
HAL Id: hal-04565261
https://hal.science/hal-04565261v1

Preprint submitted on 2 May 2024 (v1), last revised 10 May 2024 (v2)

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

About enveloping algebras of direct sums
Gérard Henry Edmond Duchamp, Christophe Tollu, Jean-Gabriel Luque, Vu

Nguyen Dinh

To cite this version:
Gérard Henry Edmond Duchamp, Christophe Tollu, Jean-Gabriel Luque, Vu Nguyen Dinh. About
enveloping algebras of direct sums. 2024. �hal-04565261v1�

https://hal.science/hal-04565261v1
https://hal.archives-ouvertes.fr


About enveloping algebras of direct sums.

Gérard H. E. Duchamp∗1, Jean-Gabriel Luque†2, Christophe Tollu‡1, Vu Nguyen Dinh§3,
and Various Authors¶4

1LIPN, Northen Paris University, Sorbonne Paris City, 93430 Villetaneuse, France.
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Abstract

We solve the PBW-like problem of normal ordering for enveloping algebras of direct sums.

1 A question about the enveloping algebra of a direct sum.

This question is imported from [13]. It is linked to this one [14] in the case of semi-direct
products.
Let us consider a Lie k-algebra (k is a commutative ring) written as a (module) direct sum of
two of its subalgebras

g = g1 ⊕ g2 (⊕ = ⊕k−mod)

and the associated linear maps

gi g
ji

pi
such that j1p1 + j2p2 = Idg (1)

(it is a sum of two orthogonal projectors, remark that only ji’s are Lie morphisms in general).
We get, at once, the maps U(ji) through the universal algebra functor U (see below section 2
“Universal Constructions”) as follows.

gi g

U(gi) U(g)

σi

ji

σ

U(ji)

(2)

allowing us to multiply members of U(g1)⊗k U(g2) within U(g) by the composite map

µstate = µ ◦ (U(j1)⊗k U(j2)) : U(g1)⊗k U(g2) → U(g) (3)

where µ is the multiplication of U(g).
One can check, using generators, that µstate is surjective (and, in many usual cases [13] bijective).
Question: Is the property that µstate is bijective, true in the general case ?

Remarks 1. 1. Unless explicitly stated, all tensor products will be understood over k.
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2. All states below are elements of spaces of the form M = A1 ⊗A2 (see Eq. 10) where, for
i = 1, 2, (Ai, ∗i) is a k-AAU. Such a space M is naturally a A1−A2 bimodule (A1 module
by multiplication on the left and A2 module by multiplication on the right). To avoid
confusion (as tensors may appear inside A1), the separating tensor of M = A1

⊗
A2 will,

from time to time, be noted bold and oversized.

Example 1. 1. In the remarks and examples below, for any Z-algebra A and q ∈ N≥2, we
will note (A)q the quotient Z-algebra A

/
q.A (in all cases q.A is an ideal).

For example, the situation g = g1 ⊕ g2 where no factor is an ideal is frequent for Lie
algebras admitting a triangular decomposition1g = n+ ⊕ h⊕ n− for example

sl(n,Z) = T+(n,Z)⊕D(n,Z)⊕ T−(n,Z)

and one can create an example without any basis with k = Z, q ∈ N≥2 with

g = sl(n,Z) = T+(n,Z)⊕D(n,Z)⊕ T−(n,Z) then
(g)q = T+(n,Z)q ⊕D(n,Z)q ⊕ (T−(n,Z))q and, if one needs two factors,
(g)q = (T+(n,Z)⊕D(n,Z))q ⊕ (T−(n,Z))q (4)

Acknowledgements

We thank Darij Grinberg, from Drexel University and Jim Humphreys (through Math-
Overflow) for fruiful interactions and their interest for this question.

2 Universal Constructions

2.1 General principle.

In this subsection, we introduce the combinatorial (free) objects that we will use throughout
the manuscript. These objects (call them G(X)) together with a map jX : X → G(X) are all
solutions of universal problems. We will recall the definition, notation and terminology about
these free objects below (cf. in general Bourbaki [1] Ch IV §3 or [9] and, in particular, [2] Ch I
§7.1 and Lothaire [8] Prop 1.1.1 for words and the free monoids, Bourbaki [3] Ch II §2.2 Prop
1 and Reutenauer [11] Thm 0.4 for free Lie algebras and Bourbaki [2] for enveloping algebras
i.e. towards the free associative algebras with unit and Dinh Vu Nguyen’s thesis [5] for all these
matters), but here, we state the general principle.
The scheme is the same for all categories considered in the following list (k being a fixed ring).

Mon,Grp,k-AAU,k-Lie (5)

All objects of these categories can be considered as sets, we then have a natural “forgetful”
functor F such that, A being an object (of one of these categories), F (A) is the set underlying
the structure A. We are now in the position of stating the universal problem corresponding to
the forgetful functor F .

Universal problem (w.r.t. F , naive version2). —
For any set X (C being one of the categories as above) does there exist a pair (jX , G(X)) (G(X)
being an object of C and jX : X → G(X) an heteromorphism) such that:
For any map f : X → A (heteromorphism), there exists a unique f̂ ∈ HomC(G(X),A) such
that f = F (f̂) ◦ jX .

Remarks 2. i) It might happen that G be not defined everywhere as shows the case with C =
FinSet, F being the inclusion functor (i.e. F (X) = X for every finite set and F (f) = f for
every set-theoretical map between finite sets).
However a solution of the universal problem (6), for all X, provides a free functor G : Set →

1As Kac-Moody algebras [10], have also a look at [7] Ch 1 Exercise 1.8 (local Lie algebras) probably due to
Vinberg [4] who heralded the notion of pre-Lie algebras.

2See the theory of Heteromorphisms[12]
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C,X 7→ G(X) which is left-adjoint to the forgetful functor F : C → Set. The reader must
be aware that, in general, the notion of “forgetful functor” (here constructed from algebraic
structures and sets) is informal.

Set C

X A

G(X).

F

f

jX f̂

(6)

ii) We recall here that the universal enveloping algebra of a Lie k-algebra g is a pair (σ,U(g)),
where U(g) is an object in k-AAU and σ : g → U(g) is a morphism in k-Lie, which is a
solution of the following universal problem:

k-Lie k-AAU

g A

U(g).

F

f

σ f̂

(7)

From this arises that there exists the universal enveloping functor

U : k-Lie → k-AAU, g 7−→ (σ,U(g)) (8)

which is a left-adjoint to the Lie-ation functor F .

Notations 1. In the following, we will use notations as above and also

1. Identity of gi (resp. of U(gi)) will be noted, for short, Ii (resp. IUi
)

2. The maps σi gi 7→ U(gi) (resp. the map σ : g 7→ U(g)),

3. The maps deduced by universal constructions, as in the preamble, the maps U(ji)

gi g

U(gi) U(g)

σi

ji

σ

U(ji)

(9)

and ψ : T (g) → U(g) (resp. ψi : T (gi) → U(gi)) the natural (quotient) maps (see
Bourbaki [3] Ch I §2.7 p17).

4. The chaining of domains and maps involved is as follows

T (g1)⊗ U(g2) U(g1)⊗ U(g2) U(g)⊗ U(g) U(g)
ψ1⊗IU2 U(j1)⊗U(j2) µ

(10)
The upper long arrow being µstate := µUstate = µ ◦ (U(j1)⊗ U(j2)), the lower long (longer)
arrow being µTstate = µstate ◦ (ψ1 ⊗ IU2

). We will now construct the normal form calculator
and, from it, deduce a section s of µUstate which will turn out to be bijective. Knowing
already that µUstate is surjective, it will be sufficient to establish that

s ◦ µUstate = IdU(g1)⊗U(g2)
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3 Step-by-Step construction of a normal form calculator

Having remarked that the domain and codomain of µstate (= µUstate) are U(g1)−U(g2) modules
(U(g1)− by multiplication on the left and −U(g2) by multiplication on the right for the domain
and through U(g1))⊗U(g2)) for the codomain) our strategy will be to construct a −U(g2) section
of µ (this linearity will help us to make the construction, at first defined on T (g1)⊗U(g2), pass
to quotients). We observe now, in all cases when µstate is one-to-one, there is an action on the
left (g∗U ) of U(g) on the space of states U(g1) ⊗ U(g2) provided by transport of structure [17]
as follows

g ∗U (m1 ⊗m2) = µ−1
state(g.µstate(m1 ⊗m2)) (11)

Now, we will construct this action in the general case by passing to quotients a similar action
on T (g1) ⊗ U(g2) denoted by g ∗T −. This compatibility (to be proved) is illustrated by the
following diagram

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

g∗T−

ψ1⊗I2

g∗U−

ψ1⊗I2

(12)

where ψ1 : T (g1) → U(g1) is the natural (quotient) map and I2 = IdU(g2). We will proceed in
fours steps

1. Construction

2. Compatibility with ≡ψ1

3. Action ∗U as a Lie action.

4. Section and isomorphism

3.1 Construction of the actions g∗

Let us recall that g is a Lie algebra split (k-module decomposition) as follows

g = g1 ⊕ g2 (here ⊕ = ⊕k−mod) (13)

Let ji, pi be the corresponding embeddings and projectors (see also the end of paragraph 2.1). In
addition, we will note ψ1 the morphism of k-AAU ψ1 : T (g1) → U(g1) obtained by multiplication
of factors and U(j2), the natural morphism U(j2) : U(g2) → U(g) as defined above (see diagram
9) We now have the following

Theorem 1. With the notations as above,
i) there exists a unique linear map

Φ : g⊗ T (g1)⊗ U(g2) → T (g1)⊗ U(g2). (14)

(in the sequel, Φ(g ⊗ t
⊗
m) will be alternatively noted g ∗T (t

⊗
m))

such that




g ∗T (1T (g1) ⊗m) = p1(g)⊗m+ 1T (g1) ⊗ σ2p2(g).m for all (g,m) ∈ g× U(g2)

g ∗T (x⊗ t
⊗
m) = [g, j1(x)] ∗T (t

⊗
m) + x⊗

(
g ∗T (t

⊗
m)

)

for all (g, x, t,m) ∈ g× g1 × T (g1)× U(g2)

(15)

(Nota : For the sake of clarity, we have used the blue tensor product as explained in
Remark 1.2.)
ii) This map is filtered in the following sense

Φ
(
g⊗ T≤n(g1)⊗ U(g2)

)
⊂ T≤n+1(g1)⊗ U(g2) (16)
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iii) It is compatible with
a) The U(g2) right module structure of T (g1)⊗ U(g2) as

for (g, t,m) ∈ g× T (g1)× U(g2) one has
g ∗T (t⊗m) =

(
g ∗T (t⊗ 1U(g2))

)
.m (17)

b) Multiplication of factors. Let

µTstate = µ ◦ (U(j1)⊗ U(j2)) ◦ (ψ1 ⊗ I2) (18)

(see Notation (1) and Eq. (3)) as, for all (g, t,m) ∈ g× T (g1)× U(g2), we have

µTstate(g ∗T (t⊗m)) = σ(g).µTstate(t⊗m) = σ(g).µTstate(t⊗ 1U(g2).U(j2)(m) (19)

iv) There is a unique map

ΦU : g⊗ U(g1)⊗ U(g2) → U(g1)⊗ U(g2) (20)

such that the following diagram commutes

g⊗ T (g1)⊗ U(g2) g⊗ U(g1)⊗ U(g2)

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

Φ

I1⊗ψ1⊗IU2

ΦU

ψ1⊗IU2

(21)

Proof. i) and ii) We will show, by induction on n, the following statement:
For all n ≥ 0, there exists a unique linear map

Φn : g⊗ T≤n(g1)⊗ U(g2) → T≤n+1(g1)⊗ U(g2) (22)

noted g ∗
(n)
T (t⊗m) := Φn(g ⊗ t⊗m) such that,





g ∗
(n)
T (1T (g1) ⊗m) = p1(g)⊗m+ 1T (g1) ⊗ σ2p2(g).m for all (g,m) ∈ g× U(g2)

g ∗
(n)
T (x⊗ t⊗m) = [g, j1(x)] ∗

(n−1)
T (t⊗m) + x⊗

(
g ∗

(n−1)
T (t⊗m)

)

for all (g, x, t,m) ∈ g× g1 × T≤n−1(g1)× U(g2)

(23)

For n = 0, Φ0 is clearly uniquely defined by

Φ0(g ⊗ λ.1T (g1) ⊗m) := λ.
(
p1(g) ⊗m+ 1T (g1) ⊗ σ2p2(g)m

)
.

We now suppose (Φj)0≤j≤n to be uniquely defined by (23) and show the same for some3

Φn+1 : g⊗ T≤n+1(g1)⊗ U(g2) → T≤n+2(g1)⊗ U(g2) with

g ∗
(n+1)
T (t⊗m) := Φn+1(g ⊗ t⊗m) (24)

Remarking that

g⊗ T≤n+1(g1)⊗ U(g2) = g⊗ T≤n(g1)⊗ U(g2)⊕ g⊗ Tn+1(g1)⊗ U(g2)

we define Φn+1 as coinciding with Φn on the sector g⊗ T≤n(g1)⊗ U(g2).
Now for

(g, x, t,m) ∈ g× g1 × Tn(g1)× U(g2),

we observe that

(g, x, t,m) 7→ [g, x] ∗T (t⊗m) + x⊗ (g ∗T (t⊗m))

is k-quadrilinear which entails existence and unicity of a linear map

Φ̌n+1 : g⊗
(
g1 ⊗ Tn(g1)

)
⊗ U(g2) = g⊗ Tn+1(g1)⊗ U(g2) → T≤n+2(g1)⊗ U(g2)

This allows us to set Φn+1 = Φn ⊕ Φ̌n+1 which is uniquely defined due to (23)4.

3which will turn out to be unique.
4In fact, Φ is the inductive limit of the sequence Φn.
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iii) a) Again, by induction.
b) Compatibility with µTstate.
Again, we prove this by induction on n on the property that, for all (g, t,m) ∈ g×Tn(g1)×
U(g2), we have (19).
For n = 0, it suffices to remark that

µTstate
(
g ∗T (1T (g1) ⊗m)

)
= µTstate

(
p1(g) ⊗m+ 1T (g1) ⊗ σ2p2(g).m

)
=

µTstate(p1(g) ⊗m) + µTstate
(
1T (g1) ⊗ σ2p2(g).m

)
= σ(j1p1(g) + j2p2(g)).U(j2)(m) =

σ(g).m = σ(g).µTstate(1T (g1) ⊗ 1U(g2)).U(j2)(m) (25)

For n ≥ 1 we prove (19) by induction using linear generators of Tn(g1) i.e. the family
(x⊗ t)x∈g1×Tn−1(g1) then

µTstate
(
g ∗T ((x⊗ t)⊗m)

)
= µTstate

(
[g, j1(x)] ∗T (t⊗m)

)
+ µTstate

(
x⊗ (g ∗T (t⊗m))

)
=(26)

σ([g, j1(x)]).U(j1)ψ1(t).U(j2)(m) + U(j1)σ1(x).σ(g).U(j1)ψ1(t).U(j2)(m) = (27)

σ([g, j1(x)]).U(j1)ψ1(t).U(j2)(m) + σj1(x).σ(g).U(j1)ψ1(t).U(j2)(m) = (28)

(
σ(g).σj1(x)− σj1(x).σ(g)

)
.U(j1)ψ1(t).U(j2)(m) + (29)

σj1(x).σ(g).U(j1)ψ1(t).U(j2)(m) = (30)

σ(g).σj1(x).U(j1)ψ1(t).U(j2)(m) = σ(g).U(j1)ψ1(x).U(j1)ψ1(t).U(j2)(m) = (31)

σ(g).U(j1)
(
ψ1(x).ψ1(t)

)
.U(j2)(m) = σ(g).U(j1)ψ1(x⊗ t).U(j2)(m) = (32)

σ(g).µTstate((x⊗ t)⊗ 1U(g)).U(j2)(m) (33)

iv) We first construct g ∗U (t⊗m) for tensors of the type t⊗ 1U(g2) i.e. we construct the restriction of
ΦU on g⊗ U(g1)⊗ 1U(g2) and prove that the following diagram commutes

T (g1)⊗ 1U(g2) U(g1)⊗ 1U(g2)

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

g∗T

ψ1⊗IU2

g∗U

ψ1⊗IU2

(34)

and use the following lemma

Lemma 1. Let Ai, B, i = 1..2 be k-AAU and s : A1 → A2, ǫ : B → k be morphisms (of k-AAU).
Then
i) Ai → Ai ⊗ B defined by x 7→ x⊗ 1B is injective (the image of it will be noted Ai ⊗ 1B).
ii) The kernel of s⊗ IdB is ker(s)⊗ 1B.

Proof. Left to the reader.

End of the proof of (iv). —
We complete the proof of diagram (34). As ψ1 is surjective, so is ψ1 ⊗ IU2

(even its retriction i.e.
from T (g1) ⊗ 1U(g2) to U(g1) ⊗ 1U(g2), let us call ξ1 this restriction) so that the diagram (34), in
fact, becomes

T (g1)⊗ 1U(g2) U(g1)⊗ 1U(g2)

T (g1)⊗ U(g2) U(g1)⊗ U(g2)

g∗T

ξ1

g∗U

ψ1⊗IU2

(35)

From Lemma 1, the kernel of σ1 is the module generated, for (p, x, y) ∈ T (g1) ⊗ g1 ⊗ g1 by the
family of tensors (s is omitted in the indexation because it will not vary throughout the proof

E(p, x, y) := (p⊗ x⊗ y ⊗ s⊗ 1U(g2))− (p⊗ y ⊗ x⊗ s⊗ 1U(g2))− (p⊗ [x, y]⊗ s⊗ 1U(g2))

then, the existence (and unicity) of g ∗U − amounts to prove that, for
(p, x, y) ∈ T (g1)⊗ g1 ⊗ g1, we have g ∗T (E(p, x, y)) = 0. Let us set T (p, x, y) := g ∗T ((p⊗ x⊗ y⊗
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s⊗ 1U(g2)). We proceed by cases.
First case : p ∈ Tn(g1) for n ≥ 1.
We check the fact for the tensors p = a ⊗ p′ (sufficient because these tensors generate T+(g1) =
⊕n≥1Tn(g1). Let us set T (p, u) := p ⊗ u ⊗ s ⊗ 1U(g2), we have to prove that g ∗T (T (p, x ⊗ y)) −
g ∗T (T (p, y ⊗ x)) ≡ g ∗T (T (p, [x, y])
where X ≡ Y stands for X − Y ∈ ker(ψ1 ⊗ IU2

).
By direct computation we get

g ∗T (a⊗ p′ ⊗ x⊗ y ⊗ s⊗ 1U(g2)) =
[g, a] ∗T (p′ ⊗ x⊗ y ⊗ s⊗ 1U(g2)) + a⊗ g ∗T (p′ ⊗ x⊗ y ⊗ s⊗ 1U(g2)) (36)

from this, we see, by induction, that all amounts to prove the fact for n = 0. Then,
Second case : p ∈ Tn(g1) for n = 0.
By homogeneity, we can suppose p = 1Tn(g1). Let us compute

g ∗T (x⊗ y ⊗ s⊗ 1U(g2)) =
[g, x] ∗T (y ⊗ s⊗ 1U(g2))︸ ︷︷ ︸

T1(x,y)

+ x⊗ g ∗T (y ⊗ s⊗ 1U(g2))︸ ︷︷ ︸
T2(x,y)

=

[[g, x], y] ∗T (s⊗ 1U(g2)) + y ⊗
(
[g, x] ∗T (s⊗ 1U(g2))

)
︸ ︷︷ ︸

T1(x,y)=T11(x,y)+T12(x,y)

+ x⊗
(
[g, y] ∗T (s⊗ 1U(g2))

)
+ x⊗ y ⊗

(
g ∗T (s⊗ 1U(g2))

)
︸ ︷︷ ︸

T2(x,y)=T21(x,y)+T22(x,y)

(37)

Then

T11(x, y)− T11(y, x) = [g, [x, y]] ∗T (s⊗ 1U(g2))

T12(x, y)− T21(y, x) = y ⊗
(
[g, x] ∗T (s⊗ 1U(g2))

)
− y ⊗

(
[g, x] ∗T (s⊗ 1U(g2))

)
= 0

T21(x, y)− T12(y, x) = x⊗
(
[g, y] ∗T (s⊗ 1U(g2))

)
− x⊗

(
[g, y] ∗T (s⊗ 1U(g2))

)
= 0

T22(x, y)− T22(y, x) = x⊗ y ⊗
(
g ∗T (s⊗ 1U(g2))

)
− y ⊗ x⊗

(
g ∗T (s⊗ 1U(g2))

)
≡

[x, y]⊗
(
g ∗T (s⊗ 1U(g2))

)
(38)

(we recall that X ≡ Y stands for X − Y ∈ ker(ψ1 ⊗ IU2
)). Then

g ∗T (x⊗ y ⊗ s⊗ 1U(g2))− g ∗T (y ⊗ x⊗ s⊗ 1U(g2)) ≡

[g, [x, y]] ∗T (s⊗ 1U(g2)) + [x, y]⊗
(
g ∗T (s⊗ 1U(g2))

)
=

g ∗T ([x, y]⊗ s⊗ 1U(g2)) (39)

then, there exists g∗U such that (34) commutes.
End of the proof of (21). —
We set, for (g, t,m) ∈ g× U(g1)× U(g2),

g ∗U (t⊗m) := g ∗U (t⊗ 1U(g2)).m (40)

Now, we remark that (g, t,m) 7→ g ∗U (t⊗m) is trilinear and this completes the proof.

Corollary 1. For all (g,m1,m2) ∈ g× U(g1)× U(g2), one has

µUstate(g ∗U (m1 ⊗m2)) = σ(g).U(j1)(m1).U(j2)(m2) (41)

Proof. From theorem (1) (iii.b, in particular (19)) and diagram (21).

3.2 g∗U is a g-action on U(g1)⊗ U(g2).

We here prove that g∗U defines a Lie g-action on U(g1) ⊗ U(g2) i.e. for all (g, h,m1,m2) ∈

g1 × g1 × U(g1)× U(g2) we have (below ∗ will stand for ∗U )

g ∗
(
h ∗ (m1 ⊗m2)

)
− h ∗

(
g ∗ (m1 ⊗m2)

)
= [g, h] ∗ (m1 ⊗m2) (42)

Let us then set T (g, h) = g ∗
(
h ∗ (m1 ⊗m2)

)
.

We have 4 cases (which can be reduced to 3 by antisymmetry)
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a) (g, h) ∈ g1 × g1

T (g, h) − T (h, g) = g ∗ (h ∗ (m1 ⊗m2))− h ∗ (g ∗ (m1 ⊗m2)) =
σ1(g).σ1(h).m1 ⊗m2 − σ1(h).σ1(g).m1 ⊗m2 ≡

σ1([g, h]).m1 ⊗m2 = [g, h] ∗ (m1 ⊗m2) (43)

b) (g, h) ∈ g2 × g1

T (g, h) − T (h, g) = g ∗ (h ∗ (m1 ⊗m2))− h ∗ (g ∗ (m1 ⊗m2)) =
g ∗ (σ1(h).m1 ⊗m2)− σ1(h).(g ∗ (m1 ⊗m2)) =
[g, j1(h)] ∗ (m1 ⊗m2) + σ1(h).(g ∗ (m1 ⊗m2))− σ1(h).(g ∗ (m1 ⊗m2)) =
[g, j1(h)] ∗ (m1 ⊗m2) (44)

c) (g, h) ∈ g1 × g2
Is true by antisymmetry.
d) (g, h) ∈ g2 × g2
For the computation of T (g, h) − T (h, g), we have two cases.
d1) m1 = 1U(g1)

T (g, h) − T (h, g) = g ∗ (h ∗ (1U(g1) ⊗m2))− h ∗ (g ∗ (1U(g1) ⊗m2)) =
1U(g1) ⊗ σ2(g).σ2(h).m2 − 1U(g1) ⊗ σ2(h).σ2(g).m2 = 1U(g1) ⊗ σ2([g, h]).m2 = [g, h] ∗ (1U(g1) ⊗m2)(45)

d2) m1 ∈ U+(g1)
We prove (42) by induction. Let m1 ∈ Un(g1).
We have n ≥ 1 and Un(g1) is generated by the products x.m with x ∈ U(g1) and m ∈ Un−1(g1)

T (g, h) − T (h, g) = g ∗ (h ∗ (x.m⊗m2))− h ∗ (g ∗ (x.m⊗m2)) =
g ∗ ([h, x] ∗ (m⊗m2)) + g ∗ (σ1(x).(h ∗ (m⊗m2)))
−h ∗ ([g, x] ∗ (m⊗m2))− h ∗ (σ1(x).(g ∗ (m⊗m2)))
= g ∗ ([h, x] ∗ (m⊗m2))︸ ︷︷ ︸

T1(g,h)

+ [g, x] ∗ (h ∗ (m⊗m2)))︸ ︷︷ ︸
T2(g,h)

+σ1(x).(g ∗ (h ∗ (m⊗m2)))︸ ︷︷ ︸
T3(g,h)

−h ∗ ([g, x] ∗ (m⊗m2))︸ ︷︷ ︸
T1(h,g)

− [h, x] ∗ (g ∗ (m⊗m2)))︸ ︷︷ ︸
T2(h,g)

−σ1(x).(h ∗ (g ∗ (m⊗m2)))︸ ︷︷ ︸
T3(h,g)

(46)

Then

T1(g, h) − T2(h, g) = [g, [h, x]] ∗ (m⊗m2) by induction
T2(g, h) − T1(h, g) = [[g, x], h] ∗ (m⊗m2) by induction
T3(g, h) − T3(h, g) = σ1(x).([g, h] ∗ (m⊗m2)) by induction
Hence T (g, h) − T (h, g) = ([g, [h, x]] + [[g, x], h]) ∗ (m⊗m2) + x.([g, h] ∗ (m⊗m2))
= [[g, h], x] ∗ (m⊗m2) + σ1(x).([g, h] ∗ (m⊗m2))
= [g, h] ∗ (x.m⊗m2) (47)

We now come to the proof that µUstate is one-to-one.

4 The linear map µ
U
state is bijective.

Theorem 2. i) From the (Lie) action ∗U , one deduces a unique U(g)− module structure on
U(g1)⊗ U(g2) (noted ∗mod) such that σ(g) ∗mod (m1 ⊗m2) = g ∗U (m1 ⊗m2).
ii) The map s : m 7→ m ∗mod (1U(g1) ⊗ 1U(g2)) and µ

U
state are mutually inverse.
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Proof. i) From Theorem (1) (iv), let us note (as above) g∗U−, the mapm1⊗m2 7→ g∗U (m1⊗m2),
we then get a linear map ϕ : g → End (U(g1)⊗ U(g2)) and, by (42), we learn that ϕ is a
morphism of k-Lie algebras. By universal property of U(g), we get

k-Lie k-AAU

g End (U(g1)⊗ U(g2))

U(g).

F

ϕ

σ ϕ̂

(48)

which means that, for all (g,m1,m2) ∈ g× U(g1)× U(g2),

ϕ(g)[m1 ⊗m2] = ϕ̂(σ(g))[m1 ⊗m2] (49)

Of course, such a morphism as ϕ̂ defines at once a structure of left U(g)-module on U(g1)⊗U(g2).
Its action will be noted ∗mod such that

σ(g) ∗mod (m1 ⊗m2) := ϕ̂(σ(g))[m1 ⊗m2]

which completes the first point.
ii) Knowing already that µUstate is surjective, it will be sufficient to establish that

s ◦ µUstate = IdU(g1)⊗U(g2)

which amounts to show that for (gi)1≤i≤p in g1 (resp. (hi)1≤i≤q in g2)

s ◦ µUstate
(
σ1(g1) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
= σ1(g1) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq) (50)

By linearity, this will prove that s ◦ µUstate = IdU(g1)⊗U(g2).
From (41), for p > 0, we get,

µUstate
(
σ1(g1) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
=

U(j1)σ1(g1)µ
U
state

(
σ2(g2) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
(51)

and, remarking that s is U(g)− linear we have

s ◦ µUstate
(
σ1(g1) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
=

s
(
U(j1)σ1(g1)µ

U
state

(
σ2(g2) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

))
=

s
(
σj1(g1)µ

U
state

(
σ2(g2) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

))
=

j1(g1).sµ
U
state

(
σ2(g2) · · · σ1(gp)⊗ σ2(h1) · · · σ2(hq)

)
=

σ1(g1). · · · .σ1(gp)⊗ σ2(h1). · · · .σ2(hq) (52)

the other case (p = 0) is straightforward. Then, by induction on p, one has s◦µUstate(m1⊗m2) =
m1 ⊗m2 which proves the claim.

QED

5 Conclusion and future

1. Quantized enveloping algebras

2. Lie superalgebras
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6 WHBD (What Has Been Done and some comments)

1. 22/04/24. — (GHED from DG)

2. In (2), the top arrow should be ji, not j1.
In (2), there is a ) parenthesis too much in U(gi). → Done

3. p2 Remark 1 item 2 is not quite clear, but I assume it only concerns some examples?
Yes, it is only an “example generator” to show that the “all rings” requirement is not
isolated,
Changed [The situation] for [For example, the situation]

4. Page 3:
Notations 1 item 1: Extra ) parenthesis at the beginning, missing ) at the end.
Notations 1 item 4: Extra ) parenthesis in the diagram.
Notations 1 item 4: Below the diagram, U(J2) should be U(j2).
Done x 3

5. Page 4: (15): On the second line of (15), when you say ”x⊗ (g ∗T (t⊗m))”, do you mean
”(x⊗ 1)(g ∗T (t⊗m))”?
Here T (g1)⊗U(g2) is viewed as a T (g1)−U(g2) bimodule i.e. T (g- module on the left and
U(g2) module on the right, then, if g ∗T (t⊗m) =

∑
i ti ⊗mi, we have

x⊗
(
g ∗T (t⊗m)

)
=

∑

i

(x⊗ ti)⊗mi

I will put a word on this bimodule structure.

6. 22/04/24. —

7. Added a second item in Remark 1

8. Created the example generator under environment “Example”

9. Put a Nota after the first item of Th. 1

10. 24/04/24. —

11. Added bibliography and pointed to [7] Ch 1 Ex 8 (probably due to Vinberg, check todo
Kac V. G. [1968 B] in this book)

12. 29/04/24. —

13. Moved Darij from co-authorship to acknowledgements

14. Changed [As tensors may appear .../... and oversized.] (in the beginning) for [To avoid
confusion .../... and oversized.]

7 Related quest!ons

1. Infinite fold tensor product of universal enveloping algebras
https://mathoverflow.net/questions/334887

2. Infinite tensor product of states
https://mathoverflow.net/questions/161169

3. Math of QM: 10.1 Motivation for Infinite Tensor Product of Hilbert Spaces (Roland Spe-
icher)
https://www.youtube.com/watch?v=2yRvGLh1SUQ

4. Infinite tensor product as infinite coproduct in the category of R algebras
https://math.stackexchange.com/questions/2054068
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