, RocPro3D)

At each at-risk cell of the terrain, we need to know from which source cell come each simulated trajectory actually passing through the considered at-risk cell

⇒ compulsory for estimating <u>partial</u> reach probabilities

Formula for propagation probabilities:

number of trajectories coming from source cell S_i that reached cell A

number of trajectories simulated from source cell S_i

Propagation probabilities should be estimated using 3D rock propagation models (e.g., PlatRock, Rockyfor3D, RocPro3D)

At each at-risk cell of the terrain, we need to know from which source cell come each simulated trajectory actually passing through the considered at-risk cell

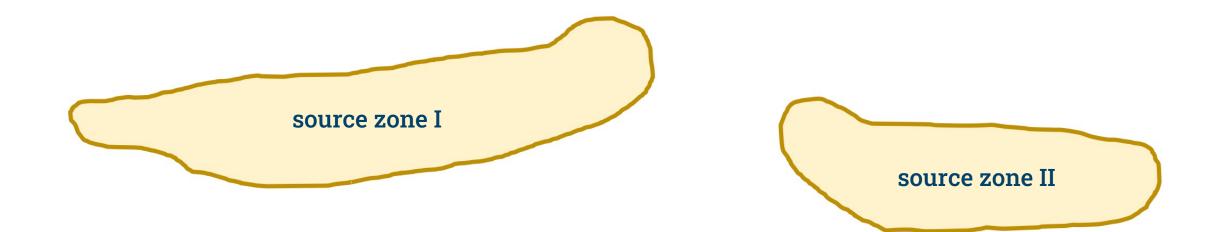
⇒ compulsory for estimating <u>partial</u> reach probabilities

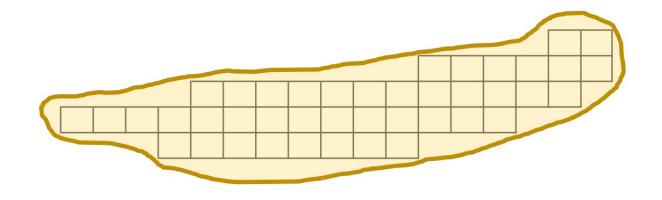
Formula for propagation probabilities:

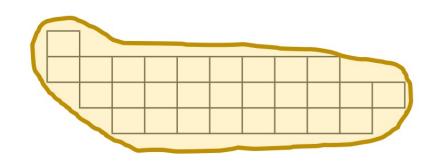
$$p_{p,i}^{A} = \frac{N_{\mathrm{b},i}^{A}}{N_{\mathrm{sim},i}}$$

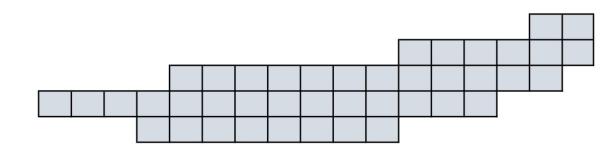
 number of trajectories
 coming from source cell S_i that reached cell A

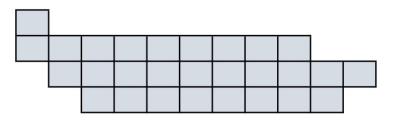
number of trajectories simulated from source cell S_i





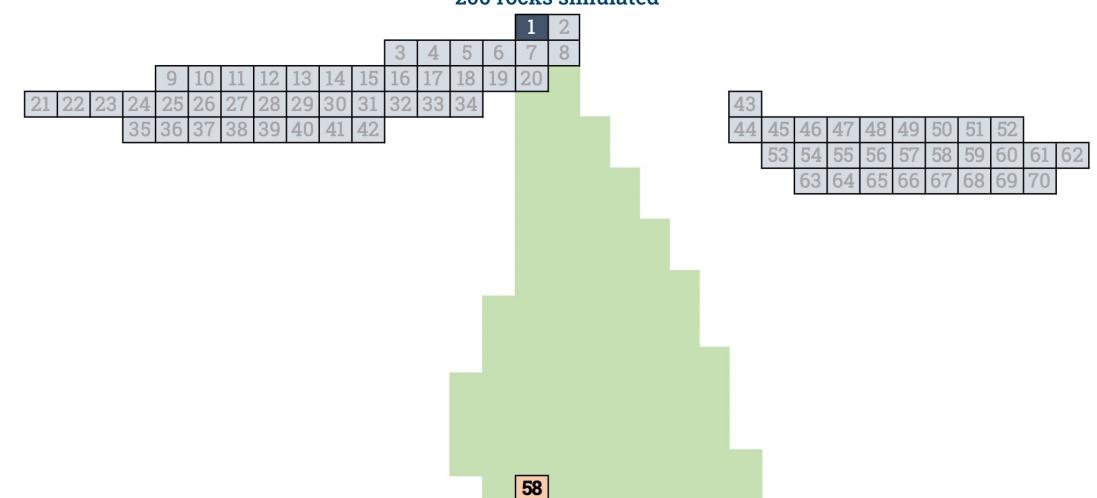






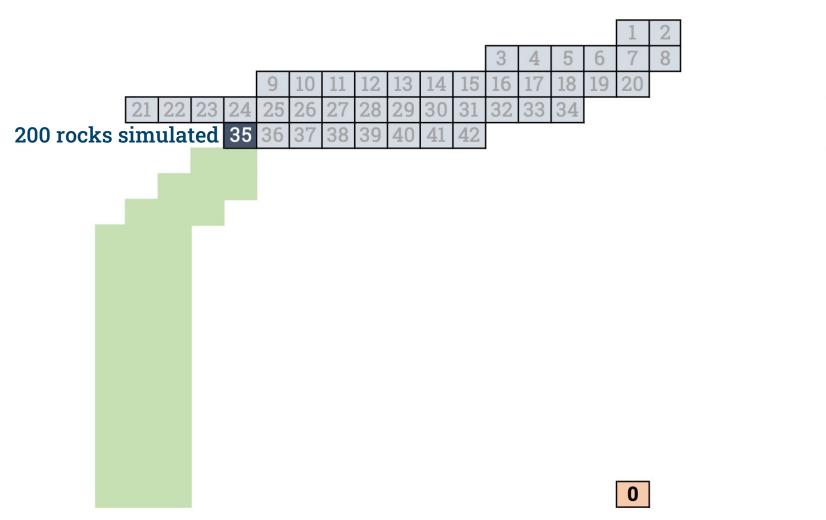
												1	2
								3	4	5	6	7	8
	9	10	11	12	13	14	15	16	17	18	19	20	
21 22 23 24	25	26	27	28	29	30	31	32	33	34			
35	36	37	38	39	40	41	42				•		

43										
44	45	46	47	48	49	50	51	52		
	53	54	55	56	57	58	59	60	61	62
		63	64	65	66	67	68	69	70	

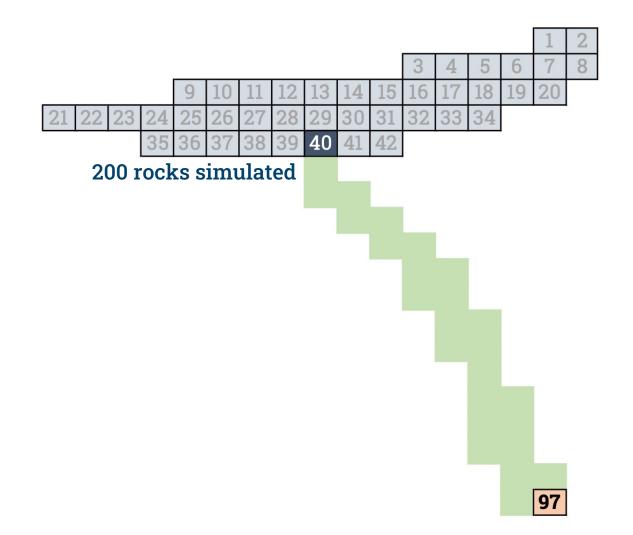


200 rocks simulated

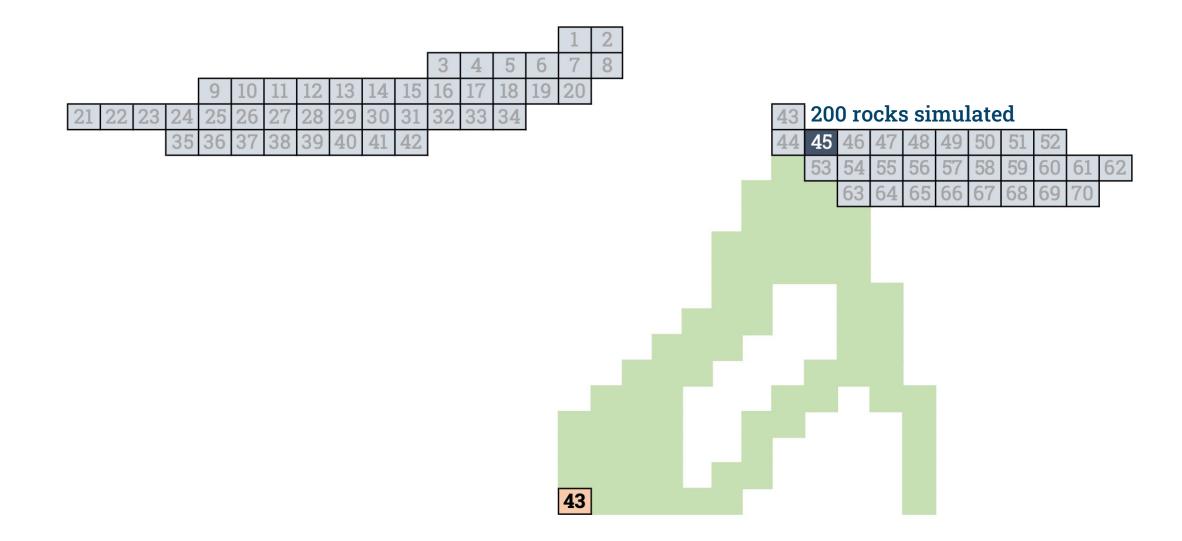
19

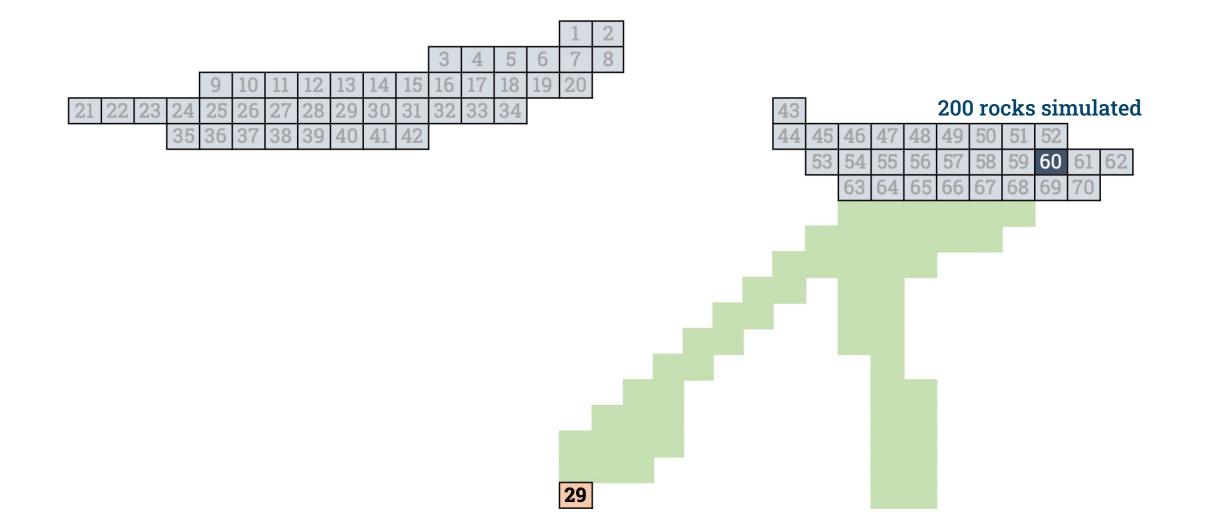


43										
44	45	46	47	48	49	50	51	52		
	53	54	55	56	57	58	59	60	61	62
		63	64	65	66	67	68	69	70	



43										
44	45	46	47	48	49	50	51	52		
	53	54	55	56	57	58	59	60	61	62
		63	64	65	66	67	68	69	70	





total number of source cells	70 (zone I: 42 zone II: 28)
number of trajectories (rocks) simulated per source cell	200
total number of trajectories (rocks) simulated	14000
departure probability of source cells	zone I: 1/42 ≈ 0.0238 zone II: 0.1/28 ≈ 0.0036

cell	p d,i	Nb,i	р р,і	pr,i
1	0,023809524	58	0,29	0,006904762
2	0,023809524	63	0,315	0,0075
3	0,023809524	52	0,26	0,006190476
4	0,023809524	54	0,27	0,006428571
5	0,023809524	52	0,26	0,006190476
6	0,023809524	60	0,3	0,007142857
7	0,023809524	59	0,295	0,00702381
8	0,023809524	63	0,315	0,0075
9	0,023809524	5	0,025	0,000595238
10	0,023809524	8	0,04	0,000952381
11	0,023809524	8	0,04	0,000952381
12	0,023809524	21	0,105	0,0025
13	0,023809524	27	0,135	0,003214286
14	0,023809524	79	0,395	0,009404762
15	0,023809524	94	0,47	0,011190476
16	0,023809524	92	0,46	0,010952381
17	0,023809524	53	0,265	0,006309524
18	0,023809524	65	0,325	0,007738095
19	0,023809524	62	0,31	0,007380952
20	0,023809524	60	0,3	0,007142857
21	0,023809524	0	0	0
22	0,023809524	0	0	0
23	0,023809524	0	0	0
24	0,023809524	0	0	0
25	0,023809524	2	0,01	0,000238095
26	0,023809524	6	0,03	0,000714286
27	0,023809524	76	0,38	0,009047619
28	0,023809524	80	0,4	0,00952381
29	0,023809524	99	0,495	0,011785714
30	0,023809524	101	0,505	0,01202381
31	0,023809524	95	0,475	0,011309524
32	0,023809524	87	0,435	0,010357143
33	0,023809524	58	0,29	0,006904762
34	0,023809524	59	0,295	0,00702381
35	0,023809524	0	0	0

cell	p d,i	Nb,i	р р,і	pr,i
36	0,023809524	0	0	0
37	0,023809524	0	0	0
38	0,023809524	25	0,125	0,00297619
39	0,023809524	76	0,38	0,009047619
40	0,023809524	97	0,485	0,011547619
41	0,023809524	105	0,525	0,0125
42	0,023809524	91	0,455	0,010833333
43	0,003571429	45	0,225	0,000803571
44	0,003571429	40	0,2	0,000714286
45	0,003571429	43	0,215	0,000767857
46	0,003571429	39	0,195	0,000696429
47	0,003571429	45	0,225	0,000803571
48	0,003571429	41	0,205	0,000732143
49	0,003571429	40	0,2	0,000714286
50	0,003571429	40	0,2	0,000714286
51	0,003571429	35	0,175	0,000625
52	0,003571429	30	0,15	0,000535714
53	0,003571429	44	0,22	0,000785714
54	0,003571429	48	0,24	0,000857143
55	0,003571429	45	0,225	0,000803571
56	0,003571429	49	0,245	0,000875
57	0,003571429	39	0,195	0,000696429
58	0,003571429	43	0,215	0,000767857
59	0,003571429	33	0,165	0,000589286
60	0,003571429	29	0,145	0,000517857
61	0,003571429	26	0,13	0,000464286
62	0,003571429	23	0,115	0,000410714
63	0,003571429	24	0,12	0,000428571
64	0,003571429	25	0,125	0,000446429
65	0,003571429	21	0,105	0,000375
66	0,003571429	28	0,14	0,0005
67	0,003571429	19	0,095	0,000339286
68	0,003571429	24	0,12	0,000428571
69	0,003571429	24	0,12	0,000428571
70	0,003571429	23	0,115	0,000410714

total number of source cells	70 (zone I: 42 zone II: 28)
number of trajectories (rocks) simulated per source cell	200
total number of trajectories (rocks) simulated	14000
departure probability of source cells	zone I: 1/42 ≈ 0.0238 zone II: 0.1/28 ≈ 0.0036

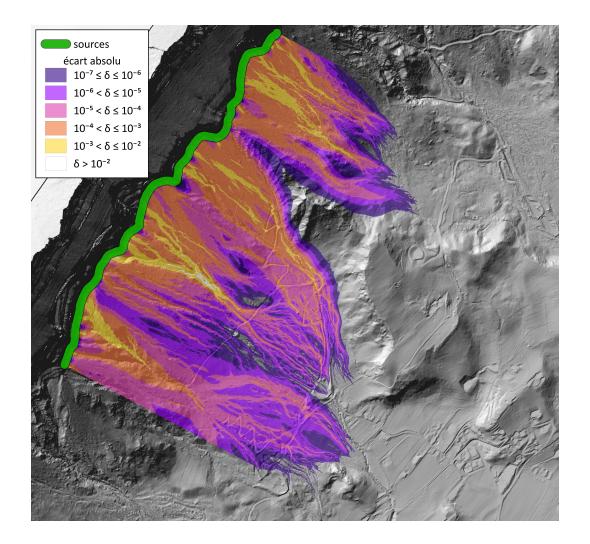
Source cell-wise calculation:

$$\mathbb{P}_{r}^{A} = 1 - \prod_{i=1}^{70} \left(1 - p_{d,i} p_{p,i}^{A} \right) \qquad 0.23463$$
$$\mathbb{P}_{r}^{A} \approx \sum_{i=1}^{70} p_{d,i} p_{p,i}^{A} \qquad 0.26628$$

Source zone-wise calculation:

$$\mathbb{P}_{r}^{A} = 1 - \left(1 - p_{d,\mathrm{I}} p_{p,\mathrm{I}}^{A}\right) \left(1 - p_{d,\mathrm{II}} p_{p,\mathrm{II}}^{A}\right) \qquad 0.26199$$
$$\mathbb{P}_{r}^{A} = p_{d,\mathrm{I}} p_{p,\mathrm{I}}^{A} + p_{d,\mathrm{II}} p_{p,\mathrm{II}}^{A} \qquad 0.26628$$

The 'Saint-Eynard' example

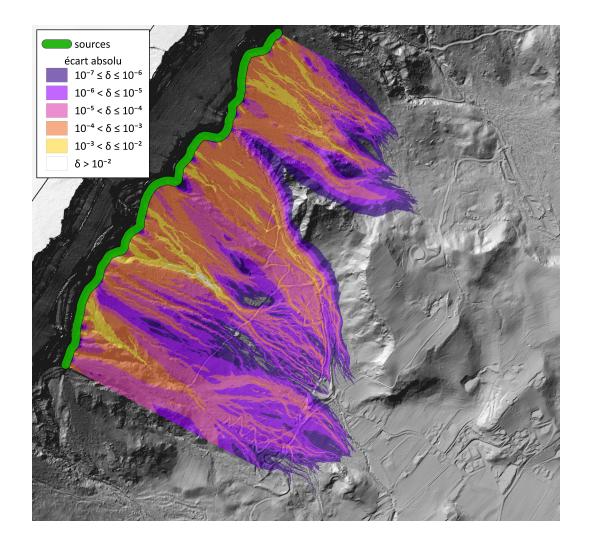


The 'Saint-Eynard' mountain, in the French Alps, near Grenoble

Simulations with Rockyfor3D

Mapping of the absolute gap between the values computed with the exact formula and the approximated formula

The 'Saint-Eynard' example



The 'Saint-Eynard' mountain, in the French Alps, near Grenoble

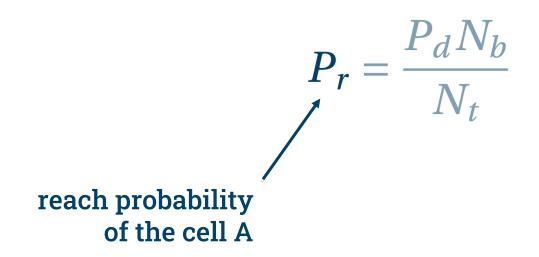
Simulations with Rockyfor3D

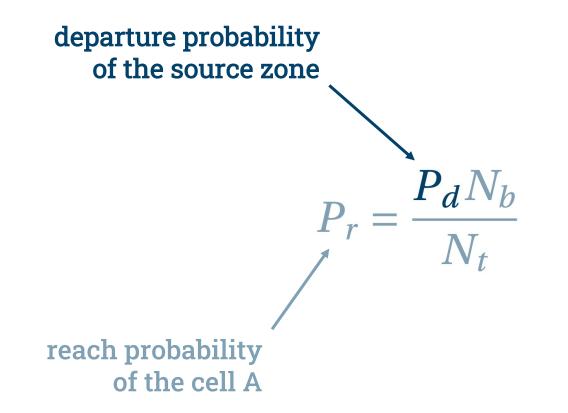
Mapping of the absolute gap between the values computed with the exact formula and the approximated formula

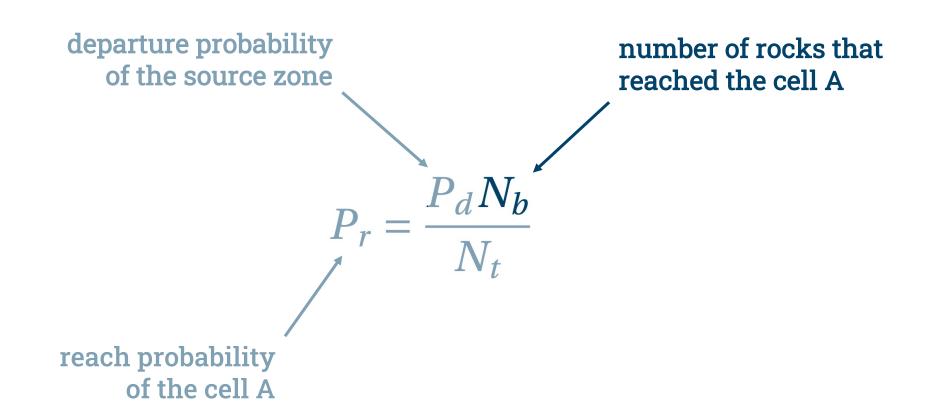
Up to 0.01 of absolute gap

The gap is generally small enough to be absorbed in the logarithmic zoning

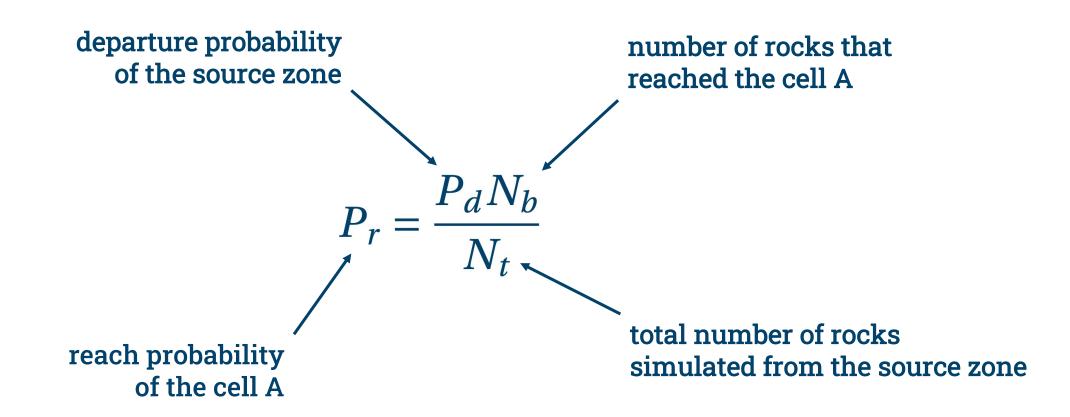
$$P_r = \frac{P_d N_b}{N_t}$$









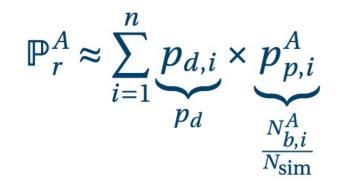


This formula is a <u>particular case</u> of the small probabilities' approximation, considering that all sources are part of a unique source zone:

$$\mathbb{P}_r^A \approx \sum_{i=1}^n p_{d,i} \times p_{p,i}^A$$

Start from the small probabilities' approximation

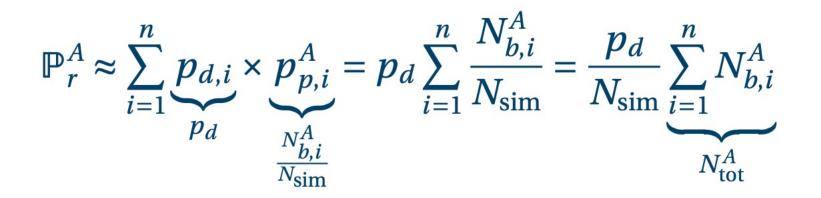
This formula is a <u>particular case</u> of the small probabilities' approximation, considering that all sources are part of a unique source zone:



Assume homogeneous departure probabilities and express the propagation probabilities

$$\mathbb{P}_{r}^{A} \approx \sum_{i=1}^{n} \underbrace{p_{d,i}}_{p_{d}} \times \underbrace{p_{p,i}^{A}}_{\frac{N_{b,i}^{A}}{N_{\text{sim}}}} = p_{d} \sum_{i=1}^{n} \frac{N_{b,i}^{A}}{N_{\text{sim}}}$$

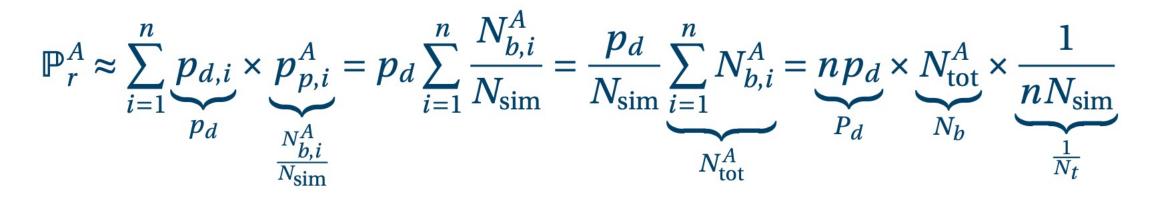
$$\mathbb{P}_r^A \approx \sum_{i=1}^n \underbrace{p_{d,i}}_{p_d} \times \underbrace{p_{p,i}^A}_{\frac{N_{b,i}^A}{N_{\rm sim}^A}} = p_d \sum_{i=1}^n \frac{N_{b,i}^A}{N_{\rm sim}} = \frac{p_d}{N_{\rm sim}} \sum_{i=1}^n N_{b,i}^A$$



Recognize the total number of simulated rocks from all sources

$$\mathbb{P}_{r}^{A} \approx \sum_{i=1}^{n} \underbrace{p_{d,i}}_{p_{d}} \times \underbrace{p_{p,i}^{A}}_{\frac{N_{b,i}^{A}}{N_{\text{sim}}}} = p_{d} \sum_{i=1}^{n} \frac{N_{b,i}^{A}}{N_{\text{sim}}} = \frac{p_{d}}{N_{\text{sim}}} \underbrace{\sum_{i=1}^{n} N_{b,i}^{A}}_{N_{\text{tot}}} = np_{d} \times N_{\text{tot}}^{A} \times \frac{1}{nN_{\text{sim}}}$$

Insert the number of sources (n)



Define the departure probability of the source zone, the total number of rocks that reached the cell A, and the total number of simulated rocks from the source zone

$$\mathbb{P}_{r}^{A} \approx \sum_{i=1}^{n} \underbrace{p_{d,i}}_{p_{d}} \times \underbrace{p_{p,i}^{A}}_{\frac{N_{b,i}^{A}}{N_{\text{sim}}}} = p_{d} \sum_{i=1}^{n} \frac{N_{b,i}^{A}}{N_{\text{sim}}} = \frac{p_{d}}{N_{\text{sim}}} \underbrace{\sum_{i=1}^{n} N_{b,i}^{A}}_{N_{\text{tot}}} = \underbrace{np_{d}}_{P_{d}} \times \underbrace{N_{\text{tot}}^{A}}_{N_{b}} \times \frac{1}{\underbrace{nN_{\text{sim}}}_{\frac{1}{N_{t}}}} = \frac{P_{d}N_{b}}{N_{t}}$$

$$\left|1 - \prod_{i=1}^{n} \left(1 - p_{r,i}^{A}\right) - \sum_{i=1}^{n} p_{r,i}^{A}\right| \approx \sum_{1 \le i < j \le n} p_{r,i}^{A} p_{r,j}^{A}$$

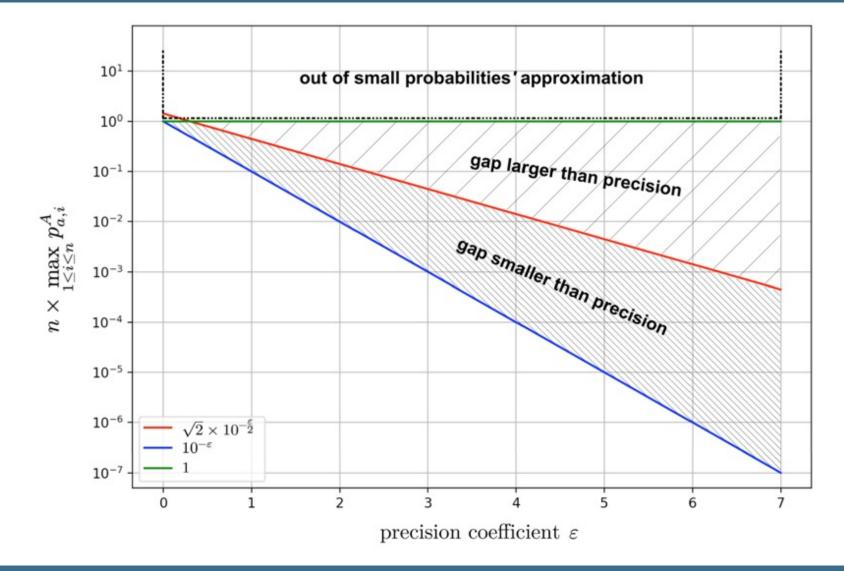
$$\left|1 - \prod_{i=1}^{n} \left(1 - p_{r,i}^{A}\right) - \sum_{i=1}^{n} p_{r,i}^{A}\right| \approx \sum_{1 \le i < j \le n} p_{r,i}^{A} p_{r,j}^{A}$$

$$\sum_{1 \le i < j \le n} p_{r,i}^A p_{r,j}^A \le \binom{n}{2} \max_{1 \le i \le n} \{p_{r,i}\}^2 < \frac{n^2}{2} \max_{1 \le i \le n} \{p_{r,i}\}^2$$

$$\left| 1 - \prod_{i=1}^{n} \left(1 - p_{r,i}^{A} \right) - \sum_{i=1}^{n} p_{r,i}^{A} \right| \approx \sum_{1 \le i < j \le n} p_{r,i}^{A} p_{r,j}^{A}$$

$$\sum_{1 \le i < j \le n} p_{r,i}^A p_{r,j}^A \le {\binom{n}{2}} \max_{1 \le i \le n} \{p_{r,i}\}^2 < \frac{n^2}{2} \max_{1 \le i \le n} \{p_{r,i}\}^2$$

$$\frac{n^2}{2} \max_{1 \le i \le n} \{p_{r,i}\}^2 < 10^{-\epsilon} \quad \Longleftrightarrow \quad n \max_{1 \le i \le n} \{p_{r,i}\} < \sqrt{2} \times 10^{-\frac{\epsilon}{2}}$$



A few references

Further details available in:

- Rossignol A., Martin R., Bourrier F. (2024), in *Revue française de géotechnique* (in French)
- Rossignol A., Martin R., Bourrier F. (in prep.)

(in English)

...and additional references:

- Hantz D., Corominas J., Crosta G.B., Jaboyedoff M. (2021), in *Geosciences*.
- Fell R., Ho K., Lacasse S., Leroi E. (2005), in *Proceedings of the International Conference on Landslide Risk Management*, CRC Press.
- Leroi E., Bonnard C., Fell R., McInnes R. (2005), in *Proceedings of the International Conference on Landslide Risk Management*, CRC Press.
- Farvacque M., Eckert N., Bourrier F., Corona C., Lopez-Saez J., Toe D. (2020), in *Revue française de géotechnique*.
- Farvacque M., Lopez-Saez J., Corona C., Toe D., Bourrier F., Eckert N. (2020), in *Géomorphologie: relief, processus, environnement*.
- C2ROP (2020), Caractérisation de l'aléa éboulement rocheux État de l'art, Cerema, collection "Connaissances".

Thank you very much for your attention! I will be happy to answer your questions!

arthur.f.rossignol@gmail.com remy.martin@onf.fr franck.bourrier@inrae.fr

INRAC

Liberté Égalité Fraternité

