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Abstract 18 

Progressive recombination loss is a common feature of sex chromosomes. Yet, the evolutionary 19 

drivers of this phenomenon remain a mystery. For decades, differences in trait optima between 20 

sexes (sexual antagonism) has been the favoured hypothesis, but convincing evidence is lacking. 21 

Recent years have seen a surge of alternative hypotheses to explain progressive extensions and 22 

maintenance of recombination suppression: neutral accumulation of sequence divergence, selection 23 

of non-recombining fragments with fewer deleterious mutations than average, sheltering of 24 

recessive deleterious mutations by linkage to heterozygous alleles, early evolution of dosage 25 

compensation and constraints on recombination restoration. Here, we explain these recent 26 

hypotheses and dissect their assumptions, mechanisms and predictions. We also review empirical 27 

studies that have brought support to the various hypotheses. 28 
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Main text 31 

Why does recombination suppression progressively extend on sex chromosomes? 32 

The loss of recombination on sex chromosomes is an enigma that has fascinated evolutionary 33 

biologists for decades. Recombination indeed allows efficient selection and the purging of 34 

deleterious mutations [1,2]. Recombination suppression therefore leads to the accumulation of 35 

deleterious mutations and thus the degeneration of sex chromosomes [3,4], which can account for 36 

diseases and the shorter life-span of XY males in many species, including humans [5,6]. Despite 37 

these long-term detrimental effects, progressive extensions of recombination suppression with time 38 

has been documented on sex chromosomes in many plants and animals [7-17]. However, the 39 

question of why recombination suppression progressively extends beyond genes involved in sex 40 

determination is still unresolved [18,19].  41 

The most widely accepted hypothesis to explain progressive extensions of recombination 42 

suppression on sex chromosomes has long been sexual antagonism (see Glossary) [18,20-23]. 43 

Linking sexually antagonistic genes to the sex-determining loci could be beneficial, because it 44 

ensures, for example, that only males express male-beneficial, female-deleterious alleles. Though 45 

appealing, little evidence has been found that supports this hypothesis [24-29]. Furthermore, 46 

progressive extensions of recombination suppression have recently been documented around 47 

autosomal supergenes [30,31] (see Glossary), as well as on mating-type chromosomes in fungi that 48 

lack differentiated sexes and phenotypic differences between mating types [32-34] (See Glossary). 49 

Additionally, many species with strong sexual dimorphism do not show progressive extensions of 50 

recombination suppression on sex chromosomes [15,35-38]. Recently, several new hypotheses have 51 

been proposed, which do not invoke sexual antagonism, but instead are based on non-selective 52 

processes or on the presence of deleterious mutations in genomes [39-43]. Here, we synthesise the 53 

hypotheses developed to explain the evolution of recombination suppression, either in a single step 54 

or progressively, and in particular the ones we developed [39,41]. We also identify predictions of 55 

the different hypotheses explaining progressive extensions of recombination, evaluate empirical 56 

evidence, and suggest directions for future empirical research. We focus on the evolutionary causes 57 

of recombination suppression and discuss the proximate mechanisms in Box 1. 58 

I- Evolutionary mechanisms explaining recombination suppression around sex-determining 59 

loci but no progressive extension 60 
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Various hypotheses have been developed for explaining recombination suppression between the 61 

genes involved in sex- or mating-type determination, which has been extensively reviewed [19,25]. 62 

These hypotheses are based on the emergence of dioecy via male-sterility and female-sterility genes 63 

[44-46], the proper key and lock functions in mating compatibility [32,45,47] or meiotic drive [44]. 64 

Other hypotheses can explain recombination suppression beyond sex-determining genes but not 65 

progressive extension; these include the pre-existence of regions with low rates of recombination 66 

[26,48-52] and the promotion of particular segregation patterns at meiosis [53]. Below we focus on 67 

the evolutionary mechanisms driving progressive recombination suppression, either gradually or 68 

through stair-like evolutionary strata (see Glossary).  69 

II-  Evolutionary mechanisms explaining progressive loss of recombination 70 

Understanding the evolutionary causes of progressive recombination suppression requires 71 

recognizing three distinct stages: i) the initial selective advantage of non-recombining fragments 72 

that makes them rise in frequency, ii) the conditions that allow them to reach fixation despite their 73 

captured or accumulated recessive deleterious mutations, iii) the maintenance of non-recombining 74 

fragments on sex chromosomes despite degeneration that results from recombination suppression. 75 

Understanding progressive recombination suppression around sex- and mating-type determining 76 

genes, and other heterozygous supergenes, also requires elucidating why this does not occur 77 

elsewhere in genomes.  78 

 79 

i) Evolutionary mechanisms allowing non-recombining fragments to rise in frequency 80 

 *Directly beneficial non-recombining fragment 81 

Non-recombining fragments can be directly beneficial, for example if inversion breakpoints 82 

generate beneficial mutations by changing gene expression, generating duplications, chimeric genes 83 

or deletions [54]. This has been suggested in the case of autosomal supergenes [54-56] and could 84 

be applicable to evolutionary strata on sex chromosomes [42]. Indeed, if a beneficial inversion 85 

overlaps with the existing non-recombining region in a sex chromosome, it can only fix on the sex 86 

chromosome in which it appeared (X or Y). This will maintain the inversion at the heterozygous 87 

state, thereby expanding the non-recombining region between the two sex chromosomes.  88 

*Beneficial allelic combinations: sexual antagonism and local adaptation 89 

The first proposed selective advantage of non-recombining fragments on sex chromosomes is the 90 

linkage of sexually antagonistic loci to sex-determining genes, so that, for example, only males 91 

carry alleles that are only beneficial to males [57,58] (Figure 1a). Theoretical models have however 92 

suggested that sexual antagonism may be better solved through the differential expression of 93 

autosomal genes [59].  94 
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Another well-known advantage of recombination suppression is for promoting local adaptation, i.e. 95 

for maintaining beneficial allelic combinations in different environments in the face of gene flow 96 

[55,60]. Theoretical models suggested that X-like chromosomes (i.e. sex chromosomes recombining 97 

in one sex) may disproportionately contribute to local adaptation because selection is more efficient 98 

[61]. Such non-recombining fragments on X-like chromosomes would suppress recombination with 99 

Y-like chromosomes. 100 

*Selection for less-loaded or “lucky” fragments  101 

Another selective advantage of non-recombining fragments can be that, by chance, they occur on a 102 

chromosomal segment with fewer deleterious mutations than the population average in this genomic 103 

region [62], which occurs in nearly half of reasonably large, random inversions [39]. These “less-104 

loaded” [39] (see Glossary) or “lucky” fragments [40] have a direct intrinsic fitness advantage and 105 

should therefore increase in frequency, in autosomes or in sex chromosomes (Figure 1b).  106 

 *Initial sheltering advantage under inbreeding or automixis  107 

Non-recombining fragments linked to a permanently heterozygous allele (see Glossary) could be 108 

favoured due to the sheltering (see Glossary) of their partially recessive deleterious mutations (Box 109 

2). Indeed, the linkage to a permanently heterozygous allele can maintain recessive deleterious 110 

mutations in a heterozygous state, allowing the masking of their deleterious effects. However, such 111 

sheltering is only possible if there is linkage disequilibrium (see Glossary) between loci with 112 

recessive deleterious mutations and the permanently heterozygous allele. Such linkage 113 

disequilibrium indeed means that some deleterious mutations can be more frequent on the 114 

permanently heterozygous, Y-like chromosome than on the X, so that their effect can be masked 115 

by functional copies on the X-like chromosome (Figure 1c, Boxes 2 and 3). The linkage 116 

disequilibrium can be generated by partial inbreeding, drift [63] or by particular mating systems, 117 

such as automixis (see Glossary) [64,65].  118 

 *Neutral hypotheses  119 

Neutral inversions (i.e., with selective effects weaker than genetic drift) linked to the sex-120 

determining gene could rise in frequency via genetic drift more often on sex chromosomes than on 121 

autosomes, because of the smaller effective population size of sex chromosomes [24,57,66-69]. A 122 

recent model [41] simulated neutral point mutations accumulating at the margin of the non-123 

recombining region, increasing sequence divergence between sex chromosomes. Provided that 124 

sequence divergence reduces local recombination rates, this can, in turn, increase genetic linkage 125 

with the non-recombining region [41] and subsequently lead to further accumulation of sequence 126 

divergence (Figure 1d). This self-reinforcing neutral process could progressively extend the non-127 

recombining region. The enrichment of transposable elements in non-recombining regions could 128 
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also promote the progressive extension of the non-recombining region as these elements often carry 129 

silencing marks with a recombination-suppressing effect (e.g. methylation) [68,70,71], and the 130 

silencing marks can extend to nearby regions [72].   131 

 132 

ii)  Fixation of non-recombining fragments despite mutation load 133 

The mechanisms reviewed above can explain the rise in frequency of non-recombining fragments, 134 

and several can apply to autosomes or X-like chromosomes. However, any relatively large non-135 

recombining genomic segment is likely to include partially recessive deleterious mutations (i.e. 136 

mutation load; see Glossary). When such loaded autosomal or X-linked non-recombining 137 

fragments spread in a population, they will increasingly occur in a homozygous state, which will 138 

expose their recessive deleterious mutations. This will stop their spread, regardless of the reason 139 

why they initially increased in frequency. Therefore, non-recombining fragments carrying 140 

deleterious recessive mutations on autosomes and X-like chromosomes will be unlikely to fix, 141 

unless they benefit from a strong fitness advantage compensating their mutation load 142 

[39,42,62,73].  143 

In contrast, non-recombining fragments that capture a permanently heterozygous allele (e.g. a Y-144 

like sex-determining allele) will never be homozygous, even when becoming frequent [31,74]. By 145 

becoming linked to a permanently heterozygous locus, the deleterious recessive mutations on the 146 

non-recombining fragments become sheltered (Figure 1e). As above, this sheltering effect requires 147 

linkage disequilibrium between these deleterious mutations and the permanently heterozygous 148 

allele. Here, linkage disequilibrium is generated by the increase in frequency of the non-149 

recombining fragment that captured both the permanently heterozygous allele and the deleterious 150 

mutations (Box 2). This key phenomenon has been overlooked in recent debates about the 151 

sheltering hypothesis [43,75]. For example, in the case of a loaded non-recombining fragment on a 152 

Y chromosome having risen in frequency (regardless of the reason why), the frequency of the 153 

captured deleterious mutations will be much higher on the Y than on the X chromosome 154 

(constituting linkage disequilibrium); consequently, these mutations are sheltered. Such sheltering 155 

allows non-recombining fragments to reach fixation on Y-like chromosomes despite carrying 156 

recessive deleterious mutations [39,43]. This sheltering effect has been modelled for the lower-load 157 

advantage [39], but can apply to other selective advantages and neutral hypotheses. The      158 

sheltering effect during the fixation phase on Y-like chromosomes could thus explain why 159 

recombination suppression extends on sex chromosomes and not on autosomes.  160 

The fitness of non-recombining fragments may erode with time during the fixation phase, as they 161 

accumulate deleterious mutations because of recombination suppression [39,43,76,77]. To reach 162 
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fixation, their fitness needs to remain above average until fixation.  Simulations showed that the 163 

accumulation of deleterious mutations during the fixation phase did not prevent many non-164 

recombining fragments from fixing on Y-like sex chromosomes under a wide range of parameters 165 

[39,40,43]. New, partially recessive deleterious mutations accumulating during fixation of a non-166 

recombining fragment on a Y-like chromosome will also be sheltered, as they are unlikely to also 167 

occur on the X-like chromosome.  168 

 169 

iii) Long-term persistence of non-recombining regions 170 

Once non-recombining fragments are fixed on sex chromosomes, they accumulate further 171 

deleterious mutations, in particular because recombination suppression renders selection less 172 

efficient [3]. Selection could therefore favor recombination restoration when the mutation load of 173 

non-recombining fragments becomes higher than their initial selective advantage (Figure 1f).  174 

To explain the persistence of non-recombining regions despite accumulated mutation load, a first 175 

hypothesis postulates that rearrangements accumulate more rapidly in these regions than deleterious 176 

mutations. When non-recombining regions have accumulated a mutation load outweighing their 177 

selective advantage, the chaos of rearrangements they carry would render recombination restoration 178 

very difficult [39]. This is called the “constraint” hypothesis (Figures 1g and 2), as recombination 179 

restoration is prevented by rearrangements constraining the possibility of regenerating a collinear, 180 

recombinant chromosome. Indeed, if multiple overlapping or nested inversions accumulate 181 

following recombination suppression (as often observed [33,78-83]), the only way of restoring a 182 

fully recombining chromosome is that new inversions occur at the same breakpoints and in the 183 

same reverse order as the initial inversions occurred [39]. Nested or overlapping inversions can re-184 

align a fraction of the genes, but some other genes will remain shuffled. This hypothesis does not 185 

predict that non-recombining sex chromosomes are everlasting, only that evolutionary strata persist 186 

long enough to be observed. Once sex chromosomes are too much degenerated, there could be sex 187 

chromosome turnover, i.e., the sex-determining genes could move to an autosome, as reported in 188 

several organisms [84].  189 

A second hypothesis, called the “regulatory hypothesis”, postulates that there is no constraint on 190 

recombination restoration, but that dosage compensation (see Glossary) evolves very rapidly and 191 

renders recombination restoration deleterious (Figure 1h). In this hypothesis, inversions that have 192 

accumulated following recombination suppression can be reversed relatively easily by subsequent 193 

inversions reusing the same breakpoints and in the same order. However, dosage compensation 194 

evolves early [40,85]: degenerated genes on the Y-like sex chromosome become silenced owing to 195 

a decrease in the strength of their cis-regulators (Figure 1h), which is very rapidly compensated for 196 
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by changes in their pre-existing gene-specific, sex-specific trans-acting gene expression 197 

regulators (see Glossary) maintaining near-optimal expression in both sexes. Under these 198 

conditions, recombination restoration is selected against as it results in a mismatch between 199 

expression regulators, generating suboptimal gene expression [40]. The recent debate opposing      200 

the constraint and regulatory hypotheses [86] stems from a lack of understanding that the constraint 201 

hypothesis does not imply a lack of dosage compensation evolution in the long term; the constraint 202 

hypothesis only postulates that the maintenance of non-recombining regions does not require early 203 

evolution of dosage compensation.       204 

A third hypothesis to explain the persistence of evolutionary strata could be that sexually 205 

antagonistic mutations accumulate following recombination suppression on sex chromosomes [83], 206 

conferring an advantage stronger than the accumulating mutation load, therefore selecting against 207 

recombination restoration.  208 

III- Predictions of the recent hypotheses and available evidence 209 

Below we highlight predictions for the various hypotheses explaining the progressive extension of 210 

recombination suppression as well as available evidence. Additional predictions can be made,      211 

for example on the frequency of sex chromosome-autosome fusions, the fitness decrease of the 212 

heterogametic sex (see Glossary), the footprints of selective sweeps or the impact of effective 213 

population size, but they currently lack theoretical investigations. 214 

Sexually antagonistic gene enrichment in Y-like chromosomes 215 

The sexual antagonism hypothesis predicts that non-recombining regions should be enriched in 216 

sexually antagonistic genes, as this would be the way to resolve sexual antagonism. Such a 217 

pattern has however very rarely been documented despite being intensively investigated [24,28,87-218 

90]. In the rare cases where sex chromosomes appeared enriched in sexually antagonistic genes, 219 

such as in male coloration genes on the Y chromosome in a guppy [91], low recombination rates on 220 

the Y chromosome may have favored the subsequent establishment of sexually antagonistic genes 221 

[50,92,93].  222 

Correlation between sexual dimorphism level and number of evolutionary strata 223 

A related prediction of the sexual antagonism theory is that a higher number of evolutionary 224 

strata and larger non-recombining regions (considering size before degeneration) should occur in 225 

species with stronger sexual dimorphism. However, sexually antagonistic genes can accumulate on 226 

sex chromosomes after recombination suppression [83], which could lead to a correlation between 227 
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non-recombining region size and sexual dimorphism level. In contrast, the absence of such a 228 

correlation contradicts the sexual antagonism hypothesis, provided that the sexual dimorphism 229 

level was accurately assessed. Some comparative studies found significant positive correlations 230 

between non-recombining region size and dimorphism [92,94], while others found none [81]. In 231 

particular, some species display monomorphic sex chromosomes despite sexual dimorphism [35-232 

37], and others heteromorphic sex chromosomes despite low dimorphism levels [94]. In addition, 233 

the existence of multiple evolutionary strata on mating-type chromosomes in a variety of fungi 234 

[33,53,79,95,96], despite the absence of gamete dimorphism and of other types of antagonistic 235 

selection [34], shows that sexual antagonism is not required for the evolution of progressive 236 

recombination suppression. 237 

 238 

Mating system 239 

The initial sheltering advantage hypothesis predicts the existence of evolutionary strata only in 240 

species with automictic or partially inbreeding mating systems [64,97]. Progressive recombination 241 

suppression has been reported in inbreeding termites [98,99] and in many automictic fungi 242 

[53,95,96,100-102] (Figure 3). However, evolutionary strata also occur in sex chromosomes of 243 

many species with random mating [7 ,19,22 ], so that other mechanisms should be able to generate 244 

evolutionary strata.  245 

Lack of recombination suppression around multi-allelic self-incompatibility loci 246 

The constraint hypothesis may predict that the long-term persistence of non-recombining regions 247 

could be more challenging in multi-allelic systems, such as plant self-incompatibility loci. Indeed, 248 

when more than two alleles are present at self-incompatibility loci, some alleles can be lost. Alleles 249 

around which recombination suppression has evolved could thus be lost once they have 250 

accumulated too many deleterious mutations [39]. In contrast, they could persist under the 251 

hypotheses postulating that they harbor strong intrinsic advantage. The persistence of non-252 

recombining fragments via dosage compensation may also be more challenging around multi-253 

allelic loci, as dosage compensation should depend on the expression level of the alternative allele 254 

and there are many different ones at multi-allelic loci. These predictions need theoretical 255 

investigations, but data so far do suggest lack of recombination suppression extension beyond 256 

multi-allelic self-incompatibility loci in plants [103] and multi-allelic mating-type loci in fungi 257 

(Figure 3).   258 

Ploidy in the main phase of life cycles 259 
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A prediction of the theories involving deleterious mutations is that only organisms with extended 260 

diploid or dikaryotic (see Glossary) phases in their life cycles should display progressive 261 

recombination suppression, because i) haploid life cycles more efficiently purge them [104] and/or 262 

ii) only diploid or dikaryotic phases can shelter recessive deleterious mutations. This prediction of 263 

evolutionary strata being present only in diploid/dikaryotic organisms also holds for the 264 

regulatory hypothesis [40], because dosage compensation can only evolve when cells carry two 265 

different alleles. In contrast, sexual antagonism and neutral processes could promote 266 

recombination suppression in organisms with predominantly haploid life cycles [105]. In fungi, 267 

evolutionary strata have been observed only in dikaryotic species (Figure 3). Among 268 

ascomycetes, that are usually haploid during most of their life cycle, a dikaryotic main phase has 269 

evolved repeatedly, and has been found systematically associated with extension of recombination 270 

suppression around mating-type loci [32,53,101,102] (Figure 3), in contrast to haploid ascomycetes 271 

[106,107]. Bryophytes and algae could allow investigating the impact of the diploid phase length on 272 

the number of evolutionary strata [17,108-112]. Brown algae with long haploid phases in fact 273 

seem to lack evolutionary strata on their sex chromosomes [109,110]. In some green algae, 274 

however, mating-type or sex chromosomes seem to display strata-like patterns despite a prolonged 275 

haploid phase [111,113]. 276 

Mutation rate and their fitness effect   277 

The lower-load advantage and the fixation-sheltering hypotheses predict more evolutionary strata 278 

when the mutation load is higher [39], and therefore for higher rates of deleterious mutations and 279 

more deleterious effects [114]. The neutral hypothesis predicts expansions of the non-recombining 280 

region when neutral mutation rates are high [41]. The neutral/deleterious mutation rate should not 281 

impact the number of evolutionary strata for other hypotheses, while the rate of sexually 282 

antagonistic mutations may have an effect under the sexual antagonism hypothesis. New 283 

sequencing and computational methods [115] should be able to provide estimates of mutation rates 284 

and distribution of mutation fitness effects across a wide variety of organisms to test the existence 285 

of a correlation with the number of evolutionary strata [116]. 286 

Overdominance in young evolutionary strata 287 

The various theories based on deleterious mutation sheltering (Box 2) predict that, because of their 288 

recessive mutation load, non-recombining fragments should often be overdominant (see 289 

Glossary). Overdominance has been documented in several supergenes, for example in butterflies, 290 

zebra finches and ants [31,117,118].  In order to detect recessive deleterious mutations that would      291 

be a cause and not only a consequence of recombination suppression, experimental investigation of 292 
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the overdominance of non-recombining fragments should be conducted on very young 293 

evolutionary strata. Overdominance could be tested, for example, by comparing the growth, as a 294 

proxy of fitness, in fungi that carry young evolutionary strata and can be cultivated either as haploid 295 

or dikaryotic mycelia.  296 

Gradual versus stair-like pattern of recombination cessation 297 

Patterns of gradual recombination suppression, as opposed to stair-like patterns, would support 298 

neutral rather than adaptive processes. Indeed, very small non-recombining fragments are less likely 299 

to capture haplotypes with a selective advantage compared to large non-recombining fragments, so 300 

that recombination suppression involving small steps (yielding an apparently continuous 301 

progressive extension) is likely generated by neutral processes [41]. Patterns of discontinuous strata 302 

(stair-like) have been reported in a wide range of organisms, from plants and animals to fungi 303 

[22,32,33,53,79,83,119-124]. Although more rarely, cases of more continuous shifts in the pseudo-304 

autosomal boundaries have been documented [49,125-128]. Assessing whether the divergence 305 

pattern is discrete or gradual is challenging but change-point analyses and high-quality genome 306 

assemblies provide valuable insights [129,130]. 307 

Relative rates of rearrangements versus degeneration following recombination suppression 308 

The constraint hypothesis explaining the long-term persistence of non-recombining regions predicts 309 

that inversions or other rearrangements occur more rapidly than the fitness decrease due to the 310 

accumulation of deleterious mutations, so that multiple overlapping rearrangements completely 311 

reshuffle gene order before degeneration is strong. Data in anther-smut fungi, with dozens of 312 

independent events of recombination suppression of different ages, show that rearrangements within 313 

non-recombining regions become chaotic before they accumulate non-synonymous substitutions or 314 

suboptimal codon usage [4,33,79,95,131] (Figure 2). In the plant Rumex hastatulus too, extensive 315 

rearrangements occurred on the sex chromosome before any gene loss or transposable element 316 

accumulation [132]. With such a rapid accumulation of overlapping rearrangements, occurring 317 

before strong degeneration, it seems extremely unlikely that recombination could be restored. This 318 

would indeed require reverting inversions by subsequent inversions reusing the same breakpoints, 319 

in the same order as they occurred.  Only two cases of such inversion reversions have been 320 

documented in the extensively studied Drosophila melanogaster [133]. For reversions to be 321 

possible, the number of possible inversion breakpoints should be limited along genomes [39]. The 322 

chaos of rearrangements in fungal mating-type chromosomes [33,78-80] and in Y chromosomes 323 

[81-83], and a study on inversion polymorphism in humans [134], show in contrast that the number 324 

of possible inversion breakpoints is high. However, we need data on inversion rates and their 325 
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breakpoints, for example by analysing progenies and populations with long-read sequencing. 326 

 It has been argued that the occurrence of sex chromosome turnovers would be a way to restore 327 

recombination of rearranged, degenerated sex chromosomes [86], and that this possibility meant      328 

that the constraint hypothesis could not explain long-term persistence of recombination suppression. 329 

However, sex-chromosome turnovers do not contradict the constraint hypothesis (see above) [135]: 330 

they may suggest, in contrast, that evolutionary strata have persisted long enough in populations to 331 

degenerate, without early dosage compensation. Furthermore, sex chromosome turnovers likely 332 

cannot occur in UV systems or mating-type chromosomes, in which the two chromosomes are non-333 

recombining and therefore degenerate: there is no X-like recombining chromosome that retains all 334 

its functional genes and can become an autosome.       335 

More frequent inversions on sex chromosomes than on recombining chromosomes  336 

The local adaptation hypothesis predicts more frequent inversions on X-like chromosomes 337 

(recombining in one sex) than on autosomes [61,136]. Because both chromosomes are non-338 

recombining in UV systems and mating-type chromosomes, this mechanism may not be able to 339 

generate strata in these systems, which could allow testing this hypothesis.                                                    340 

The theories involving sheltering (Box2) predict more frequent inversions on Y-like chromosomes 341 

than on autosomes or X-like chromosomes, due to the permanent heterozygosity of Y-like 342 

chromosomes and the associated sheltering of captured deleterious recessive mutations [39].                343 

Empirical data suggest that rearrangements fix more frequently on Y-like than on X-like 344 

chromosomes or autosomes [33,79,82], although this needs to be formally tested, controlling for 345 

possible confounding factors, such as increased mutation rates in males [137] and inversion 346 

accumulation after recombination suppression.  347 

Gene-specific dosage compensation through cis- and trans-acting factors  348 

An assumption of the dosage compensation hypothesis for explaining the long-term persistence of 349 

non-recombining regions is that the expression of many genes needs to be finely dosed, as the 350 

hypothesis requires the rapid evolution of a complex dosage compensation mechanism [85]. A 351 

prediction is therefore that dosage compensation should be observed in many genes and in all young 352 

strata. Dosage compensation has been observed in several organisms, in particular mammals [138-353 

140]. However, the mere existence of dosage compensation is not a support for the regulatory 354 

hypothesis, as it can evolve late in the degeneration process under all other hypotheses. Conversely, 355 

the lack of dosage compensation in any species or strata would indicate that the regulatory 356 

hypothesis cannot explain evolutionary strata, at least in such organisms. Many systems with 357 
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evolutionary strata exhibit incomplete or complete lack of dosage compensation, e.g. in birds, 358 

snakes, fishes, turtles, frogs and plants [15,128,141 ,142 ,143-145]. Elucidating the temporal 359 

dynamics of changes in gene expression compared to that of degeneration following recombination 360 

suppression could help testing the regulatory hypothesis.  361 

Another prediction of the regulatory hypothesis [40] is that numerous sex-specific trans-acting 362 

gene expression regulators already exist before recombination suppression, constituting a kind of 363 

sexual dimorphism. However, it remains to be assessed whether i) numerous trans-acting gene-364 

specific, sex-specific regulators occur along genomes and whether ii) they exist before the evolution 365 

of recombination suppression. In mosquitoes for example, a single major regulator globally controls 366 

dosage compensation on the whole X chromosome [146]. In mammals too, dosage compensation 367 

occurs globally, by inactivating a whole X chromosome in each cell [147]. Dosage compensation 368 

may be even more challenging to achieve in UV-like systems, as both sex or mating-type 369 

chromosomes are permanently heterozygous, and so are expected to degenerate, with the most 370 

degenerated allele being on one or the other chromosome depending on the gene. Dosage 371 

compensation would therefore need to evolve on many genes with trans-acting gene-specific, 372 

mating-type-specific regulators, and it remains to be assessed whether this can occur in nature. No 373 

dosage compensation has actually been reported so far in UV systems or fungal mating-type 374 

chromosomes, although this needs to be further explored.  375 

IV. Concluding Remarks and Future Perspectives 376 

In this paper, we aimed at summarising the hypotheses developed for explaining a long-standing 377 

puzzle, the progressive evolution of recombination suppression in sex chromosomes and autosomal 378 

supergenes. We have dissected predictions made by the different hypotheses and provided 379 

examples of tests that could allow to disentangle hypotheses. However, data is currently too scarce      380 

(see Outstanding Questions). Many of the predictions can indeed only be tested using comparative 381 

studies with data available on many species, with diverse traits and large-scale population genomic 382 

data. The Tree of Sex initiative (https://treeofsex.sanger.ac.uk/) aiming at building a database 383 

compiling information on reproductive systems and associated data across eukaryotic life could be 384 

highly useful to disentangle the hypotheses. The present paper provides clues on which traits need 385 

to be informed in this database. Of course, the various proposed mechanisms are not mutually 386 

exclusive and several may act in nature, in combination or in different organisms. 387 
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Boxes: 398 

Box 1: Proximate mechanisms influencing progressive recombination suppression   399 

Perhaps the simplest and most widely discussed proximate mechanism suppressing recombination 400 

is via an inversion, whereby sequence collinearity is immediately broken over a large region 401 

[55,148]. Crossing-over interference also occurs at the margin of inversions, mechanistically 402 

preventing recombination much farther than around the inversion breakpoints [149,150]. Inversions 403 

are often considered the primary proximal cause of the classic stair-like evolutionary strata effect 404 

on sex chromosomes. However, inversions can also evolve as a consequence of recombination 405 

suppression. Only a handful of studies have explicitly shown accordance between the boundaries of 406 

evolutionary strata and breakpoints of inversions [83,151]; in contrast, multiple young 407 

evolutionary strata are still collinear in fungi [32,53,79,80,96,102,152]. Experiments have further 408 

shown that rearrangements cannot explain alone recombination suppression around mating-type 409 

loci in a unicellular alga [111].  410 

Most of the hypotheses reviewed in this paper can work with inversions as well as with other 411 

proximal mechanisms. The insertion of transposable elements in regions of low recombination 412 

could for instance result in the inhibition of recombination in surrounding regions, due to the host 413 

silencing responses (e.g. DNA methylation or repressive chromatin) [68]. DNA methylation can 414 

indeed lead to recombination suppression [68,71,72,153-157]. Proximate mechanisms of 415 

recombination suppression could also be trans-or cis-acting recombination modifiers [158,159] 416 

(see Glossary). The lack of recombination in the mating-type chromosomes of the yeast Lachancea 417 

kluyveri is due to the lack of recruitment of proteins responsible for double-strand breaks [160]. 418 

Sequence divergence accumulating in the low-recombination part near the sex-linked region could 419 

also prevent recombination [41,161-163]. 420 

The proximal mechanisms of recombination suppression may however have evolutionary 421 

consequences. Indeed, if the proximal mechanism of recombination suppression was an inversion, 422 

recombination restoration would require an inversion reversion, i.e., the restoration of the original 423 

sequence orientation via a second inversion reusing the same breakpoints. Restoring recombination 424 

may be easier with other proximal mechanisms, unless rearrangements rapidly accumulate within 425 

non-recombining regions. In addition, some evolutionary hypotheses are directly associated with 426 

the proximal mechanism suppressing recombination, such as the hypotheses of beneficial inversion 427 

breakpoints changing gene function or regulation, or the spread of transposable element silencing 428 

marks suppressing recombination. Furthermore, the proximate causes can impact the likelihood of 429 

non-recombining fragment fixation. For example, inversions can create lethal aneuploids (i.e. with 430 
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missing chromosomal parts), which can reduce fertility and thereby hinder inversion spread in 431 

populations. Indeed, recombination within an inversion may lead to unbalanced gametes, with some 432 

gametes having a large duplication and some others a large deletion. In such cases, the selective 433 

advantage of non-recombining fragments must be higher than their intrinsic cost, which has been 434 

taken into account only in some models [39]. 435 

 436 

Box 2: Conditions allowing a sheltering advantage on sex chromosomes  437 

The sheltering of recessive deleterious mutations corresponds to the masking of non-optimal alleles 438 

by functional ones owing to their maintenance in a heterozygous state. This occurs on sex 439 

chromosomes due to the linkage, via recombination suppression, of deleterious mutations to a 440 

permanently heterozygous allele, provided that these deleterious mutations are less frequent on 441 

the alternative sex chromosome (i.e. that there is linkage disequilibrium between the sex-442 

determining locus and the deleterious mutations). Such sheltering can play a role in several phases 443 

of sex-chromosome evolution.  444 

Sheltering is most known to potentially act after the fixation of non-recombining fragments, as new 445 

recessive deleterious mutations occurring in the non-recombining fragment are absent from the 446 

homologous chromosome, therefore remaining heterozygous. This leads to the accumulation of 447 

deleterious mutations, thereby contributing to the degeneration of sex chromosomes [2,77,164].  448 

Sheltering can also favor the initial spread of non-recombining fragments, provided there is 449 

linkage disequilibrium between deleterious recessive mutations and the sex-determining locus 450 

[165]. Indeed, if a deleterious allele is more often on the Y than on the X chromosome, 451 

recombination suppression linking the deleterious mutation and the heterozygous sex-determining 452 

allele is advantageous, as it reduces the proportion of offspring homozygous for the recessive 453 

deleterious mutation [64]. The initial linkage disequilibrium between deleterious mutations and 454 

the heterozygous sex-determining allele can be due to drift or to non-random mating, e.g. under 455 

automixis or inbreeding [64,97,166].  456 

In large populations with random mating, even a small amount of recombination restores            457 

linkage equilibrium between a locus with deleterious mutations and a permanently heterozygous 458 

locus,  preventing any initial gain due to sheltering [164,167]. In such populations, the sheltering 459 

of deleterious mutations can nevertheless contribute to the fixation of beneficial non-recombining 460 

fragments on Y-like sex chromosomes regardless of their initial advantage. Indeed, the rapid 461 

increase in frequency of such non-recombining fragments generates an over-representation of their 462 
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deleterious mutations on the Y-like chromosome compared to its homologous chromosome, and the 463 

lack of recombination maintains linkage disequilibrium (a phenomenon overlooked in recent 464 

debates about the sheltering effect [43,75]). This leads to the sheltering of these deleterious 465 

mutations, even in large populations and under random mating, allowing the fixation of these non-466 

recombining fragments on Y-like chromosomes despite their mutation load [39]. Linkage 467 

disequilibrium will also exist between the sex-determining locus and new deleterious mutations 468 

occurring in the non-recombining fragment during its fixation phase, also allowing their sheltering.  469 

 470 

Box 3: The different roles of deleterious mutations in recent models  471 

In several recent models aiming at explaining the progressive evolution of recombination 472 

suppression in sex chromosomes [39,40,43], deleterious mutations play important roles. These 473 

hypotheses are based on the observations that many deleterious mutations typically segregate in 474 

genomes under mutation-selection equilibrium in diploid organisms [39,73,168-170]. In these 475 

recent models, deleterious mutations play distinct roles in the three stages of the evolution of 476 

suppressed recombination     :       477 

i) non-recombining fragments with fewer deleterious partially recessive mutations than average (i.e. 478 

being “less-loaded” or “lucky”) have a higher fitness than the mean of the population and therefore 479 

increase in frequency [39,40]; there is no sheltering effect at this initial stage; 480 

ii) when non-recombining fragments increase in frequency thanks to their intrinsic advantage or 481 

genetic drift, they increasingly occur at a homozygous state, which exposes their mutation load if 482 

they carry recessive deleterious mutations. It is only when they also capture a permanently 483 

heterozygous (Y-like) allele that they can continue increasing in frequency, as their recessive 484 

deleterious mutations are then sheltered; non-recombining fragments with a recessive mutation 485 

load are unlikely to fix on autosomes or X-like chromosomes [39]. Further deleterious mutations 486 

may accumulate during the course of fixation [62], but a wide range of parameters still allow their 487 

fixation [39,43,75]. Several points have not been always fully understood on this sheltering effect 488 

[75]. First, the above sheltering effect only acts when non-recombining fragments are frequent, and  489 

it needs to be studied separately from the “less-loaded” effect driving the initial increase in 490 

frequency of non-recombining fragments. Second, neutral non-recombining fragments do not 491 

constitute the right control to evaluate the sheltering effect, as this effect only allows non-492 

recombining fragments to fix despite their load. Therefore, this effect can only be studied by 493 

comparing autosomes (where sheltering does not occur) to sex chromosomes (where sheltering 494 
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occurs), and with deleterious mutations segregating: the autosomes are the right controls for the 495 

sheltering effect, as they carry the load but cannot be sheltered.  496 

iii) After fixation on Y-like chromosomes, the non-recombining fragments will accumulate new      497 

deleterious alleles due to recombination suppression, and will eventually become more loaded than 498 

average, which should select for restoring recombination. The persistence of evolutionary strata 499 

(at least long enough to be observed) can be due to constraints because too many overlapping 500 

rearrangements have also accumulated, so that reversion to the initial, recombining state is unlikely 501 

to occur [39], or because dosage compensation has already evolved, rendering recombination 502 

restoration less advantageous [40], or because sexually antagonistic genes have also accumulated. 503 

Under the constraint model, evolutionary strata eventually degenerate and fitness decreases, so 504 

there can be sex-chromosome turn-over, i.e. the relocation of the sex-determining genes in a 505 

different chromosome pair. This model could thus produce heteromorphic chromosomes and 506 

maintain them long enough to be observed [39].  507 

Link to a 5 minute movie explaining the Jay et al. 2022 model: 508 

https://www.youtube.com/watch?v=svFZB-n6VWA&ab_channel=PixVideosProductionCompany 509 

 510 

Highlights   511 

- Explaining recombination suppression in sex chromosomes requires understanding i) the selective 512 

advantage of non-recombining fragments, if any; ii) the reasons for their persistence following 513 

degeneration; and iii) why these mechanisms occur specifically around sex-determining genes. 514 

-Theories propose that recombination suppression can evolve due to neutral processes, sexual 515 

antagonism, the capture of fewer deleterious mutations than average, or the sheltering of 516 

deleterious mutations by permanently heterozygous alleles. 517 

-Recombination suppression can be maintained by constraints due to overlapping chromosomal 518 

rearrangements, by rapid evolution of dosage compensation or by sexually antagonistic mutation 519 

accumulation     . 520 

-These hypotheses make different predictions, for example on sexual dimorphism, ploidy, mutation 521 

load, dosage compensation, mating system or chromosomal rearrangements rates. 522 

  523 
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Outstanding Questions Box 524 

-Is recombination suppression neutral or selected for?  525 

-Are the following traits associated with progressive extensions of recombination suppression? i) 526 

sexual dimorphism, ii) other types of antagonistic selection, iii) the existence of an extended diploid 527 

or dikaryotic phase, iv) level of mutation load in populations (i.e., number and recessiveness of 528 

deleterious mutations), v) particular mating systems (e.g., automixis or inbreeding), vi) number of 529 

alleles at mating compatibility genes, vii) dosage compensation evolution, and viii) heterogamety 530 

asymmetry (e.g. XY versus UV). 531 

-Does progressive suppression of recombination occur in a stair-like fashion or following a more 532 

continuous process? 533 

-Can recombination be restored after having been suppressed? Are full reversions possible for 534 

inversions? How frequently do they occur?  535 

-Do overlapping inversions accumulate more rapidly than deleterious mutations following 536 

recombination suppression? Does this prevent the restoration of recombination once the fitness 537 

advantage of non-recombining fragments is offset by their accumulated mutation load?  538 

-Does dosage compensation evolve rapidly and systematically? Are many genes sensitive to gene 539 

expression levels? Can dosage compensation evolve in systems without sex chromosome 540 

asymmetry? 541 

 542 

Glossary  543 

Automixis: mating between the product of a single meiosis. 544 

Cis-acting factor: DNA sequence acting on the expression of a gene or on the level of 545 

recombination in its local genomic environment, as opposed to trans-acting factors, that act on 546 

distant genes or genomic regions. 547 

Dikaryotic: condition in some fungi, with two genetically distinct, unfused nuclei in each cell, one 548 

from each of the two parents. This situation is functionally similar to diploidy. 549 
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Dosage compensation: processes by which diploid gene expression level is restored following the 550 

degeneration of an allele on the Y-like sex chromosome. This can involve a gene expression 551 

increase in the X-like sex chromosome or of alleles in both chromosomes. 552 

Evolutionary strata: segments in a non-recombining region with different levels of differentiation 553 

between haplotypes (e.g. between sex chromosomes), resulting from a stepwise extension of 554 

recombination cessation at different times. 555 

Heterogametic: qualifies a sex producing two different types of gametes, distinguished by the sex 556 

chromosome that is contained within. For example, in XY or X0 systems the male is the 557 

heterogametic sex, while in ZW or Z0 systems the female is heterogametic.  558 

Linkage disequilibrium: a situation in which two loci have alleles that are not randomly associated, 559 

i.e. some allelic combinations are more frequent than expected under random association given 560 

allelic frequencies.   561 

Loaded: qualifies a DNA fragment carrying deleterious mutations, see mutation load below. 562 

Mating types: phenotypes controlling mating compatibility, with only different mating types being 563 

able to mate, without differences in gamete size. 564 

Mutation load:  reduction of individuals’ fitness due to the presence of deleterious mutations 565 

segregating in the population.  566 

Overdominance: situation where the fitness of the heterozygote is higher than that of either 567 

homozygous parents 568 

Permanently heterozygous allele: an allele never found in the homozygous state. For example, 569 

sex-determining alleles on Y or W chromosomes, mating-type alleles in fungi and some self-570 

incompatibility alleles in plants. Other alleles at the same locus can be homozygous, such as sex-571 

determining alleles on X chromosomes or some self-incompatibility alleles. At fungal mating-type 572 

loci, all alleles are permanently heterozygous, so the locus itself is permanently heterozygous.  573 

Sexual antagonism: opposing forces of selection at one or multiple loci which encode traits for 574 

which females and males have different fitness optima. 575 

Sheltering: Effect of masking recessive deleterious mutations from natural selection thanks to the 576 

maintenance of a heterozygous state, e.g., by a linkage to a permanently heterozygous allele (Boxes 577 

2 and 3). 578 
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Supergene: set of multiple genes inherited as a single locus due to recombination suppression. 579 

Trans-acting gene expression regulators: DNA sequences regulating the expression of genes that are 580 

located in a distant locus in the genome, as opposed to cis-acting factors, situated just nearby the 581 

genes whose expression they regulate. 582 
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Figure 1: Illustration of the different stages and hypotheses for explaining the progressive loss 1006 

of recombination on sex chromosomes and other supergenes. The first stage depicts hypotheses 1007 

regarding the initial evolutionary mechanisms explaining the rise in frequency of non-recombining 1008 

fragments (a: sexual antagonism, b: lower load than average, c: drift, d: initial deleterious mutation 1009 

sheltering). The second stage deals with the fixation of non-recombining fragments despite 1010 

captured or accumulated mutation load thanks to sheltering (e). The third stage is the persistence 1011 

of non-recombining fragments on the long term despite deleterious mutation accumulation (f), 1012 

thanks to physical constraints due to multiple overlapping rearrangements (g) or due to early dosage 1013 

compensation (h). 1014 

 1015 

Figure 2: Comparison of the accumulation dynamics of non-synonymous substitutions (as a proxy 1016 

for deleterious mutations) and of rearrangements, in the non-recombining regions of mating-type 1017 

chromosomes of various ages in anther-smut fungi; figures adapted from [4,79,95]. The points 1018 

correspond to non-synonymous substitutions between alleles on the two mating-type chromosomes 1019 

in 22 independent events of recombination suppression (evolutionary strata), in 13 Microbotryum 1020 

species. Circos plots display the synteny levels between the two mating-type chromosomes in six 1021 

Microbotryum species, with collinear regions in blue and inverted regions in orange. 1022 

Rearrangements are already chaotic when non-synonymous substitutions begin to accumulate. 1023 
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Pictures of the corresponding Microbotryum species are shown as spores in the anthers of their host 1024 

plants (credit: Michael E. Hood). 1025 

 1026 

 1027 

Figure 3: Recombination suppression seems associated in fungi to the existence of a substantial 1028 

dikaryotic phase (in opposition to haploid fungi), with only two mating-type alleles, and 1029 

sometimes with an automictic mating system. A dikaryotic or diploid main phase and an 1030 

automatic mating system are indeed predicted to be associated with the evolution of stepwise 1031 

recombination suppression under hypotheses involving deleterious mutations. In addition, when 1032 

multiple alleles are present at mating incompatibility loci, there can be a turnover of alleles, with the 1033 

loss of the alleles around which recombination suppression has evolved, once they have 1034 

accumulated too many deleterious mutations. 1035 


