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Decoupling-Based LPV Observer for Driver Torque
Intervention Estimation in Human-Machine Shared

Driving Under Uncertain Vehicle Dynamics
Anh-Tu Nguyen?, Senior Member, IEEE, Thierry-Marie Guerra, Chouki Sentouh, Jean-Christophe Popieul

Abstract—This paper proposes a method for simultaneous
estimation of both the driver torque and the sideslip angle
within the context of human-machine shared driving control for
autonomous ground vehicles. To this end, the driver torque is
considered as an unknown input (UI) and the sideslip angle
is an unmeasured state of the vehicle dynamics system. For
simultaneous estimation purpose, a decoupling-based technique
is leveraged to design an unknown input observer (UIO). The
UIO design goal is to decouple the effect of the unknown
driver torque while minimizing the influence of the modeling
uncertainties, considered as unknown exogenous disturbances,
from the lateral tires forces and the steering system. Linear
parameter-varying (LPV) framework is used to deal with the
time-varying nature of the vehicle longitudinal speed. Based on
Lyapunov stability theory, we derive sufficient conditions, ex-
pressed in terms of linear matrix inequality (LMI) constraints, for
LPV unknown input observer design. The simultaneous vehicle
estimation is reformulated as a convex optimization problem,
where the modeling uncertainty influence can be minimized via
the `∞−gain performance. Hardware-in-the-loop (HiL) tests are
performed with the SHERPA dynamic simulator and a human
driver to show the effectiveness of the proposed UIO-based
estimation method, especially within the cooperative driving
control framework.

Note to Practitioners—We present a method to jointly estimate
the driver torque and the sideslip angle in the context of human-
machine shared driving. To this end, we consider the driver
torque as an unknown input and treat the sideslip angle as
an unmeasured state of the vehicle dynamics system. The core
of our method lies in the application of a decoupling-based
technique to design an unknown input observer. The primary
objective of this UIO is to effectively decouple the influence
of the unknown driver torque while mitigating the impact
of modeling uncertainties, considered as unknown exogenous
disturbances, on the lateral tire forces and the steering system.
Using an LPV framework has allowed the time-varying nature
of the vehicle longitudinal velocity to be effectively addressed.
Via Lyapunov stability theory, we have established sufficient
conditions, expressed in terms of LMI constraints, for the design
of the LPV unknown input observer. The proposed simultaneous
vehicle estimation method has been reformulated as a convex
optimization problem, allowing to minimize the influence of
modeling uncertainties. To show the effectiveness of the proposed
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UIO-based estimation method, we have conducted extensive HiL
tests using the SHERPA dynamic simulator with a human driver.
The real-time experiments demonstrate the effectiveness of the
proposed method, especially with respect to related estimation
results in the literature, within the cooperative driving control
framework. The proposed LPV estimation method contributes to
the advancement of the field of autonomous ground vehicles by
providing practitioners with a robust tool for joint estimation of
essential variables critical for effective vehicle control and safety
in the context of human-machine cooperative driving.

Index Terms—Driver steering intervention, driver torque es-
timation, driver-automation shared driving, sideslip angle, un-
known input observer, LPV technique.

I. INTRODUCTION

The real-time information of the vehicle dynamics and the
driver steering intervention are crucial to develop advanced
driver assistance systems (ADAS) for intelligent vehicles
(IVs), e.g., online driver monitoring systems [1]–[3], active
safety control systems [4]–[6], shared driving control systems
[7]–[9]. However, commercial onboard vehicle sensors used
to measure the vehicle dynamics and to monitor the driver’s
actions are generally expensive, which may not be available
for commercial vehicle applications [10], [11]. Especially, in
several situations, the human driver variables cannot be even
obtained by physical sensors [12], [13]. Therefore, estimating
the vehicle dynamics as well as the driver’s actions, e.g.,
driver steering torque, has received great attention over the
past decade [1], [3], [14].

Within the human-machine shared driving control frame-
work of IVs, the driver has the option to assume control of
the vehicle when experiencing uncertainty or doubt. Hence,
the detection of the driver intervention plays a critical role
in performing driving tasks [15]. Moreover, understanding the
driver-automation interaction necessitates precise knowledge
of driver steering interventions [16]. This knowledge is es-
sential to effectively balance the control authority between
humans and machines, thereby enabling seamless assistance
to human drivers across diverse driving conditions [7], [8],
[17]. Recent research has provided evidence that the detection
of driver interventions is feasible [18]–[21]. However, the
primary limitations of existing approaches encompass the
requirement of supplementary hardware, the substantial CPU
load for data processing, the associated costs, etc. [15], [22].
Furthermore, accurately measuring the driver steering torque
using physical sensors is challenging due to the intricate
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coupling between driver torque, assistance torque, and un-
known friction torque inherent in the steering process [12],
[23]. To overcome this challenge, model-based estimation
approaches emerge as promising solutions. Remarkably, the
current literature lacks comprehensive exploration and investi-
gation into model-based estimation methods for driver steering
interventions [1], [21].

The authors in [15] presented and tested a driver inter-
vention detection algorithm by estimating the steering system
dynamics. However, this transfer-function-based method can-
not provide a real-time information about the driver’s steering
torque. Based on the steering wheel actuation dynamics,
a nonlinear disturbance observer was proposed in [12] to
estimate the driver steering torque in a steer-by-wire system.
However, the torque estimation results may exhibit high sen-
sitivity to parametric uncertainties and disturbances. Conse-
quently, substantial efforts are still needed for a comprehensive
theoretical analysis of the accuracy and robustness of this
observer design method concerning uncertainties and noises.
An H∞/H2 proportional multi-integral (PMI) observer was
used in [24] to estimate the driver torque from the dynamics
of an electric power steering (EPS) system. Based on a linear
uncertain model of a steer-by-wire system, an H2 observer
was synthesized in [14] for driver torque estimation. Note
that the vehicle dynamics, essential for active safety control
design, cannot be estimated with the methods in [12], [14],
[24]. Soualmi et al. [25] proposed an PMI observer for
a simultaneous estimation of vehicle dynamics and driver
steering torque. As in [14], the D−stability concept was also
taken into account in the observer design to improve the
estimation performance. However, the design of PMI observers
in [14], [24], [25] assume that the unknown driver torque
signal is piecewise constant, which is not always compatible
with IVs applications, especially when considering unexpected
driving maneuvers. To avoid this issue, a linear parameter-
varying (LPV) estimation method was proposed in [21] to
jointly estimate the vehicle dynamics and the driver torque
without requiring any a priori torque information. However,
in [21] the driver steering torque was considered as an un-
known disturbance, which has a direct and persistent impact
on the estimation error dynamics. Therefore, the estimation
quality may be degraded when the variation of the driver
torque becomes large. Moreover, a Taylor’s approximation
was used to reduce the complexity and conservatism of the
LPV observer design, which further yields modeling errors.
The fuzzy UIO introduced in [10] can address this drawback.
However, implementing this method in real-time may pose
practical challenges due to a significant number of subsystems
required for fuzzy representation and a conservative Lipschitz-
like assumption, as discussed in [26]. Moreover, this UIO only
allows to estimate the steering angle control of autonomous
vehicles, not directly the driver steering torque.

Motivated by the aforementioned concerns, this paper in-
vestigates the simultaneous estimation of driver steering torque
and vehicle dynamics in the context of human-machine shared
driving control. To this end, a polytopic LPV modeling method
is used to represent the driver-vehicle system dynamics while
taking into account the time-varying nature of the vehicle

speed parameter. The modeling uncertainties, issued from the
lateral tires forces and the steering system, are considered
as unknown exogenous disturbances. In particular, an UI
decoupling technique is leveraged to cancel the effect of
the unknown driver torque on the vehicle state estimation
error dynamics. Considering the class of amplitude-bounded
disturbances, practically encountered in driver-vehicle system
applications, their influence is minimized via an `∞−gain
performance, i.e., peak-to-peak disturbance attenuation. An
asymptotic convergence of both vehicle dynamics and driver
torque estimation errors can be theoretically achieved when
the disturbances vanish, which is not the case in [21]. Note
also that the modeling uncertainties, specifically related to
the lateral tires forces and the EPS dynamics, have not been
taken into account in the LPV observer design in [21]. Using
Lyapunov stability theory, sufficient conditions are derived for
the parameter-dependent UIO design. The design conditions
are expressed in terms of linear matrix inequalities (LMIs),
which can be effectively solved using semidefinite program-
ming techniques [27]. Specifically, the contributions of the
paper can be summarized as follows.
• An UIO-based estimation method to jointly estimate the

sideslip angle and the driver steering intervention for
human-machine shared driving, which is not the case of
[12], [14], [24]. Compared to the LPV estimation method
in [21], asymptotic convergence of the estimation error
can be achieved for a nominal vehicle system.

• The proposed LPV observer design does not rely on
assumptions about the driver torque, unlike previous
works [14], [24], [25], or LPV model approximation [21].
Instead, it considers modeling uncertainties of tire forces
and EPS dynamics to enhance estimation performance.

• The robust estimation performance is theoretically en-
sured using Lyapunov stability theory. The UIO design is
recast as a convex optimization problem under LMI con-
straints, easily solvable using standard numerical solvers.

• Hardware-in-the-loop (HiL) tests are performed with the
SHERPA driving simulator and a human driver to validate
the effectiveness of the proposed UIO-based estimation
method. Furthermore, we compare the new method with
the LPV observer from [21], known for superior esti-
mation performance over the PMI observer from [25],
highlighting the practical significance of our approach.

Notation. N is the set of non-negative integers, and we denote
Ip = {1, 2, ..., p} ⊂ N. For a matrix X , X> denotes
its transpose, X � 0 means that X is positive definite,
HeX = X+X>, and X† denotes its Moore–Penrose pseudo-
inverse. For a vector x ∈ Rn, we denote its 2-norm as
‖x‖ =

√
x>x. For a sequence of vectors {xk}k∈N, we denote

‖x‖`∞ = supk≥0 ‖xk‖. Then, {xk}k∈N ∈ `∞ if ‖x‖`∞ <∞.
diag{X1, X2} denotes a block-diagonal matrix composed of
X1 and X2. I is the identity matrix of appropriate dimension.
The symbol “?” stands for the terms deduced by symmetry.

II. VEHICLE MODELING AND PROBLEM DEFINITION

This section reviews the main features of the vehicle dy-
namics. Then, the related UIO design problem is formulated.
The vehicle parameters are given in Table I.
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TABLE I
VEHICLE PARAMETERS.

Parameter Symbol Value
Distance from the CoG to front axle lf 1.3 [m]
Distance from the CoG to rear axle lr 1.6 [m]
Tire length contact ηt 0.13 [m]
Steering gear ratio Rs 16 [-]
Steering system damping Bs 5.73 [-]
Manual steering column coefficient Kp 0.5 [-]
Vehicle mass Mv 2052 [kg]
Inertia of vehicle yaw moment Iz 2800 [kgm2]
Inertia of steering system Is 0.05 [kgm2]
Front cornering stiffness Cf 57000 [N/rad]
Rear cornering stiffness Cr 59000 [N/rad]

Fig. 1. Schematic of a 2-DOF vehicle model.

A. Nonlinear Vehicle Dynamics

A nonlinear single track model is used to represent the
vehicle motion in the horizontal plane, see Fig. 1. This model
captures the essential vehicle dynamics, described as [28]

Mv (v̇x − rvy) = Fxf cos δ − Fyf sin δ + Fxr

Mv (v̇y + rvx) = Fxf sin δ + Fyf cos δ + Fyr

Iz ṙ = lf (Fxf sin δ + Fyf cos δ)− lrFyr
(1)

where vx is the vehicle longitudinal speed, vy is the vehicle
lateral speed, r is the vehicle yaw rate, δ is the front wheel
steering angle. The cornering longitudinal/lateral forces at the
front/rear tires are denoted by Fpq , with p ∈ {x, y} and q ∈
{f, r}. Using the Pacejka magic formula [29], the front/rear
lateral forces can be modeled as

Fyq(αq) = Dq sin(∇q), q ∈ {f, r} (2)

with ∇q = Cqatan[(1 − Eq)Hqαq + Eqatan(Hqαq))]. The
corresponding Pacejka parameters Hq , Cq , Dq and Eq depend
on the characteristics of the tires, the roads and the vehicle
operating conditions. The sideslip angles for the front and rear
tires can be modeled as

αf = δ − atan
(
vy + lfr

vx

)
, αr = atan

(
lrr − vy
vx

)
. (3)

The EPS dynamics can be described as [30]

IsRsδ̈ +RsBsδ̇ = Ts − Tal + Tw (4)

where the total steering torque Ts = Ta + Td is composed
of the assistance torque Ta and the driver torque Td. The un-
certain torque Tw represents the EPS uncertainty, specifically
related to the self-aligning torque Tal, which is modeled as

Tal =
2KsCfηt

Rs

(
δ − vy + lfr

vx

)
.

B. Estimation Problem Statement

Despite its crucial importance to active safety control sys-
tems, the real-time information of the sideslip angle β and
the driver torque Td cannot be always reliably obtained from
onboard sensors. In particular, with a human-machine shared
control perspective, we assume that the driver’s driving action
Td can be “unpredictable” and needs to be reconstructed. This
paper provides a cost-effective solution to reconstruct such
information via an UIO with the following requirements.
• The new UIO structure can be easily designed and imple-

mented with only measurements from low-cost sensors.
• The estimation errors of both the sideslip angle and the

driver steering torque are norm-bounded, specified by an
`∞−gain level, which can be set arbitrarily small via a
convex optimization problem.

• The estimation robustness with respect to the time-
varying speed and the vehicle dynamics uncertainties can
be guaranteed with Lyapunov stability theory.

Note that the sideslip angle β can be expressed by β =

atan
(
vy
vx

)
[29]. Then, the estimation of the lateral speed vy is

considered as equivalent to the estimation of the sideslip angle
β. Fig. 2 depicts the proposed UIO scheme, whose design is
presented in Section IV.

Fig. 2. LPV unknown input observer scheme within the context of human-
machine shared driving control.

III. LPV REPRESENTATION OF VEHICLE SYSTEM

We represent hereafter the vehicle system in a polytopic
LPV form, which is suitable for UIO design purposes.

A. Observer-Based Uncertain Vehicle System

To derive the observer-based vehicle model, we assume that
[28], [29]: (i) the vehicle speed is a time-varying parameter;
(ii) the lateral tires forces are proportional to the slip angles
of each axle; (iii) the small angle assumption is considered.
Note that these assumptions are appropriate for normal driving
under mild acceleration conditions. Then, the lateral tires
forces in (2) can be linearized as follows [31]:

Fyf = 2Cf (1 +Wf∆(αf ))αf

Fyr = 2Cr (1 +Wr∆(αr))αr
(5)
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where the sideslip angles in (3) become

αf = δ − vy + lfr

vx
, αr =

lrr − vy
vx

. (6)

The term ∆(αf ) (respectively ∆(αr)) represents the nonlinear
part of Fyf (respectively Fyr). Since ∆(αq), for q ∈ {f, r},
is considered as uncertainties of the lateral tires forces, it can
be normalized as −1 ≤ ∆(αq) ≤ 1. Moreover, Wq , for q ∈
{f, r}, is a weight used for normalization for which 2Cq(1 +
Wq) and 2Cq(1 −Wq), for q ∈ {f, r}, are respectively the
upper and lower bounds of the slopes of the lateral forces
characteristics [31], i.e.,

2Cq(1−Wq) ≤
∂

∂αq
Fyq ≤ 2Cq(1 +Wq), q ∈ {f, r}.

Let us denote Ff = ∆(αf )αf and Fr = ∆(αr)αr as modeling
uncertainties related to the lateral tires forces. The uncertain
lateral tires forces in (5) can be reformulated as

Fyf = 2Cfαf + 2CfWfFf

Fyr = 2Crαr + 2CrWrFr.
(7)

From (1), (4), (6) and (7), the vehicle dynamics can be
represented in the following state-space form:

ẋ = Av(vx)x+Bvu+Dvd+ Evw (8)

where x =
[
vy r δ δ̇

]>
is the system state, u = Ta is

the known input, d = Td is the unknown input that needs
to be estimated, and w =

[
Ff Fr Tw

]>
represents vehicle

dynamics uncertainties. The state-space matrices of system (8)
are given by

Av(vx) =


a11 a12 a13 0
a21 a22 a23 0
0 0 0 1
a41 a42 a43 a44

 , Bv =


0
0
0
1

IsRs



Ev =


2CfWf

Mv

2CrWr

Mv
0

2CfWf lf
Iz

−2CrWrlr
Iz

0

0 0 0
0 0 1

IsRs

 , Dv =


0
0
0
1

IsRs


with

a11 = −2(Cr + Cf )

Mvvx
, a12 =

2(lrCr − lfCf )

Mvvx
− vx

a21 =
2(lrCr − lfCf )

Izvx
, a22 = −

l2rCr + l2fCf

Izvx

a41 =
2KpCfηt
IsR2

svx
, a42 =

2KpCf lfηt
IsR2

svx

a43 = −2KpCfηt
IsR2

s

, a44 = −Bs
Is

a13 =
2Cf
Mv

, a23 =
2lfCf
Iz

.

As in practice, we assume that the yaw rate r can be mea-
sured by an inertial navigation system. The steering angle δ
and steering rate δ̇ can be obtained by an onboard optical
encoder. However, the measurement of the lateral speed vy
or the sideslip angle β is unavailable for commercial vehicle

applications due to sensor cost reasons [10], [32]. Hence, the
output equation of system (8) is given by

y = Cx, C =

0 1 0 0
0 0 1 0
0 0 0 1

 .
Using Euler’s discretization method, with a sampling time
ts = 0.01 [s], the discrete-time counterpart of the vehicle
model (8) is given by

xk+1 = A(vx)xk +Buk +Ddk + Ewk

yk = Cxk (9)

with

A(vx) = tsAv(vx) + I, B = tsBv, D = tsDv, E = tsEv.

For UIO design, we reformulate in the sequel the vehicle
model (9) in a numerically tractable LPV representation.

B. Polytopic LPV Representation of Vehicle System

There are two dependently varying parameters involved in
the dynamics of the LPV vehicle system (9), i.e., A(vx) =

A(θ), with θ =
[
θ1 θ2

]>
, θ1 = vx and θ2 = 1

vx
. Note that

the vehicle speed is measured and bounded as

vmin ≤ vx ≤ vmax

with vmin = 5 [m/s] and vmax = 30 [m/s]. These two time-
varying parameters form a convex hull Pθ with four vertices

θv1 =
[
vmin

1
vmin

]>
, θv2 =

[
vmin

1
vmax

]>
θv3 =

[
vmax

1
vmax

]>
, θv4 =

[
vmax

1
vmin

]>
.

Observe in Fig. 3 that the parameter polytope Pθ with four ver-
tices leads to design conservatism and numerical complexity.
This is due to the fact that vx and 1

vx
are separately considered

despite its strong dependency. Note that vx and 1
vx

only evolve
on the curve C, and the vertices θv2 and θv4 are unreachable
for any value of vx. To take into account this strong depen-
dency and to reduce the numerical complexity for observer
design, a Taylor’s approximation-based variable change has
been widely adopted to derive an approximated LPV model for
system (9) as in [21], [30]. However, such an approximation
leads to modeling errors, which can deteriorate the estimation
performance. To avoid this issue, here we exactly characterize
the parameter space with the three vertices θv1, θv2 and θv3.
Hence, the vehicle system (9) can be equivalently represented
by the following polytopic LPV model:

xk+1 =

3∑
i=1

hi(θk)Aixk +Buk +Ddk + Ewk

yk = Cxk

(10)

where the linear submodels Ai, for i = I3, are given by

A1 = A(θ1min, θ2max)

A2 = A(θ1min, θ2min)

A3 = A(θ1max, θ2min).
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Fig. 3. Four-vertices polytope Pθ of parameter θ.

The membership functions hi(θk) in (10), for i = I3, are
constructed asθ1min θ1min θ1max

θ2max θ2min θ2min

1 1 1

h1(θk)
h2(θk)
h3(θk)

 =

θ1kθ2k
1

 .
Note that the membership functions hi(θk), for i ∈ I3, satisfy
the following convex sum property:

hi(θk) ≥ 0,

3∑
i=1

hi(θk) = 1.

With the LPV polytopic form (10), we propose an UIO-based
estimation method for system (9) in the next section.

IV. LPV UNKNOWN INPUT OBSERVER DESIGN

This section first formulates the UIO design problem.
Then, we present a method to design an LPV observer with
`∞−performance guarantee.

A. Problem Formulation

For generality of UIO design, we consider the LPV vehicle
model (10) in its more general form

xk+1 = A(h)xk +Buk +Ddk + Ewk

yk = Cxk
(11)

where xk ∈ Rnx is the state vector, yk ∈ Rny is the output
vector, uk ∈ Rnu is the known input vector, dk ∈ Rnd is
the unknown input vector, and wk ∈ Rnw is the disturbance
vector. The matrix A(h) is given in a polytopic form as

A(h) =

nr∑
i=1

hi(θk)Ai

where θk ∈ Rnθ is the vector of scheduling parameters, and
the membership functions satisfy the convex sum property

nr∑
i=1

hi(θk) = 1, 0 ≤ hi(θk) ≤ 1. (12)

Let H be the set of membership functions satisfying condition
(12), and

h =
[
h1(θk), h2(θk), . . . , hnr (θk)

]> ∈H

h+ =
[
h1(θk+1), h2(θk+1), . . . , hnr (θk+1)

]> ∈H .

For UIO design, we consider the following assumption for
system (11).

Assumption 1. We assume that system (11) verifies the
following rank condition:

rank

[
I D
C 0

]
= nx + nd

rank(CD) = rank(D).

(13)

Remark 1. The rank condition (13) is standard for unknown
input decoupling in UIO design [10], [11], [33], [34]. Note
that the vehicle system (10) verifies these rank conditions.

To jointly estimate the state xk and the unknown input dk,
we consider the following parameter-dependent UIO structure:

ζk+1 = S(A(h)x̂k +Buk) +G(h)−1L(h)(yk − ŷk)

x̂k = ζk + Tyk

ŷk = Cx̂k

d̂k = (CD)†(yk+1 − CA(h)x̂k − CBuk)

(14)

with [
G(h) L(h)

]
=

nr∑
i=1

hi(θk)
[
Gi Li

]
. (15)

The matrices S, T , G(h) and L(h) of the LPV observer
(14) are to be designed such that the following UI decoupling
constraints are verified:

S + TC = I, SD = 0. (16)

Remark 2. Selecting S = I and T = 0, the unknown
input observer (14) is reduced to the well-known Luenberger
observer structure, largely employed in the literature [14], [21],
[25]. Then, with a more general structure than the classical
Luenberger observer, the proposed UIO allows for a joint
estimation of the sideslip angle and the driver steering torque.
Note also that the matrices S and T cannot be parameter-
dependent due to the algebraic compatibility required by the
decoupling constraints in (16).

Define the estimation error as ek = xk − x̂k. Then, the
dynamics of ek can be derived from (11) and (14) as

ek+1 = xk+1 − x̂k+1

= (S + TC)xk+1 − x̂k+1

= Sxk+1 + Tyk+1 − (ζk+1 + Tyk+1) (17)

= S(A(h)ek +Ddk + Ewk)−G(h)−1L(h)(yk − ŷk).

Taking into account the constraint SD = 0 in (16), the
estimation error dynamics (17) can be rewritten as

ek+1 = A (h)ek + SEwk (18)

with A (h) = SA(h)−G(h)−1L(h)C. Moreover, it follows
from (11) that

dk = (CD)† (yk+1 − CA(h)xk − CBuk − CEwk) . (19)

We define the UI estimation error as εk = d̂k−dk. From (14)
and (19), we have

εk = (CD)†(CA(h)ek + CEwk).
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For estimation purposes, we introduce the performance output
zk associated to system (18) as the vector of estimation errors

zk =

[
ek
εk

]
= C (h)

[
ek
wk

]
(20)

with

C (h) =

[
I 0

(CD)†CA(h) (CD)†CE

]
. (21)

We are ready to formulate the following UIO design problem.

Problem 1. Consider the LPV system (11) with the unknown
input observer (14). Determine the matrices S, T , G(h) and
L(h) such that the estimation error dynamics (18) verifies the
following closed-loop properties.
(P1) If wk = 0, for ∀k ∈ N, the error dynamics (18) is

exponentially stable with a decay rate α ∈ (0, 1).
(P2) The error ek is uniformly bounded for any initial con-

dition e0 and any sequence {wk}k∈N ∈ `∞. That is,
there exists a bound ϕ(e0, ‖w‖`∞) such that ‖ek‖ ≤
ϕ(e0, ‖w‖`∞), for ∀k ≥ 0. Moreover, the performance
output verifies

lim
k→∞

sup ‖zk‖ < γ‖w‖`∞ (22)

where the `∞−gain γ is specified in Theorem 1. We also
deduce from (22) that if e0 = 0, then ‖zk‖ < γ‖w‖`∞ ,
for ∀k ∈ N.

Remark 3. System (18) verifying properties (P1)–(P2) is said
to be globally uniformly `∞−stable with a performance level
γ, see [35, Chapter 4]. It follows from (20) and (22) that a
smaller value of the `∞−gain γ leads to a better estimation
performance. Note also that a larger value of the decay rate
α yields faster error convergence, possibly causing aggressive
estimation behaviors.

Remark 4. For the vehicle system (9), sincewk represents the
modeling uncertainties stemmed from the lateral tires forces in
(7) and the EPS dynamics in (4), then it is always physically
bounded in amplitude, i.e., {wk}k∈N ∈ `∞. Here, the ultimate
amplitude bound ‖w‖`∞ is not required for UIO design.

The following technical lemmas are useful for UIO design.

Lemma 1 ([36]). Consider the parameter-dependent inequality

Υhhh+
=

nr∑
i=1

nr∑
j=1

nr∑
l=1

hi(θk)hj(θk)hl(θk+1)Υijl ≺ 0 (23)

where h,h+ ∈ H . The symmetric matrices of appropriate
dimensions Υijl, with i, j, l ∈ Inr , are linearly dependent on
the unknown decision variables. Then the parameter-dependent
inequality (23) holds if

Υiil ≺ 0, i, l ∈ Inr
2

nr − 1
Υiil + Υijl + Υjil ≺ 0, i, j, l ∈ Inr , i 6= j.

Lemma 2 ([37]). Given matrices B and Y , there exists a
matrix X such that XB = Y if and only if YB†B = X .
Moreover, the general solution to XB = Y is given by
X = YB† + S

(
I − BB†

)
, where S is an arbitrary matrix

of appropriate dimension.

B. LMI-Based UIO Design for Uncertain LPV Systems

The following theorem provides sufficient conditions to
guarantee that system (18) is globally uniformly `∞−stable.

Theorem 1. If there exist matrices S ∈ Rnx×nx and
T ∈ Rnx×ny satisfying (16), positive definite matrices Pi ∈
Rnx×nx , matrices Gi ∈ Rnx×nx and Li ∈ Rnx×ny , for
i ∈ Inr , positive scalars α ≤ 1, µ and ν, such that the
following optimization problem is achievable:

minimize ν + µ (24)
subject to

Ξiil � 0 (25)
2

nr − 1
Ξiil + Ξijl + Ξjil � 0 (26)
Pi ? ? ?
0 µI ? ?
I 0 I ?

(CD)†CAi (CD)†CE 0 I

 � 0 (27)

for i, j, l ∈ Inr and i 6= j, with

Ξijl =

 (1− α)Pi ? ?
0 ανI ?

GiSAj − LiC GiSE Gi +G>i − Pl

 .
Then, the estimation error dynamics (18) is globally uniformly
`∞−stable with an optimized performance level γ =

√
ν + µ.

Proof. Using Lemma 1 and the convex sum property (12) of
the membership functions, it follows from (25) and (26) that (1− α)P (h) ? ?

0 ανI ?
G(h)SA(h)− L(h)C G(h)SE Π(h,h+)

 � 0 (28)

with

Π(h,h+) = G(h) +G(h)> − P (h+)

P (h) =

nr∑
i=1

hi(θk)Pi, P (h+) =

nr∑
i=1

hl(θk+1)Pl.

Note that condition (28) implies that P (h) � 0, and

Π(h,h+) = G(h) +G(h)> − P (h+) � 0 (29)

for ∀h,h+ ∈ H . Since Π(h,h+) � 0, it follows from
(29) that G(h) + G(h)> � 0. This, in turn, ensures the
existence of the matrix inversion G(h)−1. We multiply the
matrix inequality (28) with[

I 0 −A >(h)
0 I −E>S>

]
on the left and its transpose on the right, it follows that[

A >(h)
E>S>

]
P (h+)

[
A (h) SE

]
−P(h) ≺ 0 (30)

with

P(h) =

[
(1− α)P (h) 0

0 ανI

]
.
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Pre- and post-multiplying (30) with
[
e>k w>k

]>
and its

transpose, we can obtain the following inequality after some
algebraic manipulations:

∆V(ek) + α
(
V(ek)− νw>k wk

)
< 0 (31)

where the parameter-dependent Lyapunov function candidate
V(ek) is used for stability analysis, defined as

V(ek) = e>k P (h)ek. (32)

The variation ∆V(ek) of the Lyapunov function candidate (32)
along the trajectory of the error dynamics (18) is given by

∆V(ek) = V(ek+1)− V(ek)

= e>k+1P (h+)ek+1 − e>k P (h)ek. (33)

We distinguish the two following cases.
Case 1. If wk = 0, for ∀k ∈ N, then it follows from (31) that

∆V(ek) + αV(ek) < 0, ∀k ∈ N (34)

where ∆V(ek) is given in (33). Condition (34) proves Property
(P1) on the exponential stability with a decay rate α of the
estimation error system (18).
Case 2. If wk 6= 0 and {wk}k∈N ∈ `∞, then it follows from
(31) that

V(ek) < (1− α)V(ek−1) + αν ‖wk−1‖2 , ∀k ≥ 1. (35)

By recursivity and since α ∈ (0, 1), it follows from (35) that

V(ek) < (1− α)kV(e0) + αν

k−1∑
i=0

(1− α)i ‖wk−1−i‖2

< (1− α)kV(e0) + αν‖w‖2`∞
k−1∑
i=0

(1− α)i

< (1− α)kV(e0) + ν‖w‖2`∞ , ∀k ≥ 1 (36)

which guarantees that ek is uniformly bounded for any initial
condition e0 and any sequence {wk}k∈N ∈ `∞.

Since h ∈H , multiplying inequality (27) with hi(θk), for
i ∈ Inr , and summing up, it follows that

P (h) ? ? ?
0 µI ? ?
I 0 I ?

(CD)†CA(h) (CD)†CE 0 I

 � 0. (37)

Applying the Schur complement lemma [27], we can show
that inequality (37) is equivalent to[

P (h) ?
0 µI

]
− C (h)>C (h) � 0. (38)

where C (h) is defined in (21). Pre- and post-multiplying (38)
with

[
e>k w>k

]>
and its transpose while taking into account

the definition of zk in (20), the following inequality can be
obtained after some simple manipulations:

‖zk‖2 ≤ V(ek) + µ‖wk‖2. (39)

It follows from (36) and (39) that

‖zk‖ ≤
√
V(e0)(1− α)k/2 + γ‖w‖`∞ , ∀k ≥ 1 (40)

with γ =
√
ν + µ. For any initial condition e0, it follows from

(40) that
lim
k→∞

sup ‖zk‖ ≤ γ‖w‖`∞ . (41)

Conditions (36), (40) and (41) ensure Property (P2). Moreover,
minimizing ν+µ in (24) leads to a minimization of γ, i.e., an
optimized estimation performance under the disturbance effect
wk. This concludes the proof.

Note that the sufficient conditions in Theorem 1 are ex-
pressed in terms of nonconvex matrix inequalities, which
cannot be directly applied for UIO design. To derive a set
of solvable LMI-based design conditions, we reformulate
condition (16) as[

S T
] [ I D
C 0

]
=
[
I 0

]
. (42)

Since the rank condition (13) holds, a solution for the matrix
equation (42) exists. Applying Lemma 2 with

X =
[
S T

]
, B =

[
I D
C 0

]
, Y =

[
I 0

]
the following solution for S and T can be obtained:[
S T

]
=
[
I 0

] [ I D
C 0

]†
+ S

(
I −

[
I D
C 0

] [
I D
C 0

]†)
(43)

where S is an arbitrary matrix of appropriate dimension. Then,
the proposed UIO design for LPV systems is summarized in
Algorithm 1.

Algorithm 1 UIO Design with `∞−Gain Performance
1: Inputs: LPV uncertain system (11)
2: Outputs: Observer (14) such that system (18) is globally

uniformly `∞−stable
3: if condition (13) verified then
4: proceed the UIO design
5: else
6: unable to design UIO with the proposed method
7: end if
8: Compute matrices S and T with (43)
9: Solve LMI-based optimization problem (24)

10: Get Gi and Li, for i ∈ Inr
11: Construct G(h) and L(h) with (15)
12: Construct LPV observer (14)

Remark 5. The UIO design procedure in Algorithm 1 is
reformulated as a convex optimization problem under LMI
constraints, which can be effectively solved with YALMIP
toolbox and SPDT3 solver [38].

Remark 6. For UI estimation, the future information of the
measured output yk+1 is required in (14). It is emphasized
that this UI estimation expression is only used for theoretical
analysis. In practice, the UI estimation is implemented as

d̂k−1 = (CD)†(yk − CA(h−)x̂k−1 − CBuk−1). (44)

with h− =
[
h1(θk−1), h2(θk−1), . . . , hnr (θk−1)

]>
. Since the

past values of all signals involved in (44) are available, it is
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always possible to estimate the one-step-back UI value d̂k−1.
This practical solution is frequently used in UI estimation
with decoupling-based approaches [11], [34]. Note also from
(44) that directly using yk to compute d̂k can make the
UI estimation performance of the proposed decoupling-based
method more sensitive to measurement noises/disturbances
compared to the estimation results obtained from PI observers.

V. ILLUSTRATIVE RESULTS AND DISCUSSIONS

This section presents HiL results with suitable comparative
studies to show the effectiveness of the proposed UIO with re-
spect to related literature. All the test scenarios are performed
with a human driver and the SHERPA interactive driving
simulator, shown in Fig. 4. The SensoDrive force feedback
steering wheel can provide the real-time information about
the driver steering torque. Moreover, the SHERPA simulator
is fully instrumented to measure all vehicle state variables.
Within the SCANeRTM Studio 1.6 environment, the pro-
posed UIO is implemented in the SHERPA simulator through
the Matlab/Simulink software. A demonstration video of the
SHERPA simulator is available at https://shorturl.at/eloQY.

Fig. 4. SHERPA simulator (left) and its steering system (right).

Following the UIO design procedure in Algorithm 1, we can
obtain an UIO solution for HiL validations with α = 0.01 and
γmin = 3.94. For brevity, only some of the decision matrices
obtained with Theorem 1 are given by

L1 =


−9232.74 47014.28 1294.44
182326.84 160138.57 562.18
9402.23 4436867.44 42033.74
237.12 808.77 −50.80



G1 =


15320.49 −2846.85 −40000.68 −1008.81

? 580995.48 −47481.23 −1197.47
? ? 9295855.94 12263.39
? ? ? 8809906.99



P1 =


11658.67 7453.41 −57439.03 −1448.61

? 361250.98 −76039.53 −1917.69
? ? 10338093.63 23129.95
? ? ? 9421546.56



S =


1.00 0 0 0
? 0.50 0 0
? ? 0.50 0
? ? ? 0

 , T =


0 0 0

0.50 0 0
0 0.50 0
0 0 1.00

 .
The following four test scenarios are selected to verify the
practical estimation performance of the proposed UIO under
different driving conditions.

A. Scenario 1: Manual Driving with Zigzag Steering Pattern
For this test scenario, the driver performs a manual driving

task without automation assistance, i.e., Ta = 0, at a constant
vehicle speed vx = 22 [m/s]. The corresponding vehicle tra-
jectory is shown in Fig. 5(a). The driver deliberately executes a
zigzag steering pattern during this test to provoke the uncertain
EPS dynamics, as represented by the high-frequency behaviors
of the steering angle and the steering rate in Figs. 5(b) and (c).
The estimation results of the unmeasured vehicle lateral speed
vy and the unknown driver steering torque Td are depicted in
Figs. 6(a) and (b), respectively. We can see that the proposed
UIO can achieve an accurate estimation performance despite
the high-frequency nature of the measured signals and the
small amplitude of the driver torque Td.
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Fig. 5. Scenario 1. (a) Vehicle trajectory, (b) Yaw rate, (c) Steering angle,
(d) Steering rate.
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Fig. 6. Estimation performance obtained with Scenario 1. (a) Lateral speed,
(b) Driver torque.

To provide a quantitative performance analysis, Table II
summarizes the error indices obtained with the proposed LPV
observer. Note that Emean is the average error, Emax is the
maximal error, RMS [%] is the root-mean-square error, and
GoF [%] is the goodness of fit between the estimated and the
measured signals. We can see that the excellent estimation
performance is numerically confirmed by the small error
indicators and a high goodness of fit level.

TABLE II
NUMERICAL STATISTICS ON ESTIMATION ERRORS FOR SCENARIO 1.

Error index Emean Emax RMS GoF
Td [Nm] 0.104 0.607 9.057 80.060
vy [m/s] 0.003 0.013 4.828 86.179

https://shorturl.at/eloQY
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B. Scenario 2: Cooperative Driving on a Real Test Track

This test is performed under smooth driving conditions on
the Satory test track, which is approximately 2.3 km long,
with various levels of road curvature, depicted in Fig. 7(a).
The human driver cooperatively executes the lane-keeping
task with the assistance system and maintains a time-varying
longitudinal speed, as shown in Figs. 7(b) and (c). As depicted
in Fig. 8, despite significant variations in the vehicle speed vx,
the assistance torque Ta, and the driver steering torque Td, the
proposed UIO accurately reconstructs the unmeasured signals
vy and Td throughout the entire cooperative driving task. This
is further numerically confirmed by the small error indices
summarized in Table III.
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Fig. 7. Scenario 2. (a) Vehicle trajectory, (b) Vehicle speed, (c) Assistance
torque, (d) Steering angle.
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Fig. 8. Estimation performance obtained with Scenario 2. (a) Lateral speed,
(b) Driver torque.

TABLE III
NUMERICAL STATISTICS ON ESTIMATION ERRORS FOR SCENARIO 1.

Error index Emean Emax RMS GoF
Td [Nm] 0.432 4.024 6.013 76.845
vy [m/s] 0.008 0.094 2.410 82.334

C. Scenario 3: Driving with Automation-Driver Conflict

For this scenario, we consider a driving task in a driver-
automation conflict situation, where the vehicle runs at a
constant speed of vx = 25 [m/s] on the trajectory depicted in
Fig. 9(a). The conflict situation is characterized by the fact that
the driver and the assistance torques are in opposite sign during
almost the whole test as shown in Fig. 9(b). This induces a

high vehicle dynamics solicitation as presented by the yaw rate
and steering angle signals in Figs. 9(c) and (d), respectively.
Fig. 10 shows that despite this challenging scenario, the lateral
speed vy and the driver steering torque Td are very well
estimated with the proposed UIO, which is also confirmed
by the performance indicators in Table IV.

Fig. 9. Scenario 3. (a) Vehicle trajectory, (b) Assistance and driver torques,
(c) Yaw rate, (d) Steering angle.
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Fig. 10. Estimation performance obtained with Scenario 3. (a) Lateral speed,
(b) Driver torque.

TABLE IV
NUMERICAL STATISTICS ON ESTIMATION ERRORS FOR SCENARIO 3.

Error index Emean Emax RMS GoF
Td [Nm] 0.259 1.497 7.560 86.644
vy [m/s] 0.005 0.015 3.814 87.782

D. Scenario 4: Estimation Performance Comparison

This test is used for comparison purposes with the LPV
observer proposed in [21], which can already provide a better
estimation performance than the PMI observer in [25]. The
driving is composed of two phases: autonomous mode from
0s to 33s, and driver-automation shared control mode from
33s to 60s, as shown in Figs. 11(a) and (b). Note also that
during the second driving phase, the human driver has to
performance three unexpected obstacle avoidance maneuvers
around 35s, 39s and 55s to purposely create some driver-
automation conflicting situations. To emphasize the practical
interest of the proposed method, we consider the case where
Ff and Fr represent 30% of modeling uncertainties in the
lateral tires forces. It can be seen in Fig. 12(a) that both



10

observers provide a similar estimation performance for vy
when driving on the straight road section, i.e., the second
driving phase. However, during the tight curves, i.e., the first
driving phase, the estimation quality of the LPV observer
[21] is degraded, which is not the case of the new estimation
method. Fig. 12(b) shows that the proposed UIO can prevent
some usual peaks in the estimation of the driver torque Td,
especially when Td becomes large to counteract the effect
of Ta as during driver-automation conflicting situations. The
numerical comparison results given in Table V clearly confirm
the outperformance of the proposed method with respect to the
existing LPV observer [21].
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Fig. 11. Scenario 4. (a) Vehicle trajectory, (b) Assistance and driver torques,
(c) Yaw rate, (d) Steering angle.
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Fig. 12. Estimation performance comparison between the proposed observer
and the LPV observer in [21] obtained with Scenario 4. (a) Lateral speed, (b)
Driver torque.

VI. CONCLUSIONS AND FUTURE WORKS

A parameter-dependent UIO-based method has been pro-
posed to jointly estimate the sideslip angle and the unknown
driver steering torque for IVs within the human-machine
shared driving framework. To deal with the time-varying
nature of the vehicle speed involved in the vehicle dynamics,
we represent the vehicle system as a polytopic LPV model. An
LPV vertex reduction is performed to reduce the design con-
servatism and numerical complexity while avoiding approxi-
mation errors. Using an UI decoupling technique, the influence

TABLE V
ESTIMATION PERFORMANCE COMPARISON.

Error index Proposed observer LPV observer [21]
Emean Td 0.039 0.325
Emean vy 0.004 0.009
Emax Td 1.686 4.807
Emax vy 0.062 0.144
RMS Td 3.284 11.437
RMS vy 2.334 4.874
GoF Td 82.736 67.605
GoF vy 95.744 81.181

of the unknown driver steering torque is decoupled from the
estimation error dynamics. This latter only depends on the
unknown exogenous disturbances, issued from the modeling
uncertainties of lateral tires forces and EPS dynamics. Via
Lyapunov stability theory, the UIO design is reformulated as
a convex optimization problem under LMI constraints, where
the estimation errors of the sideslip angle and the driver torque
can be set arbitrarily small via an optimized `∞−gain per-
formance. HiL results obtained with the SHERPA interactive
driving simulator and a human driver have been presented
to show the effectiveness of the new UIO-based estimation
method. For future works, the proposed UIO structure will
be incorporated into a hierarchical human-machine shared
control architecture. Special emphasis are placed on addressing
actuator faults and/or driver failures. User-test experiments
with several driver participants are also necessary to evaluate
the practical performance of the proposed UIO-based shared
control solution.
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