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Abstract. Autonomous and Guided Vehicles (AGVs) have long been
employed in material handling but necessitate significant investments,
such as designating specific movement areas. As an alternative, Au-
tonomous and Intelligent Vehicles (AIVs) have gained traction due to
their adaptability, intelligence, and capability to handle unexpected ob-
stacles. Yet, challenges like optimizing scheduling and path planning,
and managing routing conflicts persist. This study introduces a simula-
tor tailored for AIV scheduling and path planning in various production
systems. The simulator supports both predictive, where paths are pre-
determined, and dynamic scheduling, with real-time optimization. Paths
are determined using Dijkstra’s method, ensuring AIVs use the shortest
route. When path-sharing conflicts arise, a multi-criteria priority system
comes into play, and its impact on the makespan is assessed. Experimen-
tal results highlight the advantage of AIVs over AGVs in most scenarios
and the simulator’s efficiency in generating effective schedules, incorpo-
rating the priority management system.

Keywords: Simulation - AIV - Job-shop scheduling - FMS - Multi-agent
System - Industry 5.0

1 Introduction

Research in unmanned ground vehicles has been done for several decades and is
continuously creating advancements and capabilities [4]. For more than a decade,
AGVs have proven their effectiveness in material handling tasks in manufactur-
ing workshops or logistic warehouses [8]. However, AGV installation is expensive,
as it requires modifying the workshop’s layout by defining dedicated movement
areas [9]. Since AGVs are guided robots, any modification to the workshop’s lay-
out requires updating their map and dedicated environment. To alleviate these
problems, more intelligent, flexible, and collaborative mobile robots, namely
AIVs, are increasingly being used [4].

Unlike AGVs, AIVs do not require dedicated areas in the workshop and
can navigate around static and dynamic obstacles, including human operators.



Hence, AIVs are relevant in Industry 5.0, which refers to a human-centered
industry where humans are working alongside robots and smart machines [5].
They can provide several advantages over traditional transportation methods,
such as increased efficiency, flexibility, and safety [9, 4]. However, the deployment
of AIVs presents some challenges [9], such as the need to efficiently schedule
ATVs, plan their paths carefully, and resolve conflicts that may occur in routing.

In this paper, a simulator for scheduling and path planning of AIVs in job-
shop production systems is presented. The simulator can be used to simulate
both advanced and dynamic scheduling. For predictive scheduling, the AIVs plan
their paths based on an optimized schedule that is generated offline. For dynamic
scheduling, their paths are planned based on a real-time optimization algorithm
that is integrated into the simulator. The simulator uses a path-planning method
based on Dijkstra’s method for finding the shortest path for AIVs. Routing
conflict resolution is based on a multi-criteria system, and the influence of each
criterion on the makespan is studied.

Job shop scheduling problems with mobile robots handling materials have
been extensively studied by researchers. Indeed, Bilge et al. [3] have considered
the problem as a simultaneous scheduling of machines and vehicles. They pro-
pose four layouts in the literature, each consisting of four machines and one
load/unload station, and transportation tasks are carried out by two AGVs.
Taking this work as background, Ham [7] proposes a constraint programming ap-
proach to solve the Job-Shop Scheduling Problem (JSSP) with AGV-transport.
He considers both machines and AGVs as constrained resources. Abderrahim et
al. [1] tackle the JSSP with automated transportation tasks, treating worksta-
tions and vehicles as resources, and employ a Variable Neighborhood Search
(VNS) algorithm to optimize makespan by scheduling both manufacturing and
transportation tasks.

In recent years, simulation has been used to address various challenges in
FMS [2, 13]. Simulation is valuable for identifying phenomena that may not
have been apparent during theoretical modeling stages [14]. Moreover, some
constraints are difficult to model, so simulation is an alternative to overcome
this problem. For instance, in [17], the authors used simulation to demonstrate
the difference between the simulated and the theoretical schedule in a simple ex-
ample. Recently, [16] have introduced a simulation approach to solve the Flexible
Job-Shop Scheduling Problem (FJSSP) with transportation tasks, a more diffi-
cult problem than JSSP with transportation tasks. In [15], the authors developed
a multi-agent simulation for the FJSSP, focusing on AGV collision avoidance
and testing its influence on AGV fleet and makespan. They then enhanced this
approach to simulate predictive and dynamic schedules, incorporating collision
avoidance and deadlock resolution algorithms [14]. Current research emphasizes
AGYV simulation, neglecting the vital role of AIV implementation and manage-
ment in Industry 5.0

This paper’s tackles this problem by proposing the following contributions:

— Address job-shop production systems with transportation tasks carried out
by AIVs.



— Proposes a decentralized method for AIV path planning inspired by Dijk-
stra’s method.

— Propose, as well, a decentralized method for managing priorities in AIVs
routing conflicts.

— Present an integrated simulation approach for job-shop scheduling optimiza-
tion with a decentralized AIV’s fleet management.

The remainder is organized as follows. Section 2 is dedicated to the problem
description, where the job-shop scheduling, path planning, and collision avoid-
ance problems are presented. The study backbone is contained in Section 3.
Section 4 presents experiments conducted and discusses the results. Finally, a
conclusion ends this paper.

2 Problem description

2.1 JSSP and FJSSP

The JSSP is the problem of sequencing a set of jobs J = {J1, Ja, ..., J1} to be
processed on a set of machines M = {Mj, M5, ..., M/} in a job-shop organi-
zation. Each job J; is composed of a sequence (O;1, O;2, ..., Oi) of operations
to be performed consecutively. The operation O;;, which means operation j of
job i, can be performed only on the machine M} € M with the processing
time 7. Furthermore, a machine can only perform one operation at a time,
and preemption of operations is not allowed. However, in FJSSP, an opera-
tion O;; is performed by a machine M) within a subset of eligible machines
M;; € M (1 < card(M;;) < card(M)). We have complete flexibility when
card(M;;) = card(M). Otherwise, it is a partial flexibility.

Job transportation between two machines is performed by a single-load AIV.
A transportation task is denoted by T j, which means the transportation of the
job J; to the machine selected to perform the operation O; ;. Task preemption is
not allowed, i.e., we can not interrupt a task once it starts. Besides, it is assumed
that each machine My has an input and an output buffer, respectively Bi and
BY, for storing jobs before processing and after processing. It is also assumed
that all the jobs are stored in a load/unload (L/U) station at the beginning/end
of the execution.

2.2 Path planning and collision avoidance

Path planning involves finding a suitable path for robots to move between two
locations [10]. Several parameters can be taken into account, such as distance,
duration [12], risk of collisions and deadlocks [6], and energy consumption [11].

In our case, we have developed a path planning method that searches for
either the shortest path or the fastest path. The environment is modeled by
an undirected connected graph in which each point of interest (machine, stock,
corner, and intersection) is represented by a node, and the edges are the corridors



linking them. When a task is assigned to the robot, it plans its path based on
this graph.

Collisions are avoided locally by the robots themselves. Indeed, when two
robots meet, thanks to our priority management system, one stops and gives
way to the other as presented in Figure 1. once the path is clear, the robots
continue as normal. The difference with our previous work is that no direction
of travel is imposed, so AIVs can meet face-to-face. However, the algorithms
developed in [14] remain valid and are used to support the priority management
system.
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Fig. 1: AIVs collision avoidance mechanism

To ensure safety and prevent collisions between robots, each robot employs
two safety radii: a larger radius for obstacle detection and speed reduction, and
a smaller radius for immediate stopping. Upon detecting another robot, the
priority management system takes over. Within the larger radius, both robots
halve their speed. Inside the smaller radius, one robot stops, while the prioritized
robot initiates a go-around maneuver, further reducing its speed. Once the path
is clear, both robots gradually accelerate back to their cruising speed of 1 m/s.

3 Methods

3.1 Multi-agent system (MAS)

The simulator is based on a MAS involving four (04) main agents: AIVs, ma-
chines, stocks, and jobs. The agents are interrelated as follows:

— AIVs pick/deliver jobs from/to stocks.
— Stocks store jobs before/after processing by machines.
— Machines process jobs.

Table 1 summarize the assumptions made for each agent.
3.2 Framework

The multi-agent system (MAS) and the environment are simulated using Net-
Logo 6.2, a programming language and simulator designed for modeling and



Can transfer one and only one
job at a time.

Job’s load/unload time is in-
cluded in transportation time.
Plan path from task schedul-
ing.

Avoid collisions by their own.

Can perform one and only one
operation at a time.

Setup times and breakdowns
are ignored.

Process jobs according to the
scheduling.

Are available at the beginning
of the simulation.

AlVs Machines Stocks Jobs
Are independent of each|Are independent of each|Machine buffers have an iden-|{Are independent of each
other. other. tical limited capacity. other.

L/U station capacity is unlim-
ited.

Can store products as long as
possible.

Can be processed on one and
only one machine at a time.
Can be transported by one
and only one AIV at a time.
Must be processed according
to the scheduling.
Preemption of operation is
not allowed.

Table 1: Assumptions for each agent’s type
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* Battery level
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(a) Multi-agent system
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scheduling

Start a
new task

Plan path

Avoid
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(b) Diagram of AIV performing
tasks in the simulator.

Fig. 2: Simulation framework

simulating systems with multiple interacting agents. Each agent is represented
as a "turtle” belonging to a specific "breed”. Global parameters apply to the
entire model, while breed-specific parameters are exclusive to that breed. In
this simulation, AIVs, machines, jobs, and stocks are considered as four distinct
breeds. Simulation time is measured in ”ticks”, with the assumption that 20
ticks represent one second. AIVs move along the corridors as shown in Figure 3.

The simulator interface is composed by:

Sliders: for varying the number of jobs or transporters.

Choosers: for selecting the problem instance, simulation environment, navi-

gation type (shortest or fastest path), and priority type.

simulation results.

The monitor: for displaying simulation outputs.

Switches: for activating collision avoidance between robots and for recording



— Buttons: The setup button initializes (or reinitializes) the simulation, while
the go button launches it.

— The simulation environment represents the workshop layout. It displays a
real-time visualization of the simulation.

HLL
L

g

oduct = job

Fig. 3: Simulation interface

3.3 Simulation model

In our model, the production and transportation tasks are not dependent, which
means that AIVs can transfer some jobs while machines are processing others.
However, for a job to be processed by a machine, it must first be transported by
a robot. Therefore, the problem involves four subtasks:

— Vehicle scheduling: determines which jobs will be transported by a robot and
the order in which the jobs will be transported.

— Machine scheduling: determines which jobs will be processed by a machine
and the order in which the jobs will be processed.

— Vehicle routing: determines the path a robot will take while carrying out its
task.

— Vehicles and machines synchronization: to ensure that precedence constraints
and logical sequences are respected.

In the case of predictive scheduling simulation, transportation and produc-
tion tasks are generated offline after an optimization process. The simulator
therefore takes the result of this optimization as input and simulates it. How-
ever, in the case of dynamic scheduling simulation, the simulator is embedded
with a dynamic scheduling algorithm. As a result, transportation and production
tasks are generated dynamically, step by step, throughout the simulation.

3.4 Layout and instances

Experiments are conducted using the well-known benchmark instances proposed
by Bilge and Ulusoy [3]. They proposed four different layouts of the job shop, each



consisting of a load/unload (L/U) station and four machines. The L/U station
is used as a storage area for all jobs before they are processed (raw materials)
and after they have been completed (finished products). Transportation tasks are
carried out by two identical uni-charge AGVs. All transportation tasks begin and
end at the L/U station. Each layout has a unique travel orientation, travel times,
and L/U station and machine locations. For our part, we have replaced AGVs
with AIVs. As a result, AIVs don’t need to follow a unique travel orientation.
They’re intelligent enough to plan their own routes. This change has a direct
impact on travel times, as shown in Table 2. Note that the values in Table 2b
represent the minimum time required to travel between two locations.

Bilge and Ulusoy also proposed 10 different job sets, each of which consists
of 5 to 8 jobs. Jobs are made up of several operations that must be performed
on specific machines, and each operation has a corresponding processing time.
The proposed test instances are denoted as "EXa3”, where a and [ represent
the job set and the layout, respectively. It is important to note that both travel
times and processing times are measured in seconds.

For this paper, we have limited our experiments to layout 2.

(a) Original layout 2 (b) Layout 2 with AIVs

Fig.4: Layout 2

L/U M1 M2 M3 M4 L/U M1 M2 M3 M4
L/U0 4 6 8 6 L/U0 4 6 6 4
Mi|{6 0 2 4 2 Ml 4 0 2 4 2
M2| 8 12 0 2 4 M2 6 2 0 2 4
M3| 6 10 12 0 2 M3| 6 4 2 0 2
M4| 4 8 10 12 O M4l 4 2 4 2 0
(a) Layout 2: original travel times (b) Layout 2: AIVs travel times

Table 2: Travel times

3.5 Priority management system

The priority management system is a rule-based system based on four criteria:



— Distance: The AIV closest to its destination has priority.

— Battery: The AIV with the lowest battery level has priority. In this case,
the robots’ battery levels gradually decrease as they perform their tasks.
It is assumed that the battery level decreases at each simulation time step
by 0.0025, 0.00125, and 0.0005 percent of the complete charge, respectively,
when the AIVs are at cruising speed, when they reduce speed, and when
they are at a complete stop. Nevertheless, robot batteries are initially 100%
charged, and have sufficient energy to complete all their tasks.

— Starting time: The AIV that starts its current task earliest has priority.

— Random: AIVs draw a token at random to determine who has priority.

3.6 Experimental protocol

For our experiments, we used the results obtained with the VNS method by
Abderrahim et al. [1] presented in [14]. We are only interested in the results ob-
tained considering collision avoidance. We then re-simulated these schedules by
replacing AGVs with AIVs, while varying the priority management criterion to
study its influence on makespan. We ran each simulation 50 times and recorded
the average and the standard deviation. Layout 2 was chosen for the experiments
because it presents several interesting challenges for the AIVs, such as deadlocks,
intersections, and multiple path alternatives. These challenges provide opportu-
nities to evaluate the performance of different priority strategies. Moreover, We
investigated the impact of using shortest or fastest paths for AIV navigation on
simulation results. We recorded the average time lost due to collision avoidance
maneuvers on each path section (corridors) and used these averages to update
the fastest path navigation method.

4 Results and discussions

The results of the experiments are shown in Table 3. The first column lists the
problem instances. The second column refers to the results in [14]. The other
columns show the simulation results for the different priority criteria that were
adopted. The results presented are the average of the makespan recorded after
50 runs, followed by the standard deviation in brackets.

Overall, AIVs outperform AGVs due to their ability to not follow pre-defined
paths, which saves time. However, moving along the shortest path also increases
the likelihood of encounters, necessitating collision avoidance maneuvers. Our
measurements indicate an average collision avoidance time of 0.8 seconds for
AIVs. Additionally, as noted in [14], lengthy waiting times can disturb other
AIVs’ activities, particularly evident in EX82, where robots experience signifi-
cant delays before proceeding with subsequent tasks.

When comparing the different priority criteria, the distance criterion proves
most efficient, allowing robots closer to their destinations to complete tasks
promptly. This criterion gains further importance when considering deadline
constraints for job deliveries. The battery criterion effectively prioritizes the ATV



with the lowest battery level, enabling it to complete as many tasks as possible
before depleting its energy. The starting time and random criteria, however, yield
mixed results. The starting time criterion may prioritize a robot farther from its
destination, and the random criterion may not always be relevant.

Furthermore, in general, navigation type has a negligible impact on the
makespan . However, it was observed an increase in the number of avoided
collisions with fastest path navigation compared to shortest path navigation as
presented in Table 4. Similarly, some corridors became more collision-prone with
fastest path navigation, because robots always choose the fastest path. In con-
trast, with shortest path navigation, robots choose a random path if multiple
paths have the same length, which can help to distribute traffic more evenly.
However, it is important to note that these experiments were conducted with
only two AIVs and no external disturbances (moving obstacles or human oper-
ators) in order to comply with the benchmark instances [3]. The introduction
of external disturbances and/or an increase in the robot fleet could produce
different results.

Priority criteria
Instances gﬁ:lrls 4] Distance Battery Starting time Random
EX12 99 81.5 (1.7) 82.0(1.3) 82.2(1.6) 80.3(2.2)
EX22 82.2 83.0 (0.0) 83.0 (0.0) 82.8(0.0) 83.0(0.0)
EX32 95 89.3 (0.1) 89.8(0.3) 89.1(0.2) 90.0 (0.3)
EX42 109 94.7 (0.8)  95.1 (0.7) 95.1 (1.0) 94.9 (1.7)
EX52 84 70.0 (0.4)  70.0 (0.4) 70.1 (0.4) 70.3 (0.5)
EX62 102.4 102.8 (0.0) 102.8 (0.2) 102.8 (0.1) 102.8 (0.0)
EXT72 101 97.2 (0.3) 97.0 (0.3) 97.0(0.2) 97.1(0.3)
EX82 155.3 158.3 (1.2) 160.0 (1.0) 159.7 (0.9) 158.0 (0.8)
EX92 106.1 102.6 (1.7) 100.6 (0.7) 101.6 (0.8) 101.2 (1.3)
EX102 145 144.7 (0.1) 144.2 (0.4) 144.5 (0.3) 144.2 (0.4)

Table 3: Experiment results

‘ Corridors of layout 2

0o 1 2 3 4 5 6 7
Distance| 96 404 0 0 159 81 0 873
Time 105395 0 0 O 500 O 1000
Distance|6% 25% 0% 0% 10% 5% 0% 54%
Time 5% 20% 0% 0% 0% 25% 0% 50%
Table 4: Navigation type analysis

nb. of collisions

freq. of collisions




5 Conclusion

This paper addresses job-shop scheduling and Autonomous Intelligent Vehicles
(AIV) path-planning problems through simulation. The transition from Au-
tonomous and Guided Vehicles (AGVs) to AIVs solves several problems, such
as the need for a dedicated environment. AIVs are more intelligent, flexible,
and collaborative mobile robots that can navigate in spaces with mobile and/or
unexpected obstacles. Therefore, their use is relevant in Industry 5.0, where
humans and robots work together. Moreover, the results of the experiments con-
ducted show that, in most of the cases, switching from AGV to AIV improves
the makespan (more than 5s on average).

The simulator presented in this paper is a valuable tool for the study of
AIV scheduling and path planning in job-shop production systems. It is able
to generate efficient schedules for both predictive and dynamic scheduling, and
the priority management algorithm is effective in resolving conflicts between
AIVs. This work has a number of implications for the use of AIVs in production
systems. First, the simulator can be used to evaluate the performance of different
scheduling and path-planning algorithms. Second, AIVs ability to navigate in
more complex workshop layouts can be evaluated. Third, it can prepare for the
transition to Industry 5.0 by considering the human factor.

Future work will focus on expanding the experiments to other layouts and
instances, as well as, improving the performance of the simulator by incorpo-
rating more features, such as a battery management system. Humans will be
integrated as the fifth agent to study their impact on the scheduling of AIVs .
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